
EED2-333-001

EOSDIS Evolution and Development-2 Contract

Release 9 SDP Toolkit Users Guide
for the EOSDIS Evolution and

Development-2 Contract

December 2017

Raytheon Company
Riverdale, Maryland

 EED2-333-001

This page intentionally left blank.

 iii EED2-333-001

Preface

This document is a formal contract deliverable. It requires Government review and approval
within 20 business days. Changes to this document will be made by document change notice
(DCN) or by complete revision.

Any questions should be addressed to:

Data Management Office
EED2 Contract
Raytheon Company
5700 Rivertech Court
Riverdale, MD 20737

This SDP Toolkit version 5.2.20 is directed at EOS instrument data providers who will deliver
code to the ECS Release 9 DAACs. It is an engineering upgrade to Toolkit 5.2.19, delivered in
March 2014. The user calling interface of the current version is the same as that of Toolkit
5.2.19.

The purpose of this document is to provide Earth Observing System (EOS) instrument data
processing software developers and scientists with knowledge of Toolkit functionality: to provide
a listing of routine calling sequences; and to provide detailed descriptions and examples of usage.
The Toolkit will be used by developers at their Science Computing Facilities (SCFs) to develop
EOS data production software and to prepare that software for integration into distributed active
archive centers (DAACs). Subsequent usage of the Toolkit will be in conjunction with the
services provided by the DAACs to produce, archive and distribute standard products. This
document accompanies a software delivery that contains implementations of the tools described
in the document. We note that this SCF version of the Toolkit contains provisions for error/status
message, process control and file name handling by science software in lieu of an operational
scheduling system. This handling will be via manual manipulation of UNIX files. This version
also contains tools for creation and access of standard product metadata parameters as well as
several added ancillary data files (e.g., a geoid model).

The hierarchical data format (HDF) has been selected by the Earth Observing System Data and
Information System (EOSDIS) Project as the format of choice for standard product distribution.
ECS has created the HDF-EOS extensions to HDF, which provide EOS specific HDF structures.
For more information about HDF-EOS, see the HDF-EOS Library Users Guide. HDF is a disk
format and subroutine library for storage of most kinds of scientific data. As a disk format, HDF
files consist of a directory and an unordered set of binary data objects. Each directory entry
describes the location, the type, and the size of these binary objects.

The HDF subroutine library is designed to be easy for C and FORTRAN programmers to use.
The HDF library consists of callable routines, each of which belongs to a particular interface.
Each interface within these layers address a particular HDF function or a particular HDF data

 iv EED2-333-001

structure, such as arrays, tables, and annotations. Both HDF4 and HDF5 - based files are
supported.

This Users Guide is accompanied by a Toolkit Primer. The Primer is intended to provide a
concise explanation of individual tool usage, functionality and coding examples. The Primer will
not contain details, appendices, requirements trace, and so on; that are contained in this Users
Guide. The Primer is available at http://newsroom.gsfc.nasa.gov/sdptoolkit/primer/tkprimer.html

Other Toolkit related documents and links can be found at Toolkit web site:
http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html

The URL for the SDP Toolkit Frequently Asked Questions (FAQ) page is
http://newsroom.gsfc.nasa.gov/sdptoolkit/faq.html

You can also get there from the EDHS Home Page http://edhs1.gsfc.nasa.gov. Click on “ECS
Development”, then Click on “Toolkit”. The "Toolkit Frequently Asked Questions (FAQ)" link
is on the SDP Toolkit Page.

The technical point of contact within the EOS Data and Information System (EOSDIS) core
System (ECS) project is:

Abe Taaheri: Abe_Taaheri@raytheon.com

An e–mail drop for user questions and comments is: RVL_PGSTLKIT@raytheon.com

Revision History

Document Number Status/Issue Publication Date CCR Number

333-CD-605-001 Submitted as Final May 2002 02-0419
333-CD-605-002 Submitted as Final December 2002 02-1050
333-CD-605-003 Submitted as Final April 2003 03-0234

333-EMD-001 Revision - October 2003 03-0715
333-EMD-001 Revision 01 May 2004 04-0215
333-EMD-001 Revision 02 August 2004 04-0350
333-EMD-001 Revision 03 April 2005 05-0150
333-EMD-001 Revision 04 March 2006 06-0127
333-EMD-001 Revision 05 February 2008 07-0560
333-EEB-001 Revision - July 2009 09-0255
333-EED-001 Revision - August 2010 10-0298
333-EED-001 Revision - 01 January 2012 12-0003
333-EED-001 Revision - 02 March 2014 14-0052
EED2-333-001 Revision - December 2017

 v EED2-333-001

Abstract

The SDP Toolkit Users Guide describes Toolkit routine usage for science software developers,
who will produce code to process instrument data. This document describes the overall design of
the Toolkit, provides a general explanation of usage, and installation procedures on computer
platforms for which software development and certification have been done. Detailed listings of
routines, calling sequences, inputs and outputs and examples of usage are also provided. This
current Users Guide is updated to match the Release 9 SDP Toolkit delivery.

Keywords: toolkit, metadata, HDF, HDF5, HDF-EOS, data, format, production, error, handling,
process, control, geolocation, input, output, memory, management

 vi EED2-333-001

This page intentionally left blank.

 vii EED2-333-001

Contents

Preface

Abstract

1. Introduction

1.1 Identification ... 1-1

1.2 Scope .. 1-1

1.3 Purpose and Objectives .. 1-1

1.4 Status and Schedule .. 1-2

1.5 Document Organization... 1-11

2. Related Documentation

2.1 Parent Documents ... 2-1

2.2 Applicable Documents ... 2-1

2.3 Information Documents .. 2-2

3. Toolkit Design Goals

3.1 Foundations .. 3-1

3.2 Nomenclature ... 3-1

3.3 Consistency ... 3-1

3.4 Hierarchical Design .. 3-2

3.5 Units ... 3-2

3.6 Ranges and Limits of Validity; unit vectors ... 3-2

3.7 Aging and Maturation Effects .. 3-3

 viii EED2-333-001

4. Toolkit Usage, Functionality, and Future Direction

4.1 Introduction .. 4-1

4.2 SCF Development Environment .. 4-2

4.2.1 Introduction .. 4-2
4.2.2 File Management.. 4-2
4.2.3 Runtime Configuration .. 4-3
4.2.4 PGE Script Development ... 4-4
4.2.5 Scheduling and Execution of PGEs ... 4-4
4.2.6 Error/Status Message Creation and Use ... 4-5
4.2.7 Error/Status Log Monitoring .. 4-5
4.2.8 Parallel Processing Issues .. 4-6
4.2.9 Configuration Management ... 4-6
4.2.10 Distributed Computing Environment (DCE) Issues .. 4-6

4.3 Test and Simulation Data Access ... 4-7

4.4 Language Bindings and Advanced FORTRAN Considerations .. 4-7

4.5 Thread-Safe Issues .. 4-8

5. Toolkit Installation and Maintenance

5.1 Installation Procedures ... 5-1

5.1.1 Release 9 SDP Toolkit Release Notes ... 5-1
5.1.2 To Install the SDP Toolkit from a Disk–Based Tar File 5-3
5.1.3 Compiling User Code with the Toolkit ... 5-28
5.1.4 Installation of AA Tools ... 5-31

5.2 Instructions on Making Changes to Installation Procedures ... 5-32

5.3 Link Instructions .. 5-34

5.4 Test Drivers ... 5-35

5.5 User Feedback Mechanism .. 5-35

6. SDP Toolkit Specification

6.1 Introduction .. 6-1

6.2 SDP Toolkit Tools-Mandatory ... 6-2

 ix EED2-333-001

6.2.1 File I/O Tools ... 6-2
6.2.2 Error/Status Reporting (SMF Tools) .. 6-97
6.2.3 Process Control Tools .. 6-143
6.2.4 Shared Memory Management Tools .. 6-194
6.2.5 Bit Manipulation Tools .. 6-205
6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools 6-205
6.2.7 Time and Date Conversion Tools .. 6-232

6.3 SDP Toolkit Tools—Optional .. 6-291

6.3.1 Digital Elevation Model Tools ... 6-291
6.3.2 Ancillary Data Tools .. 6-338
6.3.3 Celestial Body Position Tools .. 6-375
6.3.4 Coordinate System Conversion Tools.. 6-398
6.3.5 Geo–Coordinate Transformation Tools ... 6-518
6.3.6 Math and Statistical Support Tools .. 6-528
6.3.7 Constants and Unit Conversions .. 6-528
6.3.8 Dynamic Memory Management Tools .. 6-534
6.3.9 Graphics Support Tools ... 6-543

List of Figures

6-1. Earth-Centered Rotating (ERC) Coordinates ... 6-404

6-2. Earth Centered Inertial (ECI) Coordinates ... 6-405

6-3. Relationship Between Earth-Centered Inertial (ECI) Coordinates and
Orbital Coordinates .. 6-406

6-4. Geometry of the Viewing and Sun Vectors .. 6-507

List of Tables

1-1. Toolkit Routine Key ... 1-3

1-2. Toolkit Routine Listing .. 1-4

1-3. Tool Changes for Release 9 Toolkit Delivery ... 1-11

5-1. SDP Toolkit Development Configuration ... 5-26

5-2. Required Directory Environment Variables .. 5-27

5-3. Required Compiler and Library Environment Variables ... 5-28

 x EED2-333-001

5-4. Values of OSTYPE .. 5-33

5-5. Environment Variables .. 5-33

6-1. PGS_IO_L0_Open Returns .. 6-7

6-2. PGS_IO_L0_SetStart Returns ... 6-11

6-3. PGS_IO_L0_SetStart Returns ... 6-15

6-4. PGS_IO_L0_GetHeader Returns ... 6-18

6-5. PGS_IO_L0_GetPacket Returns.. 6-23

6-6. PGS_IO_L0_Close Returns ... 6-27

6-7. PGS_IO_L0_File_Sim Returns ... 6-31

6-8. File Access Type .. 6-39

6-9. PGS_IO_Gen_Open Returns ... 6-40

6-10. File Access Type .. 6-42

6-11. PGS_IO_Gen_OpenF Returns ... 6-43

6-12. PGS_IO_Gen_Close Returns... 6-46

6-13. PGS_IO_Gen_CloseF .. 6-48

6-14. PGS_MET_Init Inputs ... 6-52

6-15. PGS_MET_Init Outputs .. 6-52

6-16. PGS_MET_Init Returns .. 6-53

6-17. PGS_MET_SetAttr Inputs ... 6-56

6-18. PGS_MET_SetAttr Returns .. 6-57

6-19. PGS_MET_SetMultiAttr Inputs .. 6-61

6-20. PGS_MET_SetMultiAttr Returns ... 6-62

6-21. PGS_MET_GetSetAttr Inputs ... 6-64

6-22. PGS_MET_GetSetAttr Outputs .. 6-64

6-23. PGS_MET_GetSetAttr Returns ... 6-65

6-24. PGS_MET_GetPCAttr Inputs ... 6-67

6-25. PGS_MET_GetPCAttr Outputs ... 6-68

6-26. PGS_MET_GetPCAttr Returns ... 6-68

6-27. PGS_MET_GetConfigData Inputs .. 6-72

 xi EED2-333-001

6-28. PGS_MET_GetConfigData Outputs ... 6-72

6-29. PGS_MET_GetConfigData Returns .. 6-73

6-30. PGS_MET_Write Inputs ... 6-75

6-31. PGS_MET_WriteReturns .. 6-76

6-32. PGS_MET_SDstart Inputs .. 6-81

6-33. PGS_MET_SDstart Outputs .. 6-81

6-34. PGS_MET_SDstart Returns .. 6-82

6-35. PGS_MET_SDend Outputs ... 6-83

6-36. PGS_MET_SDend Returns ... 6-83

6-37. File Access Type .. 6-86

6-38. PGS_IO_Gen_Temp_Open Returns .. 6-87

6-39. Proper Use of Persistence Values .. 6-88

6-40. Temporary File Name Definition .. 6-89

6-41. File Duration .. 6-91

6-42. File Access Type .. 6-92

6-43. PGS_IO_Gen_Temp_OpenF Returns ... 6-92

6-44. PGS_SMF_SetUNIXMsg Returns ... 6-104

6-45. PGS_SMF_SetStaticMsg Returns .. 6-107

6-46. PGS_SMF_SetDynamicMsg Returns ... 6-109

6-47. PGS_SMF_GetMsgByCode Returns .. 6-112

6-48. PGS_SMF_GetActionByCode Returns .. 6-114

6-49. PGS_SMF_CreateMsgTag Returns .. 6-116

6-50. PGS_SMF_GetInstrName Returns ... 6-118

6-51. PGS_SMF_GenerateStatusReport Returns .. 6-120

6-52. Environment Variables ... 6-121

6-53. PGS_SMF_SendRuntimeData Returns .. 6-122

6-54. PGS_SMF_TestStatusLevel Returns .. 6-134

6-55. PGS_SMF_Begin Returns .. 6-137

6-56. PGS_SMF_End Returns ... 6-138

 xii EED2-333-001

6-57. PGS_SMF_SetArithmeticTrap Returns ... 6-139

6-58. PGS_PC_GetReference Returns ... 6-166

6-59. PGS_PC_GetReferenceType Returns... 6-169

6-60. PGS_PC_GenUniqueID Returns .. 6-173

6-61. PGS_PC_GetConfigData Returns .. 6-175

6-62. PGS_PC_GetNumberOfFiles Returns .. 6-178

6-63. PGS_PC_GetFileAttr Returns .. 6-182

6-64. PGS_PC_GetFileByAttr Returns .. 6-185

6-65. PGS_PC_GetReference Returns ... 6-189

6-66. PGS_PC_GetFileSize Returns .. 6-192

6-67. PGS_MEM_ShmCreate Returns .. 6-195

6-68. PGS_MEM_ShmAttach Returns .. 6-197

6-69. PGS_MEM_ShmDetach Returns ... 6-199

6-70. PGS_MEM_ShmRead Inputs ... 6-201

6-71. PGS_MEM_ShmRead Outputs .. 6-201

6-72. PGS_MEM_ShmRead Returns .. 6-201

6-73. PGS_MEM_ShmWrite Inputs .. 6-203

6-74. PGS_MEM_ShmWrite Returns ... 6-203

6-75. PGS_EPH_EphemAttit Inputs .. 6-212

6-76. PGS_EPH_EphemAttit Outputs ... 6-212

6-77. PGS_EPH_EphemAttit Returns ... 6-212

6-78. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Inputs 6-219

6-79. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Outputs 6-219

6-80. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Returns 6-220

6-81. PGS_EPH_GetEphMet Inputs .. 6-224

6-82. PGS_EPH_GetEphMet Outputs ... 6-224

6-83. PGS_EPH_GetEphMet Returns ... 6-224

6-84. PGS_EPH_ManageMasks Inputs ... 6-228

6-85. PGS_EPH_ManageMasks Outputs .. 6-229

 xiii EED2-333-001

6-86. PGS_EPH_ManageMasks Returns ... 6-229

6-87. Estimated Errors in UT1 Predictions (Milliseconds of Time and Equivalent
Meters of Geolocation Error) ... 6-238

6-88. PGS_TD_UTCtoTAI Inputs ... 6-240

6-89. PGS_TD_UTCtoTAI Outputs .. 6-240

6-90. PGS_TD_UTCtoTAI Returns .. 6-241

6-91. PGS_TD_TAItoUTC Inputs ... 6-243

6-92. PGS_TD_TAItoUTC Outputs .. 6-243

6-93. PGS_TD_TAItoUTC Returns .. 6-243

6-94. PGS_TD_TAItoTAIjd.c Inputs .. 6-245

6-95. PGS_TD_TAItoTAIjd Outputs .. 6-245

6-96. PGS_TD_TAIjdtoTAI Inputs ... 6-247

6-97. PGS_TD_TAItoGAST Inputs .. 6-249

6-98. PGS_TD_TAItoGAST Outputs .. 6-249

6-99. PGS_TD_TAItoGAST Returns .. 6-249

6-100. PGS_TD_UTCtoSCtime Returns ... 6-252

6-101. PGS_TD_SCtime_to_UTC Outputs ... 6-255

6-102. PGS_TD_SCtime_to_UTC Returns ... 6-255

6-103. PGS_TD_ASCIItime_AtoB Inputs ... 6-257

6-104. PGS_TD_ASCIItime_AtoB Outputs .. 6-257

6-105. PGS_TD_ASCIItime_AtoB Returns .. 6-257

6-106. PGS_TD_ASCIItime_BtoA Inputs ... 6-259

6-107. PGS_TD_ASCIItime_BtoA Outputs .. 6-259

6-108. PGS_TD_ASCIItime_BtoA Returns .. 6-259

6-109. PGS_TD_UTCtoGPS Inputs .. 6-261

6-110. PGS_TD_UTCtoGPS Outputs ... 6-261

6-111. PGS_TD_UTCtoGPS Returns .. 6-261

6-112. PGS_TD_GPStoUTC Inputs .. 6-263

6-113. PGS_TD_GPStoUTC Outputs ... 6-263

 xiv EED2-333-001

6-114. PGS_TD_GPStoUTC Returns .. 6-263

6-115. PGS_TD_UTCtoTDTjed Inputs ... 6-265

6-116. PGS_TD_UTCtoTDTjed Outputs .. 6-265

6-117. PGS_TD_UTCtoTDTjed Returns .. 6-265

6-118. PGS_TD_UTCtoTDBjed Inputs ... 6-268

6-119. PGS_TD_UTCtoTDBjed Outputs .. 6-268

6-120. PGS_TD_UTCtoTDBjed Returns .. 6-268

6-121. PGS_TD_TimeInterval Inputs .. 6-271

6-122. PGS_TD_TimeInterval Outputs ... 6-271

6-123. PGS_TD_TimeInterval Returns ... 6-271

6-124. PGS_TD_UTCtoUTCjd Inputs .. 6-273

6-125. PGS_TD_UTCtoUTCjd Outputs .. 6-273

6-126. PGS_TD_UTCtoUTCjd Returns .. 6-273

6-127. PGS_TD_UTCjdtoUTC Inputs .. 6-275

6-128. PGS_TD_UTCjdtoUTC Outputs .. 6-275

6-129. PGS_TD_UTCjdtoUTC Returns .. 6-275

6-130. PGS_TD_UTCtoUT1 Inputs .. 6-277

6-131. PGS_TD_UTCtoUT1 Outputs ... 6-277

6-132. PGS_TD_UTCtoUT1jd Inputs ... 6-280

6-133. PGS_TD_UTCtoUT1jd Outputs .. 6-280

6-134. PGS_TD_UTCtoUT1jd Returns... 6-280

6-135. Get Leap Second Inputs .. 6-282

6-136. Get Leap Second Outputs ... 6-282

6-137. Get Leap Seconds Returns .. 6-283

6-138. PGS_AA_dcw Inputs.. 6-340

6-139. PGS_AA_dcw Outputs ... 6-340

6-140. PGS_AA_dcw Returns ... 6-340

6-141. PGS_AA_dem Inputs ... 6-343

6-142. PGS_AA_dem Outputs... 6-343

 xv EED2-333-001

6-143. PGS_AA_dem Returns ... 6-343

6-144. PGS_AA_PeVA_string Inputs ... 6-347

6-145. PGS_AA_PeVA_string Outputs ... 6-347

6-146. PGS_AA_PeVA_string Returns ... 6-348

6-147. PGS_AA_PeVA_real Inputs .. 6-350

6-148. PGS_AA_PeVA_real Outputs .. 6-350

6-149. PGS_AA_PeVA_real Returns .. 6-351

6-150. PGS_AA_PeVA_integer Inputs ... 6-353

6-151. PGS_AA_PeVA_integer Outputs ... 6-353

6-152. PGS_AA_PeVA_integer Returns ... 6-353

6-153. PGS_AA_2Dgeo Inputs .. 6-356

6-154. PGS_AA_2Dgeo Outputs ... 6-356

6-155. PGS_AA_2Dgeo Returns ... 6-357

6-156. PGS_AA_3Dgeo Inputs .. 6-361

6-157. PGS_AA_3Dgeo Outputs ... 6-361

6-158. PGS_AA_3Dgeo Returns ... 6-361

6-159. PGS_AA_2DRead Input ... 6-366

6-160. PGS_AA_2DRead Output .. 6-366

6-161. PGS_AA_2DRead Returns ... 6-367

6-162. PGS_AA_3DRead Inputs ... 6-371

6-163. PGS_AA_3DRead Outputs .. 6-371

6-164. PGS_AA_3DRead Returns ... 6-372

6-165. PGS_CBP_Earth_CB_Vector Inputs .. 6-378

6-166. PGS_CBP_Earth_CB_Vector Outputs ... 6-379

6-167. PGS_CBP_Earth_CB_Vector Returns ... 6-379

6-168. PGS_CBP_Sat_CB_Vector Inputs ... 6-383

6-169. PGS_CBP_Sat_CB_Vector Outputs .. 6-383

6-170. PGS_CBP_Sat_CB_Vector Returns ... 6-383

6-171. PGS_CBP_SolarTimeCoords Inputs .. 6-387

 xvi EED2-333-001

6-172. PGS_CBP_SolarTimeCoords Outputs ... 6-387

6-173. PGS_CBP_SolarTimeCoords Returns ... 6-387

6-174. PGS_CBP_body_inFOV Inputs ... 6-391

6-175. PGS_CBP_body_inFOV Outputs ... 6-392

6-176. PGS_CBP_body_inFOV Returns ... 6-392

6-177. Physical Radii for CB in FOV Tool ... 6-396

6-178. PGS_CSC_ECItoECR Inputs ... 6-408

6-179. PGS_CSC_ECItoECR Outputs .. 6-408

6-180. PGS_CSC_ECItoECR Returns... 6-408

6-181. PGS_CSC_ECRtoECI Inputs ... 6-412

6-182. PGS_CSC_ECRtoECI Outputs .. 6-412

6-183. PGS_CSC_ECRtoECI Returns... 6-412

6-184. PGS_CSC_ECRtoGEO Inputs ... 6-415

6-185. PGS_CSC_ECRtoGEO Outputs .. 6-415

6-186. PGS_CSC_ECRtoGEO Returns ... 6-416

6-187. PGS_CSC_GEOtoECR Inputs ... 6-418

6-188. PGS_CSC_GEOtoECR Outputs .. 6-419

6-189. PGS_CSC_GEOtoECR Returns ... 6-419

6-190. PGS_CSC_ECItoSC Inputs .. 6-422

6-191. PGS_CSC_ECItoSC Outputs ... 6-422

6-192. PGS_CSC_ECItoSC Returns ... 6-422

6-193. PGS_CSC_SCtoECI Inputs .. 6-426

6-194. PGS_CSC_SCtoECI Outputs ... 6-426

6-195. PGS_CSC_SCtoECI Returns ... 6-426

6-196. PGS_CSC_SCtoORB Inputs .. 6-430

6-197. PGS_CSC_SCtoORB Outputs ... 6-430

6-198. PGS_CSC_SCtoORB Returns .. 6-430

6-199. PGS_CSC_ORBtoSC Inputs .. 6-434

6-200. PGS_CSC_ORBtoSC Outputs ... 6-434

 xvii EED2-333-001

6-201. PGS_CSC_ORBtoSC Returns .. 6-434

6-202. PGS_CSC_ECItoORB Inputs ... 6-438

6-203. PGS_CSC_ECItoORB Outputs .. 6-438

6-204. PGS_CSC_ECItoORB Returns .. 6-438

6-205. PGS_CSC_ORBtoECI Inputs ... 6-442

6-206. PGS_CSC_ORBtoECI Outputs .. 6-442

6-207. PGS_CSC_ORBtoECI Returns .. 6-442

6-208. PGS_CSC_SubSatPoint Inputs .. 6-446

6-209. PGS_CSC_SubSatPoint Outputs .. 6-446

6-210. PGS_CSC_SubSatPoint Returns .. 6-447

6-211. PGS_CSC_Earthpt_FixedFOV Inputs ... 6-452

6-212. PGS_CSC_Earthpt_FixedFOV Outputs ... 6-453

6-213. PGS_CSC_Earthpt_FixedFOV Returns ... 6-453

6-214. PGS_CSC_Earthpt_FOV Inputs ... 6-458

6-215. PGS_CSC_Earthpt_FOV Outputs .. 6-459

6-216. PGS_CSC_Earthpt_FOV Returns .. 6-459

6-217. PGS_CSC_SpaceRefract Inputs ... 6-465

6-218. PGS_CSC_SpaceRefract Outputs .. 6-465

6-219. PGS_CSC_SpaceRefract Returns ... 6-465

6-220. Altitude – Sea Level ... 6-467

6-221. PGS_CSC_GetFOV_Pixel Inputs .. 6-470

6-222. PGS_CSC_GetFOV_Pixel Outputs .. 6-470

6-223. PGS_CSC_GetFOV_Pixel Returns .. 6-471

6-224. Error due to Earth Motion in Time of Flight of Light .. 6-475

6-225. PGS_CSC_precs2000 Inputs .. 6-477

6-226. PGS_CSC_precs2000 Outputs ... 6-478

6-227. PGS_CSC_precs2000 Returns ... 6-478

6-228. PGS_CSC_nutate2000 Inputs ... 6-481

6-229. PGS_CSC_nutate2000 Outputs .. 6-482

 xviii EED2-333-001

6-230. PGS_CSC_nutate2000 Returns .. 6-482

6-231. PGS_CSC_J2000toTOD.c Inputs ... 6-485

6-232. PGS_CSC_J2000to.TOD.c Outputs ... 6-486

6-233. PGS_CSC_J2000toTOD Returns ... 6-486

6-234. PGS_CSC_TODtoJ2000.c Inputs ... 6-488

6-235. PGS_CSC_TODtoJ2000.c Outputs .. 6-489

6-236. PGS_CSC_TODtoJ2000c Returns ... 6-489

6-237. PGS_CSC_DayNight Inputs ... 6-492

6-238. PGS_CSC_DayNight Outputs .. 6-492

6-239. PGS_CSC_DayNight Returns .. 6-493

6-240. PGS_CSC_wahr2 Inputs .. 6-496

6-241. PGS_CSC_wahr2 Outputs .. 6-496

6-242. PGS_CSC_wahr2 Returns .. 6-496

6-243. PGS_CSC_GreenwichHour Inputs ... 6-499

6-244. PGS_CSC_GreenwichHour Outputs .. 6-500

6-245. PGS_CSC_GreenwichHour Returns .. 6-500

6-246. PGS_CSC_ZenithAzimuth Inputs .. 6-504

6-247. PGS_CSC_ZenithAzimuth Outputs ... 6-504

6-248. PGS_CSC_ZenithAzimuth Returns ... 6-504

6-249. PGS_CSC_GrazingRay Inputs ... 6-511

6-250. PGS_CSC_GrazingRay Outputs .. 6-511

6-251. PGS_CSC_GrazingRay Returns ... 6-512

6-252. PGS_GCT_Init Inputs .. 6-520

6-253. PGS_GCT_Init Returns .. 6-521

6-254. PGS_GCT_Proj Inputs ... 6-524

6-255. PGS_GCT_Proj Returns ... 6-524

6-256. PGS_CUC_Cons Input ... 6-529

6-257. PGS_CUC_Cons Output .. 6-529

6-258. PGS_CUC_Cons Returns ... 6-530

 xix EED2-333-001

6-259. PGS_CUC_Conv Inputs ... 6-531

6-260. PGS_CUC_Conv Outputs .. 6-532

6-261. PGS_CUC_Conv Returns .. 6-532

6-262. PGS_MEM_Malloc Returns... 6-534

6-263. PGS_MEM_Calloc Returns ... 6-536

6-264. PGS_MEM_Realloc Returns .. 6-538

Appendix A. Assumptions

Appendix B. Status Message File (SMF) Creation and Usage
Guidelines

Appendix C. Process Control Files

Appendix D. Ancillary Data Access Tools

Appendix E. Example of Level 0 Access Tool Usage

Appendix F. Level 0 File Formats

Appendix G. PGS_GCT Information Relating To Interface
Specification

Appendix H. PGS_CUC_Cons - Example Standard Constants File

Appendix I. PGS_CUC_Conv—Input File Provided With the UdUnits
Software

 xx EED2-333-001

Appendix J. Population of Granule Level Metadata Using the SDP
metadata tools

Appendix K. POSIX Systems Calls Usage Policy

Appendix L. Ephemeris and Attitude File Formats

Appendix M. Problem Identification List

Appendix N. Structure of the File "utcpole.dat”

Abbreviations and Acronyms

 1-1 EED2-333-001

1. Introduction

1.1 Identification
The SCF Toolkit Users Guide (Contract Data Requirements List (CDRL) Item 023, Data Item
Description (DID) EED-EDP-23) is a part of the Science Data Production (SDP) Toolkit delivery
made under the Earth Observing System Data and Information System (EOSDIS) Evolution and
Development-2 Contract (EED-2). It was first delivered in January 1994. The current Users
Guide matches the Release 9 Toolkit delivery being made in December 2017. SCF Toolkit Users
Guide for the ECS Project will be updated for each major release of the SDP Toolkit.

1.2 Scope
This Science Computing Facility (SCF) Toolkit version 5.2.20 is directed at EOS instrument data
providers who will deliver code to the ECS Release 9 DAACs. It is an engineering update to
Toolkit 5.2.19, delivered in March 2014. The user calling interface of the current version is the
same as that of Toolkit 5.2.19. The SCF Toolkit Users Guide describes Toolkit routine usage for
science software developers, who will produce code to process instrument data. The current
version of the User’s Guide is for the Release 9 Toolkit delivered code, however, the Toolkit will
be updated as requirements are updated, certified and requirements for later platform instruments
are determined. This document describes the overall design of the Toolkit, provides a general
explanation of usage, and installation procedures on computer platforms for which software
development and certification have been done. Detailed listings of routines, calling sequences,
inputs and outputs and examples of usage are also provided.

1.3 Purpose and Objectives
This document is aimed at the EOS data production software developers and scientists who will
use the SDP Toolkit to encapsulate their code in the distributed active archive center (DAAC)
computing facilities. The purpose of the Toolkit is to provide an interface between instrument
processing software and the production system environment. It sets up the context and
environment to facilitate portability of code for the execution of production processes and the
transfer of data sets and information to those processes. This interface will be implemented in the
SCF development environment, along with additional utilities that will be used to emulate
production environment services.

An important goal of the Toolkit is to facilitate the smooth transition and integration of code into
the DAAC by abstracting out science process dependencies on external system architecture.
Another goal is the provision of an interface into which application modules can be incorporated.
This may include, for example, math packages; other specialized routines that can be
commercial–off–the–shelf software (COTS); freeware; or user supplied modules. An effort will
be made during development to incorporate and reuse existing application software modules.

 1-2 EED2-333-001

This Users Guide will layout the high-level design of Toolkit and provide sufficient description
of routines to show how EOS science software should incorporate the Toolkit interface.

In the description of the Toolkit routines, descriptive information is presented in the following
format:

TOOL TITLE
NAME: Procedure or routine name
SYNOPSIS:
C: C language call
FORTRAN: FORTRAN77 or FORTRAN90 language call
DESCRIPTION: Cursory description of routine usage
INPUTS: List and description of data files and parameters input to the routine
OUTPUTS: List and description of data files and parameters output from the routine
RETURNS: List of returned parameters indicating success, failure, etc.
EXAMPLES: Example usage of routine
NOTES: Detailed information about usage and assumptions
REQUIREMENTS: Requirements from PGS Toolkit Specification, Oct. 93 which the routine

satisfies

1.4 Status and Schedule
This Users Guide accompanies a set of toolkit routines, delivered in December 2017. Table 1–2
below gives a complete listing; brief description; and delivery dates of Toolkit software available
to users. We note also several important related schedule items:

• April 1995—IDL was selected as the Toolkit graphics package of choice.

• July 1995—Release Toolkit A delivery, including prototype HDF-EOS swath structure
software

• July 1995—Delivery (to the EOS community) of a draft HDF-EOS standard and users
guide.

• January 1996—ECS Interim Release 1 (Ir1)
• May 1996— Release A SCF Toolkit delivery.
• July 1996 HDF-EOS version 1.0 delivery
• November 1996 updated HDF-EOS and SCF Toolkit delivery
• April 1997 Release B.0 SCF Toolkit and HDF-EOS 2.0 delivery
• October 1997 Version 2.0 SDP Toolkit and HDF-EOS 2.1 delivery
• March 1998 Version 2.0 SDP Toolkit and HDF-EOS 2.2 delivery
• October 1998 Version 2.0 SDP Toolkit and HDF-EOS 2.3 delivery

 1-3 EED2-333-001

• January 1999 Version 2.0 SDP Toolkit and HDF-EOS 2.4 delivery
• June 1999 Version 2.0 SDP Toolkit and HDF-EOS 2.5 delivery
• February 2000 Release 5B SDP Toolkit and HDF-EOS 2.6 delivery
• November 2000 Release 5B SDP Toolkit and HDF-EOS 2.7 delivery
• November 2002 Release 6A SDP Toolkit and HDF-EOS 2.8 and HDF-EOS5.1.3 delivery
• April 2003 Release 6A SDP Toolkit and HDF-EOS 2.9 and HDF-EOS5.1.5 delivery
• October 2003 Release 6A SDP Toolkit, HDF-EOS 2.10 and HDF-EOS5.1.6 delivery
• May 2004 Release 7 SDP Toolkit, HDF-EOS 2.11 and HDF-EOS5.1.7 delivery
• August 2004 Release 7 SDP Toolkit, HDF-EOS 2.12 and HDF-EOS5.1.8 delivery
• April 2005 Release 7 SDP Toolkit, HDF-EOS 2.13 and HDF-EOS5.1.9 delivery
• March 2006 Release 7 SDP Toolkit, HDF-EOS 2.14 and HDF-EOS5.1.10 delivery
• February 2008 Release 7 SDP Toolkit, HDF-EOS 2.15 and HDF-EOS5.1.11 delivery
• July 2009 Release 7 SDP Toolkit, HDF-EOS 2.16 and HDF-EOS5.1.12 delivery
• August 2010 Release 7 SDP Toolkit, HDF-EOS 2.17 and HDF-EOS5.1.13 delivery
• January 2012 Release 8 SDP Toolkit, HDF-EOS 2.18 and HDF-EOS5.1.14 delivery
• March 2014 Release 8 SDP Toolkit, HDF-EOS 2.19 and HDF-EOS5.1.15 delivery
• December 2017 Release 9 SDP Toolkit, HDF-EOS 2.20 and HDF-EOS5.1.16 delivery

Table 1–1 provides a key to the tool names and the section where the specific tools can be
located.

Table 1-1. Toolkit Routine Key
Key Class Section

AA Ancillary Data Access 6.3.2
CBP Celestial Body Position 6.3.3
CSC Coordinate System Conversion 6.3.4
CUC Constant and Unit Conversions 6.3.7
DEM Digital Elevation Model access 6.3.1
EPH Ephemeris Data Access 6.2.6
GCT Geo Coordinate Transformation 6.3.5
IO Input Output (File I/O) 6.2.1
MEM Memory Management 6.2.4
MET Metadata Access 6.2.1
PC Process Control 6.2.3
SMF Status Message File (Error/Status) 6.2.2
TD Time Date Conversion 6.2.7
XML Internal XML conversion of ODL Metadata

 1-4 EED2-333-001

In Table 1–2 a list of Toolkit routines is given, with delivery data and page number references in
this Users Guide. Table 1–2 lists Toolkit routines alphabetically by class as defined in the key
below. The class keyword follows the Product Generation System (PGS) keyword (i.e.,
PGS_AA).

Table 1-2. Toolkit Routine Listing (1 of 7)
Tool Name Description Date Page

Pccheck Use to verify that a process control file (PCF) is syntactically correct 10-94
7-95

6-187

PGS_AA_2Dgeo Allows access to 2 dimensional data sets, e.g., sea–ice 10-94,
2-95,
7-95,
4-96

6-355

PGS_AA_2Dread Allows access to 2 dimensional data sets, e.g., sea–ice 10-94,
2-95,
4-96

6-365

PGS_AA_3Dgeo Allows access to 3 dimensional data sets,e.g., atmospheric humidity 10-94
2-95
4-96

6-360

PGS_AA_3Dread Allows access to 3 dimensional data sets,e.g., atmospheric model 10-94
2-95
4-96

6-370

PGS_AA_dcw Returns the surface types (land, sea, coast), and nation–state to be
determined (TBD) for a user defined set of locations

10-94
4-96

6-339

PGS_AA_dem Locates heights from specified digital elevation model (DEM)
corresponding to each of the locations specified

2-95,
7-95
4-96

6-342

PGS_AA_PeVA_integer Searches in a specified file for the parameter and returns the value of
that parameter which is an integer

10-94
2-95,
7-95
4-96

6-353

PGS_AA_PeVA_real Searches in a specified file for the parameter and returns the value of
that parameter which is a real(float)

10-94
2-95,
7-95
4-96

6-350

PGS_AA_PeVA_string Searches in a specified file for the parameter and returns the value of
that parameter which is a text string

10-94
2-95,
7-95
4-96

6-347

PGS_CBP_body_inFOV Given instrument parameters, returns a flag to indicate whether any of
the user–selected major celestial bodies (sun, moon, etc.) are in the
instrument field–of–view.

2-95,
7-95

6-390

PGS_CBP_Earth_CB_Vector Computes the Earth centered inertial (ECI) frame vector from the Earth
to the sun, moon, or planets at a given time, or range of time(s)

4-94,
10-94
7-95

6-378

PGS_CBP_Sat_CB_Vector Computes the ECI vector from the spacecraft to the sun, moon, or
planets at a given time or range of time(s)

4-94,
10-94
7-95

6-382

PGS_CBP_SolarTimeCoords Computes local solar time, and right ascension and declination of the
sun, for a given standard time and position on the surface of the Earth

4-94,
10-94
7-95

6-386

PGS_CSC_DayNight Determines whether a given point on the Earth is in day, night or
twilight, at a given time

10-94
7-95

6-491

PGS_CSC_Earthpt_FixedFOV For a fixed field of view obtains the Coordinated Universal Time (UTC)
time interval and the starting time that an Earth point is within the field–
of–view, within a specified time window

4-96 6-451

 1-5 EED2-333-001

Table 1-2. Toolkit Routine Listing (2 of 7)
Tool Name Description Date Page

PGS_CSC_Earthpt_FOV For a field of view defined by a table of coordinates (accessed
externally), and a known motion of the boresight vector as a function of
time, obtains the Coordinated Universal Time (UTC) time interval and
the starting time that an Earth point is within the field–of–view, within a
specified time window

2-95,
7-95

6-457

PGS_CSC_ECItoECR Transforms a vector from the ECI frame to the ECR frame. 10-94
7-95

6-407

PGS_CSC_ECItoORB Transforms a vector in the ECI Coordinate system to a vector in the
Orbital Coordinate System

7-95 6-437

PGS_CSC_ECItoSC Transforms a vector in the ECI coordinate system to the Spacecraft
Coordinate System.

10-94 6-421

PGS_CSC_ECRtoECI Transforms a vector from the ECR system to the ECI system. 10-94
7-95

6-411

PGS_CSC_ECRtoGEO Transforms a vector from rectangular ECR coordinates to geodetic
coordinates.

10-94
7-95

6-415

PGS_CSC_GEOtoECR Transforms a vector from geodetic coordinates to ECR coordinates. 10-94
7-95

6-418

PGS_CSC_GetFOV_Pixel Computes the projection of (geolocates) a pixel. 4-94,
10-94
2-95,
7-95

6-469

PGS_CSC_GrazingRay For rays that miss Earth limb, this function finds the nearest miss point
on the ray and corresponding surface point. For rays that strike the
Earth, it outputs instead the coordinates of the midpoint of the chord of
the ray within the ellipsoid and surface coordinates of the intersection
nearest the observer

4-97 6-510

PGS_CSC_GreenwichHour Returns the Greenwich Hour Angle of the vernal equinox, which is equal
to Greenwich sidereal time, in the ECI frame, at a given time.

10-94 6-499

PGS_CSC_J2000toTOD Transform from ECI J2000 to ECI True of Date 4-96 6-485

PGS_CSC_nutate2000 Transforms a vector under nutation from Celestial Coordinates of date
in Barycentric Dynamical Time (TDB) to J2000 coordinates or from
J2000 coordinates to Celestial Coordinates of date

7-95
4-96

6-481

PGS_CSC_ORBtoECI Transforms vector in orbital coordinate system to vector in ECI
coordinate system

7-95 6-441

PGS_CSC_ORBtoSC Transforms a vector from orbital to spacecraft coordinates. 10-94
7-95

6-433

PGS_CSC_precs2000 Precesses a vector from Celestial Coordinates of date in Barycentric
Dynamical Time (TDB) to J2000 coordinates or from J2000 coordinates
to Celestial Coordinates of date in Barycentric Dynamical Time (TDB)

7-95 6-477

PGS_CSC_SCtoECI Transforms a vector from spacecraft to ECI coordinates. 10-94 6-425

PGS_CSC_SCtoORB Transforms a vector from spacecraft to orbital coordinates. 10-94
7-95

6-429

PGS_CSC_SpaceRefract Estimate the refraction for a ray incident from space or a line of sight
from space to the Earth's surface, based on the unrefracted zenith
angle

7-95
4-96

6-464

PGS_CSC_SubSatPoint Returns the position and velocity vector of the sub–satellite point or
nadir of the satellite on the Earth's surface. Also returns the rate of
change of altitude off the ellipsoid.

4-94,
10-94

6-445

PGS_CSC_TODtoJ2000 Transform from ECI True of Date to ECI J2000 Coordinates 4-96 6-488
PGS_CSC_wahr2 Calculates nutation angles 7-95 6-496
PGS_CSC_ZenithAzimuth Returns zenith and azimuth angles of viewing vector or a celestial body 10-94

2-95
6-503

PGS_CUC_Cons Accesses constant values from a predetermined input file 2-95 6-529

 1-6 EED2-333-001

Table 1-2. Toolkit Routine Listing (3 of 7)
Tool Name Description Date Page

PGS_CUC_Conv Accesses conversion slope and intercept values, needed to convert
between units

2-95 6-531

PGS_DEM_Close Close a DEM dataset 4-97 6-297
PGS_DEM_DataPresent Check for Valid DEM Data Point 4-97 6-300
PGS_DEM_GetMetadata Extract Metadata from the DEM 4-97 6-323
PGS_DEM_GetPoint Return Data at Specified DEM Point 4-97 6-309
PGS_DEM_GetQualityData ACCESS DEM Quality Data 4-97 6-328
PGS_DEM_GetRegion Return Data from a Specified Region of the DEM 4-97 6-316
PGS_DEM_GetSize Return Size of Specified DEM Region 4-97 6-334
PGS_DEM_Open Open a DEM dataset 4-97 6-294
PGS_DEM_SortModels Check for Data in a Specified Region of the DEM 4-97 6-304
PGS_EPH_EphemAttit Provides access to spacecraft ephemeris and attitude data for a given

time range, interpolates the state vectors and spacecraft attitude to a
specified time. Retains quality flags

4-94,
10-94
2-95,
7-95
4-96

6-211

PGS_EPH_GetEphMet gets metadata associated with toolkit spacecraft ephemeris files 11-96 6-223

PGS_EPH_ManageMasks get and/or set the values of the ephemeris and attitude quality flags
masks

 6-228

PGS_EPH_Eph_Att_unInterpolate Gets actual (without interpolation) ephemeris and/or attitude records for
the specified spacecraft if the number of records for ephemeris is the
same as that of the attitude for the requested time period

9-02 6-217

PGS_EPH_UnInterpEphAtt Gets actual (without interpolation) ephemeris and/or attitude records for
the specified spacecraft even if the number of records for ephemeris is
not the same as that of attitude for the requested time period

10-03 6-217

PGS_GCT_Init Performs Geo–coordinate transformation initialization for the given
projection with the given parameters

2-95,
7-95

6-520

PGS_GCT_Proj Performs Geo–coordinate transformations for the given projection in the
forward and inverse directions

2-95,
7-95

6-523

PGS_IO_Gen_Close Close non–HDF file 4-94,
10-94

6-46

PGS_IO_Gen_CloseF Close non–HDF file FORTRAN 10-94
7-95

6-48

PGS_IO_Gen_Open Open non–HDF file 4-94,
10-94
7-95

6-39

PGS_IO_Gen_OpenF Open non–HDF file FORTRAN 77 10-94
2-95,
7-95

6-42

PGS_IO_Gen_Temp_Delete Permanently delete a temporary file 4-94,
10-94
2-95,
7-95

6-95

PGS_IO_Gen_Temp_Open Open temporary file 4-94,
10-94
2-95

6-86

PGS_IO_Gen_Temp_OpenF Open temporary file FORTRAN 77 & 90 10-94
2-95

6-91

PGS_IO_L0_Close Closes a virtual data set that was opened with a call to
PGS_IO_L0_Open.

2-95
4-96
2-00

6-27

 1-7 EED2-333-001

Table 1-2. Toolkit Routine Listing (4 of 7)
Tool Name Description Date Page

PGS_IO_L0_File_Sim Creates a file of simulated Level 0 data 2-95
4-96
2-00

6-29

PGS_IO_L0_GetHeader Gets the header and footer data for the currently open physical file 2-95
4-96
2-00

6-17

PGS_IO_L0_GetPacket Gets a single packet from the specified Level 0 Virtual Data Set 2-95
4-96
2-00

6-22

PGS_IO_L0_Open Open a Virtual Level 0 Data Set 2-95
4-96
2-00

6-6

PGS_IO_L0_SetStart Sets the specified open virtual data set so that the next call to
PGS_IO_L0_GetPacket will read the first packet at or after the
specified time

2-95
4-96
2-00

6-11

PGS_IO_L0_SetStartCntPkts Sets the specified open virtual data set so that the next call to
PGS_IO_L0_GetPacket will read the first packet at or after the
specified time and tracks the number of packets skipped in the current
file.

4-97
2-00

6-14

PGS_MEM_Calloc Allocates an array of arbitrarily sized elements, initializing them to zero,
in memory

10-94
7-95
2-00

6-536

PGS_MEM_Free Deallocates memory that was previously allocated 10-94
7-95

6-541

PGS_MEM_FreeAll Deallocates all memory that was previously allocated within a process 10-94
7-95

6-542

PGS_MEM_Malloc Allocates an arbitrary number of bytes in memory 10-94
7-95

6-534

PGS_MEM_Realloc Reallocates the number of bytes requested 10-94
7-95

6-538

PGS_MEM_ShmAttach Used by an executable to attach to an existing shared memory segment 10-94 6-197
PGS_MEM_ShmCreate Used to create a shared memory segment 10-94 6-195
PGS_MEM_ShmDetach Used to detach a shared memory segment from a process that

attached it
10-94 6-199

PGS_MEM_ShmRead FORTRAN Read from Shared Memory 4-96 6-201
PGS_MEM_ShmWrite FORTRAN Write to Shared Memory 4-96 6-203
PGS_MEM_Zero Initializes a memory block or structure to zero 10-94

7-95
6-540

PGS_MET_GetConfigData Enables the user to get the values of Config data parameters held in
the PC table

7-95
4-96

6-72

PGS_MET_GetPCAttr Retrieves parameter values from the PC table which are either located
as HDF attr butes on product files or in separate ASCII files

7-95
4-96

6-67

PGS_MET_GetSetAttr Enables the user to get the values of metadata parameters which are
already set by the initialization procedure

7-95
4-96

6-64

PGS_MET_Init Initializes a metadata configuration file (MCF) 7-95
4-96

6-52

PGS_MET_Remove Contains PGS_MET_Remove() which frees the memory held by the
metadata configuration file (MCF) and data dictionary object description
language (ODL) representations

7-95
4-96

6-80

PGS_MET_SetAttr Enables the user to set the value of metadata parameters 7-95
4-96

6-56

 1-8 EED2-333-001

Table 1-2. Toolkit Routine Listing (5 of 7)
Tool Name Description Date Page

PGS_MET_SetMultiAttr Enables the user to set the value of multi value metadata parameters
and modify NUM_VAL value to correct value

3-02 6-61

PGS_MET_SDstart Enables opening and obtaining SD ID for HDF files of HDF4 and HDF5
type

3-02 6-81

PGS_MET_SDend Enables closing HDF files of HDF4 and HDF5 type that were opened by
a call to PGS_MET_Sdstart

3-02 6-83

PGS_MET_Write Enables the user to write different groups of metadata to separate HDF
attributes

7-95
4-96

6-75

PGS_PC_GenUniqueID Used to generate a unique product identifier. May be attached to file
metadata to facilitate tracking of production output

10-94
4-96

6-173

PGS_PC_GetConfigData May be used to access run–time parameters in the PGE 10-94
4-96

6-175

PGS_PC_GetConfigDataCom May be used to access run–time parameters at the shell level 2-95
4-96

6-152

PGS_PC_GetFileAttr Used to retrieve the attribute string that contains the metadata for a
Product file

10-94
4-96

6-181

PGS_PC_GetFileAttrCom Used at the shell level to retrieve an attribute "stream" that contains the
metadata for a Product file

2-95
4-96

6-154

PGS_PC_GetFileByAttr Used to retrieve the specific instance of a product file that satisfies the
search criteria, defined by a user–supplied method, applied to the
metadata of each product file instance

10-94
4-96

6-184

PGS_PC_GetFileSize Get the size of a file in the PCF. 4-97 6-192
PGS_PC_GetFileSizeCom Get the size of a file in the PCF at the shell level. 4-97 6-161
PGS_PC_GetNumberOfFiles May be used to query the number of file instances that are associated

with a particular product file
10-94
4-96

6-178

PGS_PC_GetNumberOfFilesCom May be used, at the shell level, to query the number of file instances
that are associated with a particular product file

2-95
4-96

6-153

PGS_PC_GetReference Used to obtain a physical file pathname from a logical identifier for a
particular product file

10-94
4-96

6-166

PGS_PC_GetReferenceCom Used at the shell level to obtain a physical file pathname from a logical
identifier for a particular product file

2-95
4-96

6-149

PGS_PC_GetReferenceType Tool may be used to ascertain the type of file reference which is
associated with a logical identifier within the science software

7-95
4-96

6-169

PGS_PC_GetTempReferenceCom Used at the shell level to obtain a physical file pathname from a logical
identifier for a particular temporary, or intermediate file

2-95,
7-95
4-96

6-157

PGS_PC_GetUniversalRef Used to obtain a universal reference from a logical identifier 4-96 6-189
PGS_PC_InitCom Used, prior to PGE execution, to establish a working environment for

the SDP Toolkit
2-95
7-95
4-96

6-148

PGS_PC_Shell.sh Provides an integrated environment for the SDP Toolkit and a PGE 2-95,
7-95
4-96,
11-96
10-97

6-145

PGS_PC_TempDeleteCom Used at the shell level to delete the temporary file currently associated
with a particular logical identifier

2-95
4-96

6-160

PGS_PC_TermCom Used, following PGE termination, to cleanup the resources used by the
SDP Toolkit

2-95
4-96

6-163

PGS_SMF_Begin Signal SMF that function has started 4-96 6-137

 1-9 EED2-333-001

Table 1-2. Toolkit Routine Listing (6 of 7)
Tool Name Description Date Page

PGS_SMF_CreateMsgTag May be used to generate a unique message identifier 10-94
4-96

6-116

PGS_SMF_End Signal SMF that function has ended 4-96 6-138
PGS_SMF_GenerateStatusReport Used to add user–defined status reports to the Status Report Log file 10-94

4-96
6-120

PGS_SMF_GetActionByCode Provide the means to retrieve an action string associated with a specific
mnemonic code

10-94
4-96

6-114

PGS_SMF_GetInstrName Used to retrieve the instrument name from a given error/status code 4-94,
10-94
4-96

6-118

PGS_SMF_GetMsg Provide the means to retrieve a previously set message from the static
buffer PGS_SMF_Set....

4-94,
10-94
4-96

6-113

PGS_SMF_GetMsgByCode Provide the means to retrieve the message string corresponding to a
specific mnemonic code

10-94
4-96

6-112

PGS_SMF_GetToolkitVersion This function returns a string describing the current version of the
Toolkit.

4-97 6-103

PGS_SMF_SendRuntimeData Provide a means for the user to transmit a package of runtime data to
the SCF in the event of an unhandled system exception

10-94
2-95
4-96

6-122

PGS_SMF_SetArithmeticTrap Used to specify a signal handling function to perform in the event that
an error arithmetic operation has occurred.

TBD 6-139

PGS_SMF_SetDynamicMsg Provide the means to set a user–defined error/status message in
response to the outcome of some segment of processing.

10-94
4-96

6-109

PGS_SMF_SetStaticMsg Provide the means to set a predefined error/status message in
response to the outcome of some segment of processing.

4-94,
10-94
4-96

6-107

PGS_SMF_SetUNIXMsg Provides the means to retain UNIX error messages for later retrieval 4-94,
10-94
4-96

6-104

PGS_SMF_TestErrorLevel Will return a Boolean value indicating whether or not the returned code
has status level 'E'

10-94
4-96

6-126

PGS_SMF_TestFatalLevel Will return a Boolean value indicating whether or not the returned code
has status level 'F'

10-94
4-96

6-128

PGS_SMF_TestMessageLevel Will return a Boolean value indicating whether or not the returned code
has status level 'M'

10-94
4-96

6-129

PGS_SMF_TestNoticeLevel Will return a Boolean value indicating whether or not the returned code
has status level 'N'

10-94
4-96

6-133

PGS_SMF_TestStatusLevel Will return a defined status level constant 4–94,
10-94
4-96

6-134

PGS_SMF_TestSuccessLevel Will return a Boolean value indicating whether or not the returned code
has status level 'S'

10-94
4-96

6-132

PGS_SMF_TestUserInfoLevel Will return a Boolean value indicating whether or not the returned code
has status level 'U'

10-94
4-96

6-131

PGS_SMF_TestWarningLevel Will return a Boolean value indicating whether or not the returned code
has status level 'W'

10-94
4-96

6-130

PGS_TD_ASCIItime_AtoB Converts binary time values to ASCII Code B time values of the form
year_month_day_time_of_day in the Consultative Committee on space
Data Systems (CCSDS) format

10-94 6-257

PGS_TD_ASCIItime_BtoA Converts binary time values to ASCII Code A time values of the form
year_month_day_time_of_day in the CCSDS format

10-94 6-259

 1-10 EED2-333-001

Table 1-2. Toolkit Routine Listing (7 of 7)
Tool Name Description Date Page

PGS_TD_GPStoUTC Converts to Coordinated Universal Time (UTC) time value from Global
Positioning System (GPS) time by converting to internal time, adding
the GPS_minus_UTC_leapseconds from the leapseconds file, and
converting to GPS format following CCSDS ASCII standard A

10-94
7-95

6-263

PGS_TD_LeapSec Find leap second value 4-96 6-282
PGS_TD_SCtime_to_UTC Converts spacecraft clock time to UTC for EOS platforms or for foreign

spacecraft
4-94,
10-94,
2-00

6-254

PGS_TD_TAItoGAST Converts International Atomic Time (TAI) (toolkit internal time) to
Greenwich apparent sidereal time (GAST) expressed as the hour angle
of the true vernal equinox of date at the Greenwich meridian (in radians)

7-95 6-249

PGS_TD_TAIjdtoTAI Converts TAI Julian date to time in TAI seconds since 12 AM UTC 1-1-
1993.

4-96 6-247

PGS_TD_TAItoTAIjd Converts time in TAI seconds since 12 AM UTC 1-1-1993 toTAI Julian
date.

4-96 6-245

PGS_TD_TAItoUTC Converts a too kit TAI time value to UTC time 4–94,
10-94

6-243

PGS_TD_TimeInterval Computes the elapsed TAI time in seconds between any two epochs
after January 1, 1958

10-94 6-271

PGS_TD_UTCtoGPS Converts UTC time value to GPS time by converting to internal time,
adding the GPS_minus_UTC_leapseconds from the leapseconds file,
and converting to GPS format following CCSDS ASCII standard A

10-94
7-95

6-261

PGS_TD_UTCtoTAI Converts UTC time to TAI time by first converting UTC to internal time
and then adding the TAI_minus_UTC_leapseconds from the
leapseconds file

4-94,
10-94

6-240

PGS_TD_UTCtoTDBjed UTC to Barycentric Dynamical Time (TDB) time conversion 10-94 6-268
PGS_TD_UTCtoTDTjed UTC to Terrestrial Dynamical Time (TDT) time conversion 10-94 6-265
PGS_TD_UTCtoUT1 Converts UTC to UT1 time 10-94 6-277
PGS_TD_UTCtoUT1jd Converts UTC time in CCSDS ASCII Time Code to UT1 time as a

Julian date
7-95 6-280

PGS_TD_UTCjdtoUTC Converts UTC as a Julian date to UTC in CCSDS ASCII Time Code A
format.

4-96 6-275

PGS_TD_UTCtoUTCjd Converts UTC in CCSDS ASCII Time Code A format to UTC as a Julian
date.

4-96 6-273

PGS_TD_UTC_to_Sctime Converts UTC to Spacecraft clock time for EOS standard of Foreign
Spacecraft

10-94
2-00

6-251

Smfcompile Provides means to store messages in files that are accessed at run
time to get the message text.

4-94,
10-94
2-95

6-141

Note for Table 1-2: If more than one date is in the delivery column this indicates a re–delivery
of that tool.

 1-11 EED2-333-001

Table 1-3. Tool Changes for Release 9 Toolkit Delivery
Tool Name Type of Change

INSTALL-Toolkit updated to reflect corrections from bugs
Toolkit updated for more current compilers
Toolkit Freeware packages updated to current versions
Toolkit all user support bugs fixed

1.5 Document Organization
The document is organized as follows:

Section 1 Introduction—Presents the scope and purpose of this document.

Section 2 Related Documentation—Provides a bibliography of reference documents for
the science data production (SDP) Toolkits organized by parent and applicable
documents.

Section 3 Toolkit Design Overview—Provides the philosophy and high-level
description of the Toolkit

Section 4 Toolkit Usage and Functionality—Describes the functionality to be provided
in the SCF and follow–on SDP versions of the Toolkit.

Section 5 Toolkit Installation—Contains installation procedures for the machines for
which Version 1 of the Toolkit has been certified.

Section 6 SDP Toolkit Specification—Contains calling sequences, description and
usage examples for Toolkit routines.

Appendix A Assumptions

Appendix B Status Message File (SMF) Creation and Usage Guidelines

Appendix C Defining Process Control Files

Appendix D Ancillary Data Access Tools

Appendix E Example of Usage of Level 0 Access Tools

Appendix F Level 0 File Formats

Appendix G PGS_GCT Information Relating To Interface Specification

Appendix H PGS_CUC_Cons—Example Standard Constants File

Appendix I PGS_CUC_Conv—Input File Provided with the UdUnits Software

Appendix J Population of Granule Level Metadata using the SDP metadata tools

Appendix K POSIX Systems Calls Usage

Appendix L Ephemeris and Attitude File Formats

 1-12 EED2-333-001

Appendix M Problem Identification List

Appendix N Structure of the File "utcpole.dat”

Acronyms and Abbreviations

 2-1 EED2-333-001

2. Related Documentation

2.1 Parent Documents
The parent documents are the documents from which this SDP Toolkit Users Guide’s scope and
content are derived.

 EED Task 02 Statement of Work for Providing ECS/ECHO Sustaining
Engineering and Continuous Evolution

423-CDRD-002 Contract Data Requirements Document for EED Task 01, 02, 03

423-46-01 Functional and Performance Requirements Specification for Earth
Observing System Data and Information System (EOSDIS) Core
System Science System

none Goddard Space Flight Center, The PGS Toolkit Study Report,
Version 1.9

2.2 Applicable Documents
The following documents are referenced within this SDP Toolkit Users Guide, or are directly
applicable, or contain policies or other directive matters that are binding upon the content of this
volume.

EED2-170-001 Release 9 HDF-EOS Library User’s Guide for the ECS Project,
Volume 1: Overview and Examples

EED2-170-002 Release 9 HDF-EOS Library User’s Guide for the ECS Project,
Volume 2: Function Reference Guide

EED2-175-001 Release 9 HDF-EOS5 Library User’s Guide for the ECS Project,
Volume 1: Overview and Examples

EED2-175-002 Release 9 HDF-EOS5 Library User’s Guide for the ECS Project,
Volume 2: Function Reference Guide

445-TP-002 Theoretical Basis of the SDP Toolkit Geolocation Package for the ECS
Project, Technical Paper

194-WP-924 Level 0 Data Issues for the ECS Project, White Paper

GSFC 50-003-04 Goddard Space Flight Center, EOSDIS Version 0 Data Product
Implementation Guidelines (V1.0), 3/1/94

 2-2 EED2-333-001

CCSDS 301.0-B-2 Consultative Committee for Space Data Systems (CCSDS)
Recommendation for Space Data System Standards: Time Code
Formats, Issue 2, 4/90

IEEE Std 1003.1 Institute of Electrical and Electronics Engineers; POSIX Part 1:
System Application Program Interface (API)[C Language]

IEEE Std 1003.9 Institute of Electrical and Electronics Engineers; POSIX FORTRAN77
Language Interfaces, Part 1: Binding for System Application Program
Interface [API]

none Computer Science Corporation; Upper Atmosphere Research Satellite
(UARS) Lessons Learned for EOS: Report 1—Design and
Implementation (ending December 21, 1993); 5/92

none University of Illinois/National Center for Supercomputing
Applications; NCSA HDF Calling Interfaces and Utilities, Version 3.2;
3/93

none University of Illinois; Getting Started With HDF, 1993
none Wertz, J.R., Spacecraft Attitude Determination and
Control, Reidel Publishing Co., 1984.

2.3 Information Documents
The following Internet link to a document/information, although not directly applicable,
amplifies or clarifies the information presented in this document. This reference is not binding on
this document.

Please note that Internet links cannot be guaranteed for accuracy or currency

194-815-SI4 SDP Toolkit Primer (current version available through
http://newsroom.gsfc.nasa.gov/sdptoolkit/primer/tkprimer.html)

 3-1 EED2-333-001

3. Toolkit Design Goals

The PGS Toolkit Requirements Specification served to create a specification for a compendium
of tools that meet both ECS system requirements and the needs of the EOS science instrument
data producers. The SDP Toolkit User's Guide represents the culmination of efforts to design
tools that satisfy those criteria. In order to create that design, several broad features were devised
to give the Toolkit a sense of continuity such that it may be considered a single tool with
far-reaching capabilities.

3.1 Foundations
In order to ensure a high degree of portability and maintainability across a wide variety of
computer platforms, the SDP Toolkit has been designed to conform to the POSIX.1 standard.
With a few exceptions, this goal is met in the current implementation. Cases where a vendors,
operating system or compiler implementation prevents strict adherence to the Portable Operating
System Interface for Computer Environments (POSIX) standard will be minimized and worked
as the standard matures. Additionally, some components of the Toolkit have been designed to
incorporate proven COTS and other heritage software to provide functionality that is largely
accepted by the user community and can be easily integrated into the Toolkit.

3.2 Nomenclature
The naming of the tools has been standardized to include two prefixes: one to denote its
membership in the family of SDP tools and the other to indicate the general area of functionality
covered by the tool. For example, a Toolkit routine that performs a time conversion will be
prefixed with 'PGS_TD_'. The remaining portion of each name will be detailed enough to
indicate the explicit functionality performed by the tool (e.g., "PGS_TD_UTCtoTAI").

3.3 Consistency
This feature was achieved by the creation of a method for setting and retrieving status values and
status messages through the use of pre–defined error and status return codes and associated
Toolkit routines. Some of these return codes are defined by the SDP system, but most of them
will be defined by the users themselves to give them maximum control over their processing. All
the SDP Toolkit routines have been designed to adhere to this status return mechanism; likewise,
all the user developed software should incorporate this mechanism as well. The widespread use
of this feature will serve to create software that is consistent in its approach to error handling and
status reporting, is more readable, adheres to principles of modularity, and is easier to maintain.

 3-2 EED2-333-001

3.4 Hierarchical Design
Finally, the SDP Toolkit was designed to provide different levels of service, depending on the
requirements of the developer. Primarily, the Toolkit was designed to provide for all the
necessary system–level interfaces. However, much of the Toolkit functionality incorporates
value–added features to provide a higher level of service for the developers creating higher–order
algorithms. In order to accomplish this, many of the Toolkit routines are designed to use the
services of lower–level Toolkit routines. Some of the tools, such as the memory management
routines are only required to have one or two levels of service; whereas others, like the ancillary
data I/O routines, may have several different levels of service. It is important to note that
whatever level of service is required, the Toolkit routine that provides that service will have been
designed to use the services of a lower level Toolkit routine. This means that the applications
programmer can use any of the Toolkit routines to develop their own level of service if there is
not an explicit Toolkit routine that provides it.

3.5 Units
Generally, in the CBP, CSC, TD, and EPH sections of the Toolkit all physical quantities are in
Standard International (SI) units, and all angles are in radians. The only exceptions to the use of
SI units are a few cases where a "time" such as a Greenwich "time" that is really a measure of
Earth rotation may be given in radians, or (for Julian Date) days, instead of seconds - please
consult the individual tool entries on this issue. In some of the AA and GCT tools specialized
units appropriate to the relevant data set may be used; please consult the individual entries.

The HDF subsetting functions use SI seconds.

Users who wish to work in units other than those in the Tools are urged to use great caution. For
example, the tools that transform between the spacecraft reference frame and Earth-centered
reference frames take into account the displacement of the spacecraft (in meters) from Earth
center, when the user supplies other than a unit vector. (For unit vector input. only the direction
is transformed). To use these transformations on vectors denominated, for example, in
kilometers would result in nonsense.

3.6 Ranges and Limits of Validity; unit vectors
The following material applies to the CBP, CSC, TD, and EPH tools; the AA and GCT tools may
follow different rules which are explained in the appropriate sections.

On output, all angles that represent a longitude or azimuth will be in the range (-π, π), but on
input the Toolkit is more forgiving: no limit is imposed, although most library trigonometric
functions tend to lose accuracy when the argument is very large. By keeping the input range
open this way we hope to simplify the task of the user who may, for example, want to transform
from geodetic coordinates to rectangular coordinates a patch of the Earth's surface that bridges
the longitude discontinuity at or near the international date line. There is no harm in entering
values larger than π or less than -π as derived, say, from offsets. Latitude is in the range
(-π/2, π/2). Nadir and Zenith angles are in the range (0, π). Altitude can be arbitrary, but some

 3-3 EED2-333-001

tools return warnings or balk, with an error return, if a questionable altitude is detected; see the
individual descriptions. Referring to Section 3.5, here again is a case where the inadvertent input
of coordinates in kilometers (which the tools would take to be meters) could result in worthless
output and a warning message, only, that the spacecraft was "subterranean."

In many cases, CSC group tools require a unit vector input. The varying accuracies of different
platforms, and the danger of algorithmic error in case of inputting a non-unit vector where a unit
vector is called for, dictated that the Toolkit simply make a normalized copy of the vector for
internal use anyway. Thus, users need not, in practice, normalize "unit vectors" supplied to our
CSC functions. On output, when a unit vector is promised, however, a unit vector will be
produced.

Certain time streams have limited range by the nature of their definition, as explained in the TD
section. Generally, the broadest range of times is encompassed by the Julian Date time streams,
but Toolkit time, secTAI93, will yield microsecond precision from 1960 to 2135 AD on 32 bit
platforms.

The algorithms have been carefully chosen to preserve machine word precision where possible,
but a few transformations are subject to some limitations explained in the individual entries. For
example, as noted by Galileo and Copernicus, the apparent velocity of the Sun or a planet as
viewed in a reference frame rotating with the Earth is absurdly large; therefore we do not
calculate such velocities past the mean distance to the Moon.

3.7 Aging and Maturation Effects
Any tools, such as geolocation functions, that depend on a precise knowledge of Earth rotation,
yield answers that depend ultimately on measurement; Earth rotation cannot be predicted well
enough to allow ultra-precise real time geolocation! Therefore, along with leap seconds data, the
Toolkit imports, weekly, data files on Earth rotation from the U.S. Naval Observatory. Users who
want precise Earth position can get it within a few centimeters, but they have to wait a week till
the latest file is in! Users content with meter accuracy can process in real time, but if they
reprocess later, their geolocation answers may change by several centimeters, or even a meter.
For more details, see the SDP Toolkit FAQ at http://newsroom.gsfc.nasa.gov/sdptoolkit/faq.html.

 3-4 EED2-333-001

This page intentionally left blank.

 4-1 EED2-333-001

4. Toolkit Usage, Functionality, and Future Direction

4.1 Introduction
This User's Guide addresses the usage of the SCF version of the SDP Toolkit. The purpose of the
SCF development environment and Toolkit is (1) to provide development Toolkit functions that
emulate the production Toolkit functions, (2) to provide a development environment that
emulates the production environment to support development and test, (3) make both functions
and environment easy to use, and (4) most importantly, allow for a smooth transition of science
software from the SCF to the production environment, during the integration and test phase.

The ECS science software developer will use the Toolkit to access the production environment
and services, or their emulation. The Toolkit routines are divided into two classes:

a. Mandatory:

 In order to access production services such as scheduling and messaging services in a
consistent way, to avoid duplication of science software development effort, and to assure
portability across computing platforms, usage of a subset of the Toolkit functions is
required. These include functions that deal with file I/O, error message transactions,
process control, ancillary data access, spacecraft ephemeris and attitude, and time and
date transformations. The use of these tools will be enforced through automatic checks at
integration time at the DAACs.

b. Optional:

 Other useful functions required by developers, such as those involving celestial body
positions, coordinate transformations, math libraries, physical constants, and graphics
support, will be provided by the Toolkit. The use of these services is optional, but is
encouraged. Science software developers who use alternative solutions will be required to
deliver the source code (Portable Operating System Interface for Computer Environments
(POSIX) compliant) for the replacement services as part of the algorithm delivery.
Prohibited and allowed system calls are the subject of Appendix K on POSIX.

The Toolkit will serve to insulate science software from the Science Data Processing (SDP)
software, and to provide a development environment that emulates critical SDP functions. In
most cases, a complete simulation of the DAAC SDP System will not be required. The Toolkit
will help ensure code portability as the algorithm is ported from development hardware, through
the DAAC system, and through potential hardware changes as the ECS matures. To do so
effectively, the Toolkit will provide for limited access and control to system level resources,
including processes, shared memory, and I/O capabilities. Where control of such resources is
necessary (e.g., shared memory allocation), the Toolkit will provide a set of routines through
which the application must obtain those services. This partitioning and layering of operating
system services allows the Toolkit to work on behalf of the Data Processing subsystem in
allocating, de–allocating, and making use of system–wide shared resources. The Toolkit will also

 4-2 EED2-333-001

serve to minimize code development by providing common functionality required across the
ECS community, such as geolocation.

It is essential to understand the concepts that distinguish the SCF development environment from
the production environment. While the science software and interface to the SDP Toolkit are
preserved in both environments, there are slightly different implementations and behavior in the
Toolkit functions and peripheral components (e.g., shell level development external to the
product generation executive (PGE) and testing tools). As far as the calling sequences themselves
go, these differences are transparent to the science software developer, i.e., the calling sequences
in the SCF and production environment versions are identical. Some setup of the underlying
environment will be necessary at the SCF, as explained in Section 4.2 below. This setup should
not affect the code itself.

4.2 SCF Development Environment

4.2.1 Introduction

This User's Guide describes tools that were designed to function in the production environment.
For this reason, certain assumptions were made during their design process which will affect the
operation of these tools in the SCF environment. It is the primary purpose of this section to
identify those areas where extra measures will need to be taken, on the part of the SCF
developers, to compensate for the differences in the two environments. To assist with this effort,
utilities that are being developed to support ECS internal testing will be made available to SCF
developers after they are developed and tested. These utilities are expected to prove useful to
Product Generation Executive (PGE) script development as well as to the integration and testing
processes. Aside from supplying the production environment emulation services necessary to
fully utilize the SDP Toolkit, these utilities will also provide an integrated environment to
facilitate the specification and execution of test scenarios. Production environment emulation
utilities will evolve over time as the architecture and system design of the ECS progress.

It is also the intent of this section to impart to the SCF developers our view of how science
software development should be undertaken at the SCFs where the Toolkit is concerned. The
intent here is merely to present our views and not to impose guidelines on the actual development
process. If a future implementation of ECS, for example, allows for standard product production
at the SCFs, usage of the Tools and utilities presented in this document should not impede but
aid algorithm development.

4.2.2 File Management

In the production environment, product files coming from the system archive are designated by
Earth Science Data Type (ESDT). In order for science software to access staged files, a scheme
for translating internal software identifiers into actual physical identifiers has been established
(Section 6.2.3). The same holds true for the SCF environment since the same I/O tools will be
used to access these files from within the science software. The main difference being that in the
production environment, these filename references are resolved when a PGE is queued for
execution. Since the production environment will not be part of the SCF environment, a

 4-3 EED2-333-001

mechanism was devised to substitute for this functionality. This mechanism, known as a process
control file (PCF), involves the creation of an external mapping of logical identifiers to physical
file names according to the specifications for such a mapping. In this fashion, the software
interface is consistent in both the SCF and DAAC run environments.

Some other notes regarding files concern the support for a one-to-many, logical-to-physical
relationship among Product Input files. While this functionality is supported by the Toolkit, there
are several guidelines that must be observed when defining these associations through the PCF
mechanism. The first of these requires that files can only have more than one instance if they are
entered into the section of the PCF labeled PRODUCT INPUT FILES. Since the logical
identifier is static for files of this type, an instance number is required by the Toolkit, when
references are made, to distinguish amongst several files in the group. In order to ascertain the
number of instances associated with a logical identifier, you must invoke the Toolkit function
that provides this information (Section 6.2.3.2). Second, the order in which associated Product
Input files is retrieved, using a sequentially increasing instance number, is the same order in
which they are presented in the PCF, e.g., an instance number of 3 indicates the third associated
Product Input file defined in the PCF. Third, associated Product Input Files are those which
possess the same logical identifier and appear in succession in the PCF. Lastly, the instance
number is NOT directly related to the sequence number that appears at the end of the Record
Field in the PCF for each Product Input file (Appendix C) -- that sequence is the inverse of the
actual presentation in the PCF, such that the last entry in an association has Record Field = 1, the
second to last has Record Field = 2, while the first entry has its Record Field equal to the number
of entries in the association.

Until more is known about the ability to request that Product Input files be staged (loaded to disk
and updated in the PCF) in a specific order, we recommend that you NOT anticipate that any
specific ordering will exist in the production environment. Rather, always examine the file
attributes (metadata) to ascertain the specifics about the Product Input file before referencing it.

At the SCF, users must populate entries in the PCFs they intend to use during testing of PGEs.
At the DAAC, the PCF used in production is populated by the production system at runtime,
based on data dependencies and scheduling rules communicated to the DAAC Science Software
Integration and Test (SSI&T) team.

4.2.3 Runtime Configuration

To support a wide range of testing scenarios, some runtime parameters may be required to
modify the behavior of the PGE under certain conditions. The SDP Toolkit contains the routines
necessary to access the values of these parameters during runtime, provided that an external
mapping of logical identifiers to actual values has been performed according to the specifications
for this type of mapping.

In the production environment, dynamic control of these parameters occurs through a client
interface that constructs production requests; the parameter changes resulting from such
activation of this mechanism override the default mappings maintained in the production
environment. There are also certain such runtime parameters that are dynamically determined
immediately prior to PCF creation within the production system.

 4-4 EED2-333-001

4.2.4 PGE Script Development

PGE scripts build the logical framework around the executables that produce the science
products. It is our view that these scripts should be created by SCF science software developers,
perhaps with guidance from the DAAC. It is also our understanding that the same Product
Generation Executive (PGE) script will be delivered to the DAAC SSI&T team with little or no
modifications required. In order to achieve this, the actual script should ideally be developed
using a POSIX.2 conforming shell language. If at the time of development such a shell is not
supported for all the approved platforms, development may proceed by using the standard
Bourne shell (or other shell language approved by the ECS Project) on those platforms lacking a
POSIX.2 implementation.

The actual PGE script as initiated in the production environment will not take arguments from
the command line. Instead, script calls to command versions of some 'Process Control' tools (see
Section 6.2.3) will provide for the retrieval of pertinent runtime information. Likewise, the
routine versions of the same tools should be used to obtain runtime information from within the
executables, rather than passing this information through the shell interface. This allows for
easier configuration of executables within the PGE script should modifications be required at
some point in the future. This scheme is possible since the executable interfaces, files and
runtime parameters, are defined and maintained external to the PGE script in the production
environment. It is to the SCF developer's benefit to adhere to this convention wherever possible,
to ensure portability of software into the production environment.

To support the startup and housekeeping needs of the SDP Toolkit; a Toolkit shell command has
been developed which performs the necessary initialization and termination procedures. This
shell command accepts a PGE script as input, assuring that execution of the PGE occurs between
the initialization and termination phases of the Toolkit. This shell command is similar to that
which will be run in the production environment to guarantee the proper activation and
deactivation of the Toolkit. It is recommended that SCF developers utilize this tool when
conducting their testing.

When testing for the exit status of an executable within the PGE, only two values should exist :
(0) for success and (1) for failure. This will require the executable developers to invoke the
library exit call with the appropriate value as the final statement in their software. The same
holds true for the exit status of the PGE with the exception that the shell command 'exit' is
invoked instead.

The Toolkit will support the following script languages: Bourne shell, C shell, Korn shell,
POSIX and the Perl language. However, certain system calls within these languages are
prohibited (as are such calls from the PGE executables), most notably, any file system activity
other that read/write.

4.2.5 Scheduling and Execution of PGEs

As was previously stated, scheduling or queuing of PGEs via the data production processing
subsystem will not be part of the SCF. However, developers should be able to generate scenario
scripts for different PGEs that will emulate the execution of PGEs within the DAAC

 4-5 EED2-333-001

environment. With each scenario script tailored to execute a single PGE for specific set of
conditions, a superscript that activates several scenario scripts could be used to perform the
execution of multiple PGEs, further enhancing the emulation.

4.2.6 Error/Status Message Creation and Use

The 'smfcompile' utility provided in the SDP Toolkit (see Section 6.2.2) contains all the required
functionality for defining and maintaining error and status codes, user messages and associated
action messages. This tool, while only used in the SCF development environment, will fully
support the suite of 'Error and Status Reporting' tools at both the SCF and the production
environment.

Designed to support modular program development, this utility allows for separating the task of
defining status codes and messages from the actual software development task. In fact, the
process of defining these codes and messages may even be performed in the design stage, only
later to be referenced during software development. This is an especially useful arrangement if
action messages are to be incorporated into the status codes. This way, someone other than the
programmer can decide the action that needs to be taken when a certain error, or status condition
occurs.

While we do not endorse the creation of a separate Status Message File (SMF) for each
routine/function, etc., we do recommend that SMF file creation follow the logical partitioning of
software modules. So for a related set of routines, or even a small program, there might only be
one SMF that defines the status codes and messages returned by those routines.

The format for defining a status code mnemonic is intentionally free–form to allow the developer
to create and reference status codes that convey some meaning when writing and visually
inspecting the code.

4.2.7 Error/Status Log Monitoring

In the production environment, an error/status log file will be opened just before execution of the
PGE. This will be accomplished through an 'Initialization' command invoked by the production
environment. This tool and its associated 'Termination' command, were delivered with the
Toolkit 4 release of the SDP Toolkit. Developers can insert these tools at the beginning and end
respectively of a superscript that encapsulates their PGE script. However, it would be preferable
to use the Toolkit Shell command, since it already calls these commands and provides for the
encapsulation of a PGE script. If the emulation utility is used, the scenario scripts that it
generates will automatically incorporate these tools.

The actual log file name will most likely be influenced by system parameters in the production
environment. The easiest mechanism for accomplishing this in the SCF environment will be
through the assignment of some file name to the appropriate Record Field, in the process control
file (PCF), for each status log. The emulation utility may allow for the log file to be defined
through the file management services.

 4-6 EED2-333-001

Through the emulation utility, the actual name of the log file could be conveyed to the user on
the host platform's console, or through some other convenient means. The user will most likely
initiate a scrolling output of the log file to a terminal window, to monitor the progress of PGE
execution.

The 'Termination' command mentioned earlier will be responsible for closing the log file and
dispatching it to some pre–defined location as specified by a Runtime Parameter in the PCF.

4.2.8 Parallel Processing Issues

While the majority of the software to be designed at the various SCF locations will be sequential
in nature, due to its direct dependency on data, some portion of that software lends itself to being
processed in a parallel fashion. This is especially true of those processes that share a common set
of input data, but which have no interdependencies themselves.

Unfortunately, the system architecture that would define the ability to execute portions of a PGE
on non–host platforms (i.e., a massively parallel machine) in the production environment has not
yet been determined. Until such an architecture is defined, if at all, developers will only be able
to test concurrent execution of executables on a single host. If a requirement for this type of
processing is derived, the Toolkit will be configured to work in that environment.

4.2.9 Configuration Management

The importance of having a robust configuration management (CM) tool for a project of this size
cannot be overstated. From SDP Toolkit development to science software development and
integration, the use of this tool will control the version of software to support the continuous
development and execution of production software.

After careful evaluation of several CM products, the ClearCase tool from Atria Software was
chosen to support the internal software development, during site CM and maintenance and
operations (M&O) CM requirements analysis. It is recommended that compatibility and
interoperability benefits be explored.

4.2.10 Distributed Computing Environment (DCE) Issues

With the advent of distributed computing, an ever-increasing amount of single process execution
will be performed across multiple machines instead of the more typical scenario of many
processes running on one machine. While this technology may someday help to improve the
efficiency of your process, and at the same time take advantage of underutilized processors, the
constraints that it places on the ECS system architecture preclude the use of certain Distributed
Computing Environment (DCE) features. Among them is the use of remote procedure calls
(RPC's). The creation of RPC's to perform some segment of processing for a science algorithm is
such a customized task that its interface cannot be generalized into some extended SDP Toolkit
functionality. Since it is the Toolkit's charter to isolate the science software from the system
architecture, the SDP Toolkit's inability to mask this feature prohibits its direct usage in the
actual production software. For this reason, the direct use of RPC’s will not be allowed in the
algorithm software developed by the instrument teams.

 4-7 EED2-333-001

We note that an interface that makes RPC’s indirectly available to science users through a client
interface is being considered in revisions of the ECS architecture. This interface may become an
extension of the Toolkit and will allow the algorithmic access of data through parameter–based
searches. The details and limitations of this interface are not available at the time of this
document.

4.3 Test and Simulation Data Access
The Toolkit provides tools to access all external data files required for science processing
development and execution. There are tools to provide the read functions to all data types: L0,
ancillary data, calibration coefficient files, standard products, etc.

Clearly test data must be accessed through the tool with the same Toolkit interface as in the
production environment. In general, the Toolkit will aim to provide low level “write” functions
to match the “read” functions so that the users may develop their own test data sets to the format
required. Although there are currently no requirements that the Toolkit supply these new "write"
tools, it is expected that they will be required for adequate testing within the production
environment. In certain cases, such as platform orbit and attitude simulation, the Toolkit may
provide specially prepared test data sets.

For example, the L0 data write tool will provide a function to write data into a file formatted as
the packet based structure expected from EOSDIS Data and Operations System (EDOS). In this
example, the “write” routine would require that the science data is provided by the user so that
the test data set may be tailored to the user needs.

For the case of dynamic external auxiliary data (e.g., Special Sensor for Microwave Imaging
(SSM/I) water vapor data) software may be provided to preprocess external data into any internal
format used in the production environment, so that consistent data sets for testing may be
developed by the user as required.

In the current implementation, EOS AM, EOS PM, EOS AURA and Tropical Rainfall Measuring
Mission (TRMM) orbit and attitude simulation are supplied with the Toolkit. A packetizing tool
Level 0 instrument science data simulation (which can be used in conjunction with the orbit
simulator) is under development. A digital chart of the world (DCW) data base and a celestial
body ephemerides are also provided with the current delivery.

4.4 Language Bindings and Advanced FORTRAN Considerations
The calling sequences in this document are provided in the C language with FORTRAN calling
sequences provided in addition for most tools. The toolkit may now be built with the C++
compiler. The C++ library contains FORTRAN bindings (this means that the C++ Toolkit
libraries can be called from FORTRAN).

a. The SDP Toolkit is designed in C, with most of the FORTRAN interface provided via
inter–language bindings. In cases where there is no obvious relationship between
FORTRAN and C calls, i.e., C pointers and structures, bindings will have to be done

 4-8 EED2-333-001

carefully so as not to cause processing impairment. Note that there are no such tools in
the current implementation.

b. The question of computing speed has a strong effect on the design of FORTRAN tools.
Some tools, such as Level 0 I/O tools, need to be as fast as possible—the extra layer of
binding from C to FORTRAN may slow the processing to the point that the tool is
unusable. Therefore, a subset of the SDP Toolkit is designed as FORTRAN—only; i.e.,
not bound to C, for this reason. The user interface will not change, however.

c. FORTRAN77 is currently the highest level of FORTRAN that has a POSIX standard.
However, many features of FORTRAN90 that are not present in FORTRAN77 are
desired for inclusion in the Toolkit. These FORTRAN90 features include pointers and
structures. This may mean that there will be two sets of FORTRAN calling sequences,
one for 77 and one for 90. There are no FORTRAN90 only constructs in the current
implementation.
The tools compile in both FORTRAN77 and FORTRAN90

e. The only Ada support offered by the Toolkit is in the generation of Status Message Files
by the 'smfcompile' utility.

4.5 Thread-Safe Issues
The PGS Toolkit may now be built in either Threadsafe or non-Threadsafe mode. The user may
NOT use the Threadsafe library (libPGSTK_r.a) for a non-threaded PGE applications and
likewise the user may NOT use the non-Threadsafe library (libPGSTK.a) for a threaded PGE
application. Intermixing libraries and executables will cause undefined results.

The user API remains the same for both the Threadsafe and non-Threadsafe Toolkit. All Toolkit
Threadsafe code is internal and hidden from the user. The Toolkit adheres to POSIX.1c
compliancy. Therefore, the pthread library (libpthread.a) is used. Using another thread library
while using the Threadsafe version of the Toolkit is strongly discouraged as undefined and
untested results may occur.

The COTS packages that Toolkit uses (ODL, etc.) are not Threadsafe. Therefore, it is highly
recommended that functions in Toolkit groups that call a COTS package should be called from
the same thread. The groups that would not be considered Threadsafe are CBP, CSC, CUC, AA,
GCT, DEM, and MET, and HDF (HDF-EOS). Calling any of these groups from multiple threads
will lead to undefined results (i.e. core dumps).

It was also discovered during testing that great care must be taken while writing multi-threaded
programs. Since more system resources are taken when using multiple threads, hidden coding
oversights can become serious errors. For example, failing to close a file: in a multi-threaded
program, a file may be opened many different places, and high numbers of open files could will
eventually lead to the maximum number of files being opened; and an error will result.

Great care must also be taken to ensure that all data variables are local. For example, global
variables can be used and modified by any active thread. Since each thread has a distinct and
different purpose the globals, will be set to the necessary value for that specific thread. The next

 4-9 EED2-333-001

thread accessing a global will probably error out due to erroneous data values. This is the exact
problem with the COTS packages.

Limiting the number of threads that make Toolkit calls will aid in receiving the expected results.
Running any threads, in general, can be a resource drain on a computer; and running a Threadsafe
Toolkit can multiply the resource drain on a machine. Testing for the Threadsafe Toolkit, which
had multiple threads only calling Toolkit functions, revealed that performance was better with a
limited number of threads.

Below is an example of the use of Toolkit functions in a multi-thread program.

/*

 * thread.c

 *

 * Demonstrate how only one thread is allowed to call

* ALL functions in the Toolkit and the remaining threads

 * are restricted as to which groups they can call.

 */

#include <pthread.h>

#include <stdio.h>

void *ThreadA (void *arg)

{

/**

Thread A calls any and all functions in the Toolkit

**/

 return NULL;

}

void *ThreadB (void *arg)

{

/**

Thread B makes Toolkit calls but does NOT call

CBP, CSC, CUC, AA, GCT, DEM, or MET.

**/

 4-10 EED2-333-001

 return NULL;

}

void *ThreadC (void *arg)

{

/**

Thread C makes Toolkit calls but does NOT call

CBP, CSC, CUC, AA, GCT, DEM, or MET.

**/

 return NULL;

}

void *ThreadD (void *arg)

{

/**

Thread D makes Toolkit calls but does NOT call

CBP, CSC, CUC, AA, GCT, DEM, or MET.

**/

 return NULL;

}

int main (int argc, char *argv[])

{

 pthread_t threadA;

 pthread_t threadB;

 pthread_t threadC;

 pthread_t threadD;

 pthread_create (&threadA, NULL, ThreadA, NULL);

 pthread_create (&threadB, NULL, ThreadB, NULL);

 4-11 EED2-333-001

 pthread_create (&threadC, NULL, ThreadC, NULL);

 pthread_create (&threadD, NULL, ThreadD, NULL);

 pthread_exit (NULL);

 return 0;

}

Again, any calls of SDP Toolkit groups that call COTS packages should be called in the same
thread.

Although all COTS libraries that are called from the Toolkit are assumed to be non-Threadsafe
and will be locked with a mutual exclusion (mutex) lock this does not make the packages
themselves Threadsafe.

The Threadsafe PGS Toolkit library may be called from any thread of a multi-threaded
application, but it does not manage scheduling of threads by a calling program, nor does it do
anything to insure thread safety in routines that it calls. These programs and libraries must
themselves assure the correctness of the sharing between threads.

An application program is responsible for managing its own shared memory buffers. If multiple
threads are writing and/or reading to and/or from shared areas of memory, the Threadsafe Toolkit
library cannot guarantee that the results will be correct. For example, if an application program
stores results from one Threadsafe PGS Toolkit call in shared memory in one thread and another
thread expects to read those results the Threadsafe Toolkit can not manage this type of
synchronization. It is the responsibility of the application program to manage shared memory/file
access.

The Threadsafe PGS Toolkit library accesses disk storage through the operating system, so for
multi-threaded programs the Threadsafe Toolkit library provides whatever semantics the
operation system provides. Hence, when multiple threads read and write to the same area on disk
the Threadsafe Toolkit does not guarantee consistent results beyond that provided by the
operating system. The Threadsafe Toolkit can guarantee that each read and write will be
completed correctly, but the order of completion is unspecified, and might vary from run to run
or from platform to platform.

C library functions that are called by the Toolkit that are not Threadsafe will be replaced with the
_r counterpart. It is an application’s responsibility to make sure that other libraries are called in
an appropriate manner. For instance, if the MPIO and/or MPI libraries are not MT-Safe then the
application should not use the MPIO file access driver. It is beyond the scope of the Threadsafe
Toolkit configuration to determine when supporting libraries are Threadsafe.

 4-12 EED2-333-001

The Threadsafe PGS Toolkit is not interprocess-safe. Two processes cannot simultaneously
access a PGS Toolkit file, so no attempt is made to prevent deadlocks in the Threadsafe Toolkit
by resetting state information with pthread_atfork(). Do not call Threadsafe Toolkit functions
from a child process.

The Threadsafe PGS Toolkit serializes accesses to the library, each API call is atomic. If an
application needs a sequence of operations to be atomic (e.g. Read, Modify, Write), the
application code must provide the appropriate concurrency protocols.

The Threadsafe PGS Toolkit uses the same PCF for all threads in the PGE. All current rules for
the PCF apply.

The Threadsafe PGS Toolkit will produce one set of SMF Error/Status files for the threads in the
PGE. Each entry in the LogStatus file will be followed by a Thread ID (TID) number which will
allow the user to trace a threads progress.

There is only one difference in return values in the Threadsafe API and the non-Threadsafe API.
The Threadsafe Toolkit API may return PGSTSF_E_GENERAL_FAILURE. This states that
there was a severe problem initializing, locking, or accessing keys. It is recommended that the
application program exits upon receiving this return value.

 5-1 EED2-333-001

5. Toolkit Installation and Maintenance

5.1 Installation Procedures

5.1.1 Release 9 SDP Toolkit Release Notes

5.1.1.1 Multiple Architecture Support

The Toolkit has the option of being installed with simultaneous support for multiple
architectures. This means that it is no longer necessary to install a separate copy of the Toolkit
for each host architecture to be supported. Instead, a single copy of the Toolkit, installed on a file
server in a networked environment, may serve multiple hosts of different architecture types.

Running concurrent tasks on the Toolkit is possible, but it requires that each process be
configured so that all output files, including Toolkit log files, are written to a separate area to
avoid collisions. This is done by using a private customized Process Control File (PCF) for each
concurrent task. Please refer to Appendix C for more information. Note that any such PCF
MUST contain all of the entries in the master template PCF for proper Toolkit functioning.

The directory structure of the Toolkit was revised to allow multiple architecture support.
Subdirectories of the Toolkit home directory are now as follows:

 bin binary and script executables Note 1
database data resource files used by the Toolkit Note 1
doc documentation
include header files
lib the Toolkit Library Note 1
message message files used by the error/status tools
obj object files used to build the Toolkit Library Note 1
runtime runtime files Note 2
src source code
test test area

Note 1:
The directories bin, database, lib, obj and objcpp all contain architecture-specific files residing in
subdirectories named for the architecture. One such subdirectory will be created for each run of
the installation script on a given architecture. Toolkit environment variables are set by the
environment scripts to automatically map to the appropriate directories.

The database directory additionally contains a subdirectory named common for data files shared
by all architectures.

 5-2 EED2-333-001

Note 2:

The directory runtime contains data files shared by all architectures. In addition, it contains one
subdirectory for the each of the supported architectures. These subdirectories are for architecture-
specific runtime files. Currently the only file distributed in these subdirectories the default
Process Control File (PCF) PCF.relB0, which contains architecture-specific pathnames. Several
files generated at runtime by a PGE (e.g. log files) are set by default (in the PCF) to be created in
this directory as well.

5.1.1.2 DAAC Toolkit Support

The Toolkit supports DAAC as well as SCF sites. A single distribution file supports all sites.
The type of Toolkit built is determined by command line options to the installation script.

5.1.1.3 Support for the IRIX 6.5 Operating System

The Toolkit now fully supports the SGI IRIX64 Operating System. Under IRIX64 there are three
Application Binary Interfaces (ABI). The Toolkit treats each of these ABIs as a separate
architecture. The table below gives the formats:

 ABI compiler flag Toolkit name
 old-style 32 bit -32 sgi
 new-style 32 bit -n32 sgi32
 64 bit -64 sgi64

The old-style 32-bit format is backwards-compatible with 32-bit SGI platforms. The other
formats run only under IRIX 6.x.. Please note that SGI plans to drop support for old-style 32-bit
format, it is therefore strongly recommended that all users migrate to new-style 32 bit or 64-bit
mode. Also, ECS DAAC facilities no longer support old 32 processing on the SGI.

5.1.1.4 HDF Integration

The Toolkit installation procedures include a section that covers the installation of The HDF
Group’s HDF file access packages, HDF4 and HDF5. HDF has been adopted as the standard data
format for EOSDIS Core System product generation, archival, ingest, and distribution
capabilities.

Currently, HDF4 is only needed in order to build and use the Digital Elevation Model (DEM),
Metadata (MET), Ancillary Access (AA) tools, and EPH/ATT tools. In addition, MET tools
require HDF5. If you do not plan to use these tools, the HDF4 and/or HDF5 installation section
may be skipped. In future releases, we expect greater integration of the Toolkit with HDF.

An installation script for HDF4 and HDF5 is included as part of the main SDP Toolkit
distribution. It is provided to simplify the installation of HDF as much as possible, greatly
reducing the number of steps in The HDF Group's own installation procedure. As of Release 9,
the toolkit uses HDF-4.2.13 and hdf5-1.8.19. The HDF distributions themselves are located in
compressed tar files, called HDF-4.2.13.tar.gz and hdf5-1.8.19.tar.gz which must be downloaded

 5-3 EED2-333-001

separately along with the ZLIB tar file zlib-1.2.11.tar.gz, JPEG tar file jpegsrc.v9b.tar.Z, and
SZIP tar file szip2.1.1.tar.gz.

With a full installation, HDF requires approximately 60 Mb of disk space. After the installation
files are cleaned up. They may be installed in any location; i.e., they do not have to be stored
under the SDP Toolkit home directory. The disk partition where HDF4 and HDF5 are installed
should have about 120 Mb of free space.

5.1.1.5 HDF-EOS Integration

The toolkit installation procedures now include a section which covers the installation of HDF-
EOS and HDF-EOS5, standalone packages that may be used in conjunction with the toolkit.
They implement the EOS standard methods for accessing HDF format files. Three interfaces are
provided: Point, Swath and Grid. Please refer to the HDF-EOS and HDF-EOS5 User's Guide for
more information. The distribution file for HDF-EOS and HDF-EOS5 are available from the
same ftp server where the toolkit distribution files are located.

The toolkit HDF-EOS and HDF-EOS5 installations are only available if the toolkit is built with
HDF support. It handles the details of unpacking the distribution file, setting HDF dependencies,
and running the HDF-EOS installation script.

Currently, HDF-EOS (HDF4 based) is only needed in order to build and use the Digital Elevation
Model (DEM) tools. If you do not plan to use these tools, the HDF-EOS installation section may
be skipped.

HDF-EOS (or HDF-EOS5) may also be installed manually, either before or after the toolkit is
installed. HDF4 (or HDF5) must be installed before installing HDF-EOS (or HDF-EOS5).

5.1.2 To Install the SDP Toolkit from a Disk–Based Tar File

5.1.2.1 Preliminary

If HDF4 and HDF5 are to be installed at this time (recommended), you must first download the
HDF4 distribution file HDF-4.2.13.tar.gz, zlib-1.2.11.tar.gz, jpegsrc.v9b.tar.Z, szip2.1.1.tar.gz,
and hdf5-1.8.19.tar.gz before proceeding. They may be loaded into any directory on your system,
i.e. they need not reside in the SDP Toolkit home directory. The same applies to the HDF-EOS
and HDF-EOS5 distribution files HDF-EOS2.20.v1.00.tar.Z and HDF-EOS5.1.16.tar.gz, if you
plan to install HDF-EOS (recommended) while installing the toolkit.

Important HDF Note:

The toolkit-supplied HDF installation scripts contain various platform-specific patches and bug
fixes that allow HDF4 and HDF5 to be successfully installed on all platforms supported by the
toolkit. In most cases, both the libraries and utilities are built. Also, the script automatically sets
up the installed HDF directories so that the Toolkit can find them.

 5-4 EED2-333-001

Because of these factors, we strongly recommend that even if you already have HDF-4.2.13, zlib-
1.2.11, jpegsrc.v9b , szip2.1.1, and hdf5-1.8.19 installed, you RE-INSTALL HDF AT THIS
TIME, using the toolkit-supplied HDF installation scripts.

Historical Note:

Please note the acronym PGS (Product Generation System) is used throughout the toolkit
software in place of SDP. This is for historical reasons: the name was changed as of Release 3 of
the toolkit. We regret any confusion this may cause.

5.1.2.2 Unpacking the Distribution File
1. Select a location for the SDP Toolkit directory tree. It should be on a disk partition with

at least 80 Mb of free space. If you plan to install HDF in the same partition, you will
need at least 140 Mb of free space. If you plan to install support for multiple
architectures, you will need about 20 Mb Toolkit space + 60 Mb HDF space for each
additional architecture supported.

 Multiple Architecture Support Note

As previously mentioned, it is now possible to build the toolkit with support for multiple
architectures. The distribution file need only be unpacked once, to support all
architectures. If the toolkit is to be built with multiple architecture support, the area
chosen to unpack the distribution should be on a network file system accessible from all
hosts to be supported. (Please note that the SGI supports three different architectures. So,
if building a multiple architecture installation to support the SGI only, the file system
need not be accessible across the network.)

2. Copy the file SDPTK5.2.20v1.00.tar.Z to the target directory by typing the command:

 cp SDPTK5.2.20v1.00.tar.Z <target-dir>

 where <target-dir> is the full pathname of your target directory.

3. Set your default directory to the target directory by typing the command:

 cd <target-dir>

4. Uncompress this file and extract the contents by typing the command:

 zcat SDPTK5.2.20v1.00.tar.Z | tar xvf -

 This will create a subdirectory of the current directory called TOOLKIT. This is the top-
level toolkit directory, which contains the full toolkit directory structure.

5.1.2.3 Starting the Installation Procedure
1. Set your default directory to the top-level toolkit directory by typing the command:

 cd TOOLKIT

 Starting with 5.2.20 version TOOLKIT can be auto configured and installed like HDF4,

 5-5 EED2-333-001

HDF5, HDF-EOS2, and HDF-EOS5. If you prefer to install TOOLKIT and related
software using auto configure features please see README-AUTOCONF file in the doc
directory. The direction for autoconf installation of HDF-EOS2 and HDF-EOS5 are
provided in the file AUROCONF_INSTALL in the doc directory of their source code
distributions.

Multiple Architecture Support Note:

The toolkit installation script must be run once for each of the architectures to be
supported. To do this, simply login to the desired host and set your directory to the top-
level toolkit directory: <target-dir>/TOOLKIT. Then, proceed to run the installation
script, starting at Step 2, below. The installation runs MUST be done ONE AT A TIME.
Attempting to run concurrent installation procedures may cause errors.

2. Determine options for the toolkit installation script.

 Before running the toolkit installation script, you must determine the command line
options appropriate for your site. These options are referred to in this section as <install-
options>.

 These options tell the installation script such things as whether to build for SCF or
DAAC, and whether to build for FORTRAN-90 compatibility, (FORTRAN-77 is the
default). The table below gives the basic site options. Other options follow.

Site FORTRAN <install-options>
SCF FORTRAN-77 (none)
SCF FORTRAN-90 -f90
DAAC FORTRAN-77 -daac
DAAC FORTRAN-90 -daac -f90

 Please refer to part 1 of the Notes section, below, for information about platforms that
currently support FORTRAN-90. When doing a FORTRAN-90 installation, the use of -
fc_path option, (see below), is highly recommended.

It is RECOMMENDED that you specify the name of the installation directory. When
installing the Toolkit in a directory which is being auto-mounted or which is a link, the
Toolkit may not be able to correctly determine the name of the directory where you are
installing it. You can specify the name of the installation explicitly by adding the
following to <install-options>:

 -pgshome <installation directory>

where <installation directory> is the top-level Toolkit directory name (e.g.:
/usr/local/TOOLKIT). Note that this option can NOT be used to specify an installation
directory other than where the Toolkit has already been created in the steps prior to
running the INSTALL script.

If you wish to save the output of the installation run in a log file (RECOMMENDED),
add the following to <install-options>:

 5-6 EED2-333-001

 -log <log-file>

 Where <log-file> is the name of the log file.

 If you wish to compile the Toolkit in debug mode add the following to <install-options>:

 -dbug

 This will replace the optimization flag "-O" with "-g" for all files compiled into the
Toolkit library. This allows Toolkit routines to be viewed from within a source code
debugger.

 To install the C++ version of the library, libPGSTKcpp.a, you may use the -cpp option to
specify that you want the C++ version. To do this, add the following to <install-options>:

 -cpp

To ensure that the proper C++ compiler is found by the script, you may use the -cpp_path
option to specify its location. To do this, add the following to <install-options>:

 -cpp_path <C++-compiler-path>

 Where <C++-compiler-path> is the full C++ compiler path for the desired C++ compiler
(e.g. /user/loca/CC). This option should not be needed at most sites.

 To ensure that the proper C compiler is found by the script, you may use the -
cc_path option to specify its location. To do this, add the following to <install-options>:

 -cc_path <C-compiler-path>

 Where <C-compiler-path> is the full C compiler path for the desired C compiler (e.g.
/user/loca/cc). This option should not be needed at most sites.

To ensure that the proper FORTRAN compiler is found by the script, you may use the -
fc_path option to specify its location. To do this, add the following to <install-options>:

 -fc_path <FORTRAN-compiler-path>

 Where <FORTRAN-compiler-path> is the full FORTRAN compiler path for the desired
FORTRAN compiler (e.g. /usr/local/pgf77). This is particularly advisable when using
FORTRAN-90 (e.g. for f90 installation in a linux platform using Portland pgf compiler:
–f90 –fc_path /usr/local/pgf90).

NAG FORTRAN-90 Note:

 If using a NAG FORTRAN-90 compiler to build the toolkit library, add the -nag option
to <install-options>, after the -f90 and-fc_path options. This will allow the toolkit to
generate the proper C to FORTRAN bindings. This option should not be used when
building the toolkit on an SGI. See the note, below.

 SGI Multiple Architectures Note:

 On the SGI (as of IRIX64 6.5), the default is to build the toolkit in 64-bit mode. The
following table gives the option to specify the appropriate architecture to be built:

 5-7 EED2-333-001

binary format architecture <install-options>
old-style 32 bit sgi (none)**
new-style 32 bit sgi32 -sgi32
64 bit sgi64 -sgi64

 (**) The Toolkit may be installed in old-style 32-bit mode, but this is no longer the
default and may not be supported in future releases as SGI will be dropping support for
this format. To install the Toolkit in this mode, run the Toolkit without any special sgi
flags and then when prompted for the sgi mode enter "sgi" (without the quotes) at the
appropriate prompt.

SGI FORTRAN-90 Note:

 On SGI and SGI Challenge platforms running IRIX 6.5 and earlier, the type of
FORTRAN-90 compiler is automatically determined by the script. On the old style 32-bit
SGI platform, the NAG compiler is used. On the 64-bit SGI Challenge platform, the
compiler chosen depends on the binary architecture type selected.

 The script will override the setting of the -NAG flag, if specified, because only the
combination listed below will build properly. The following table shows which compiler
is used for each architecture:

binary format architecture f90
old-style 32 bit sgi NAG
new-style 32 bit sgi32 SGI
64 bit sgi64 SGI

 When the -NAG option is specified, it is a good idea to specify the f90 compiler location
via the -fc_path option, ("Setting the FORTRAN compiler path", above), to ensure that
the script uses the right compiler.

 By default the Toolkit supports the C language and one of FORTRAN77 or
FORTRAN90. The installation procedure, therefore, normally requires a FORTRAN
compiler. If no FORTRAN compiler available the Toolkit may be installed without a
FORTRAN compiler by specifying -no_ftn on the command line of the bin/INSTALL
script.

 Note that HDF still requires a FORTRAN compiler. In order the Toolkit to successfully
install without a FORTRAN HDF must be installed independently (i.e. NOT from the
Toolkit INSTALL script) (see HDF Installation Section, below).

 If you have already installed The HDF Group's HDF4 package, you can specify the
installation location explicitly. If you do so, the Toolkit installation procedure will not
attempt to install HDF4, using the installation you have specified instead. To do this, add
the following to <install-options>:

 -hdfhome <HDF4 installation directory>

 where <HDF4 installation directory> is the HDF4 directory which contains the bin/ lib/
and include/ sub-directories of the installed HDF4 package.

 5-8 EED2-333-001

 If you have already installed The HDF Group's HDF5 package, you can specify the
installation location explicitly. If you do so, the Toolkit installation procedure will not
attempt to install HDF5, using the installation you have specified instead. To do this, add
the following to <install-options>:

 -hdf5home <HDF5 installation directory>

 where <HDF5 installation directory> is the HDF5 directory which contains the bin/ lib/
and include/ sub-directories of the installed HDF5 package.

 If you have already installed ECS's HDF-EOS (HDF4 based) package, you can specify the
installation location explicitly. If you do so the Toolkit installation procedure will not
attempt to install HDF-EOS, using the installation you have specified instead. To do this,
add the following to <install options>:

 -hdfeos_home <HDF-EOS installation directory>

 where <HDF-EOS installation directory> is the HDF-EOS (HDF4 based) directory which
contains the bin/ lib/ and include/ sub-directories of the installed HDF-EOS package.

 If you have already installed ECS's HDF-EOS5 (HDF5 based) package, you can specify
the installation location explicitly. If you do so the Toolkit installation procedure will not
attempt to install HDF-EOS5, using the installation you have specified instead. To do
this, add the following to <install options>:

 -hdfeos5_home <HDF-EOS5 installation directory>

 where <HDF-EOS5 installation directory> is the HDF-EOS5 (HDF5 based) directory
which contains the bin/ lib/ and include/ sub-directories of the installed HDF-EOS5
package.

 WARNING: the installation procedure will not make any checks of the versions of any
pre-installed packages you specify in this way. It is your responsibility to ensure that any
such packages you specify in this manner are at the approriate version level for the
version of the Toolkit being installed.

 By default, the Toolkit installation is an interactive procedure. If you would like to run
the installation in "batch" mode add the following to <install-options>:

 -batch

 Note that the installation procedure is not as flexible when run in this mode. Namely,
when using the script to install HDF4, HDF5, HDF-EOS and/or HDF-EOS5, these
packages will be installed under the TOOLKIT directory (i.e. the default locations for
these packages). This behavior cannot be changed, although you MAY still specify the
locations of pre-installed versions of these packages using the appropriate <install-
options> (see above). Also, if you specify the -dbug switch the Toolkit, HDF and HDF-
EOS will all be installed in debug mode. Finally if you attempt to install HDF (HDF4 or
HDF5) and an installed HDF is found in the default location it will be deleted and the
whole HDF (HDF4 or HDF5) package will be reinstalled. If you attempt to install HDF-

 5-9 EED2-333-001

EOS (or HDF-EOS5) and an hdfeos (or hdfeos5) directory is found to exist in the default
location it will be "re-used".

5.1.2.4 Run the Toolkit Installation Script
Please note that the installation script for this release of the toolkit requires user interaction.
Because of this, it should NOT be run as a background task. The new installation script,
bin/INSTALL, is actually a front end for eight other scripts: bin/INSTALL-HDF4,
bin/INSTALL-HDF5, bin/INSTALL-HDFEOS-Wrap, bin/INSTALL-HDFEOS5-Wrap,
bin/INSTALL-JPEG, bin/INSTALL-ZLIB, bin/INSTALL-SZIP and bin/INSTALL-Toolkit. Each
of these scripts may be run with the -h option to display a usage message. In most cases, it will
not be necessary to run any of these scripts directly from the command line.

 To run the script, type the command:

 bin/INSTALL <install-options>
where <install-options> is the list of options determined in the previous step.

 The installation script will then run. It will output various startup messages, beginning
with:

 Toolkit Installation starting at <date/time>

If the platform is a 64-bit linux (or MacIntel) platform you will be asked to enter “lnx64
(or mac64)” or “lnx32 (or mac32)” for 64-bit or 32-bit installation respectively. Press
return for default installation or enter lnx32 or lnx64 for Linux (mac32 or mac64 for
MacIntel platforms), then press return installation.

 The script will then output a message discussing the HDF requirement, after which it
issues a prompt which gives you an opportunity to quit.

 Continue installation [yes] ?

 To continue the installation, press return.

ZLIB Installation Section

1. The script prompts with:

 Is zlib-1.2.11 installed at your site [no] ?

 If ZLIB is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of ZLIB installed, you may type 'y' and hit
return. In this case, the script will ask where ZLIB is installed:

 Pathname where directory zlib-1.2.11 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that ZLIB
is really installed there. Please proceed to the toolkit Installation Section, below.

3. The script prompts with:

 Do you wish to install zlib-1.2.11 now [yes] ?

 5-10 EED2-333-001

 Hit return to continue.

4. The script responds with:

 Running the ZLIB Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where zlib-1.2.11.tar.gz is located ?

 Please enter the correct location and hit return.

6. The script then asks where the ZLIB directory will be created. The default is <toolkit-
home-directory>/zlib/$BRAND, where $BRAND is the toolkit architecture being
built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory `zlib-1.2.11' will be created [<default>] ?

 If you want ZLIB installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the ZLIB installation must be built for each of the architectures to be supported
by this toolkit installation. We therefore recommend using the default ZLIB directory,
suggested by the installation procedure, as it helps keep track of which architecture was
used to build ZLIB.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the ZLIB installation. When the ZLIB
section is complete, it outputs the message:

 ZLIB installation ending at: <date/time>

JPEG Installation Section

1. The script prompts with:

 Is jpeg-9b installed at your site [no] ?

 If JPEG is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of JPEG installed, you may type 'y' and hit
return. In this case, the script will ask where JPEG is installed:

 5-11 EED2-333-001

 Pathname where directory jpeg-9b is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that JPEG
is really installed there. Please proceed to the toolkit Installation Section, below.

3. The script prompts with:

 Do you wish to install jpeg-9b now [yes] ?

 Hit return to continue.

4. The script responds with:

 Running the JPEG Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where jpegsrc.v9b.tar.Z is located ?

 Please enter the correct location and hit return.

6. The script then asks where the JPEG directory will be created. The default is <toolkit-
home-directory>/jpeg/$BRAND, where $BRAND is the toolkit architecture being
built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'jpeg-9b' will be created [<default>] ?

 If you want JPEG installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the JPEG installation must be built for each of the architectures to be supported
by this toolkit installation. We therefore recommend using the default JPEG directory,
suggested by the installation procedure, as it helps keep track of which architecture was
used to build JPEG.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the JPEG installation. When the JPEG
section is complete, it outputs the message:

 JPEG installation ending at: <date/time>

 5-12 EED2-333-001

SZIP Installation Section

1. The script prompts with:

 Is szip2.1.1 installed at your site [no] ?

 If SZIP is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of SZIP installed, you may type 'y' and hit
return. In this case, the script will ask where SZIP is installed:

 Pathname where directory szip2.1.1 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that SZIP
is really installed there. Please proceed to the toolkit Installation Section, below.

3. The script outputs:
 WARNING: Commercial users should obtain szip license

 if they intend to distribute their products with szip

 encoder. The szip decoder does not require license.

 and then prompts with:

 Do you wish to install full szip2.1.1 (encoder + decoder) [yes] ?

 Hit return to continue, or type ‘n’ and hit return. If you enter ‘n’ by default only the
szip decoder will be installed.

4. The script responds with:

 Running the SZIP (with/without encoding) Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where szip2.1.1.tar.gz is located?

 Please enter the correct location and hit return.

6. The script then asks where the SZIP directory will be created. The default is <toolkit-
home-directory>/szip/$BRAND, where $BRAND is the toolkit architecture being
built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'szip2.1.1' will be created [<default>] ?

 If you want SZIP installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 5-13 EED2-333-001

Multiple Architecture Support Note:

 A copy of the SZIP installation must be built for each of the architectures to be supported
by this toolkit installation. We therefore recommend using the default SZIP directory,
suggested by the installation procedure, as it helps keep track of which architecture was
used to build SZIP.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes] ?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the SZIP installation. When the SZIP section
is complete, it outputs the message:

 SZIP installation ending at: <date/time>

 HDF4 Installation Section

1. The script prompts with:

 Is HDF-4.2.13 installed at your site [no] ?

 If HDF4 is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of HDF4 installed, you may type 'y' and hit
return. In this case, the script will ask where HDF4 is installed:

 Pathname where directory HDF-4.2.13 is located [<default>] ?

 Type in the full pathname and hit return. The script will check to make sure that
HDF4 is really installed there. Please proceed to the toolkit Installation Section,
below.

3. The script prompts with:

 Do you wish to install HDF-4.2.13 now [yes] ?

 Hit return to continue.

 Then the script prompts with:

 Are you going to use external netCDF with your HDF4 applications [no]?

 If you intend to use external netCDF library with your hdf4 then enter ‘y’ otherwise
hit return. If you answer ‘y’ then HDF4 will be installed with --disable-netcdf so that
netCDF function in HDF4 are renamed (with prefix sd_), avoiding clash between
name symbols of the internal and external netCDF packages.

 Then the script prompts with:

 Do you wish to configure HDF4 with SZIP[y] ?

 5-14 EED2-333-001

 Hit return if you wish the installed HDF4 have szip decoding (and/or encoding)
capability.

4. The script responds with:

 Running the HDF Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where HDF-4.2.13.tar.gz is located?

 Please enter the correct location and hit return.

6. The script then asks where the HDF4 directory will be created. The default is
<toolkit-home-directory>/hdf/$BRAND, where $BRAND is the toolkit architecture
being built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'HDF-4.2.13' will be created [<default>]?

 If you want HDF4 installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the HDF4 installation must be built for each of the architectures to be
supported by this toolkit installation. We therefore recommend using the default HDF4
directory, suggested by the installation procedure, as it helps keep track of which
architecture was used to build HDF4.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes]?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the HDF4 installation. When the HDF4
section is complete, it outputs the message:

 HDF installation ending at: <date/time>

HDF5 Installation Section

1. The script prompts with:

 Is hdf5-1.8.19 installed at your site [no]?

 If HDF5 is not installed, hit return and proceed to step 3, below.

2. If you already have the correct version of HDF5 installed, you may type 'y' and hit
return. In this case, the script will ask where HDF5 is installed:

 5-15 EED2-333-001

 Pathname where directory hdf5-1.8.19 is located [<default>]?

 Type in the full pathname and hit return. The script will check to make sure that
HDF5 is really installed there. Please proceed to the toolkit Installation Section,
below.

3. The script prompts with:

 Do you wish to install hdf5-1.8.19 now [yes]?

 Hit return to continue.

4. The script responds with:

 Running the HDF5 Installation Script ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where hdf5-1.8.19.tar.gz is located?

 Please enter the correct location and hit return.

6. The script then asks where the HDF5 directory will be created. The default is
<toolkit-home-directory>/hdf5/$BRAND, where $BRAND is the toolkit architecture
being built, given by the table in Note 2 of the NOTES section, below.

 Pathname where directory 'hdf5-1.8.19' will be created [<default>]?

 If you want HDF5 installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue.

 Multiple Architecture Support Note:

 A copy of the HDF5 installation must be built for each of the architectures to be
supported by this toolkit installation. We therefore recommend using the default HDF5
directory, suggested by the installation procedure, as it helps keep track of which
architecture was used to build HDF5.

7. The script asks you to verify the information entered, prompting with:

 Continue [yes]?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

8. This completes the interactive portion of the HDF5 installation. When the HDF5
section is complete, it outputs the message:

 HDF5 installation ending at: <date/time>

 5-16 EED2-333-001

HDF-EOS Installation Section

1. The script prompts with:

 Is HDF-EOS2.20v1.00 installed at your site [no]? [yes]?

 If HDF-EOS is not installed, hit return and proceed to step 3, below

2. If you already have the correct version of HDF-EOS installed, you may type ‘y’
 and hit return. In this case, the script will ask where HDF-EOS is installed

 Pathname where HDF-EOS2.20v1.00 is installed [<default-path>]

3. The script prompts with:

 Do you wish to install HDF-EOS2.20v1.00 now [yes]?

 Hit return to continue

4. The script responds with:

 Installing HDF-EOS ...

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where HDF-EOS2.20v1.00.tar.Z is located?

 Please enter the correct location and hit return.

6. The script then asks where the HDF-EOS directory will be created. The default is
<toolkit-home-directory>.

 Pathname where directory 'hdfeos' will be created [<default>]?

 If you want HDF-EOS installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue. If installing for an additional architecture,
(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), use the same directory as for the first instance of HDF-EOS - a single
copy will support multiple architectures.

7A. Single-Architecture Installation

 If this is a single-architecture installation, or the first platform of a multiple-
architecture installation, do this step. Otherwise proceed to step 7B.

 The script asks you to verify the information entered, prompting with:

 Continue [yes]?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

 5-17 EED2-333-001

 Proceed to step 8

7B. Multiple-Architecture Installation

 If this is an additional platform in a multiple-architecture installation, i.e. the
INSTALL script is being run again to add support for an additional architecture, (refer
to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), proceed as follows:

 The script asks you to verify the information entered, prompting with:
 Continue [yes] ?
 Hit return to continue. The script should respond with;

 The directory hdfeos already exists.

 [O]verwrite, [R]e-use or [Q]uit (default) ?

 Type 'R' and hit return. The script will build HDF-EOS for the new architecture using
the existing copy of the directory structure. Libraries and executables will be added to
the architecture-specific subdirectories of the HDF-EOS 'bin' and 'lib' directories,
respectively. Do NOT use the Overwrite option - it will clobber the previous
architecture-specific installation(s).

8. This completes the interactive portion of the HDF-EOS installation. When the HDF-
EOS section is complete, it outputs the message:

 HDFEOS installation ending at: <date/time>

 For information about user setup, as well as instructions for compiling and linking
with HDF-EOS, Refer to the file README in the HDF-EOS 'doc' directory.

HDF-EOS5 Installation Section

1. The script prompts with:

 Is HDF-EOS5.1.16 installed at your site [no]? [yes]?

 If HDF-EOS5 is not installed, hit return and proceed to step 3, below

2. If you already have the correct version of HDF-EOS5 installed, you may type ‘y’
 and hit return. In this case, the script will ask where HDF-EOS5 is installed

 Pathname where HDF-EOS5.1.16 is installed [<default-path>]

3. The script prompts with:

 Do you wish to install HDF-EOS5.1.16 now [yes]?

 Hit return to continue

4. The script responds with:

 Installing HDF-EOS5 ...

 5-18 EED2-333-001

 It may also output a few informational messages, depending on the installation
options selected.

5. By default, the script looks for the distribution file in your current and parent
directories. If the file is found in either of these locations, the script will continue to
the next step. Otherwise, it will prompt with:

 Pathname where HDF-EOS5.1.16.tar.gz is located?

 Please enter the correct location and hit return.

6. The script then asks where the HDF-EOS5 directory will be created. The default is
<toolkit-home-directory>.

 Pathname where directory 'hdfeos5' will be created [<default>] ?

 If you want HDF-EOS5 installed elsewhere, please enter the pathname at the prompt.
Otherwise, simply hit return to continue. If installing for an additional architecture,
(refer to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), use the same directory as for the first instance of HDF-EOS5 - a single
copy will support multiple architectures.

7A. Single-Architecture Installation

 If this is a single-architecture installation, or the first platform of a multiple-
architecture installation, do this step. Otherwise proceed to step 7B.

 The script asks you to verify the information entered, prompting with:

 Continue [yes]?

 Hit return to continue. The contents of the distribution file are then extracted into the
specified location, and the installation procedure is run.

 Proceed to step 8

7B. Multiple-Architecture Installation

 If this is an additional platform in a multiple-architecture installation, i.e. the
INSTALL script is being run again to add support for an additional architecture, (refer
to the Multiple Architecture Support Note in Step 1 of "Starting the installation
procedure"), proceed as follows:

 The script asks you to verify the information entered, prompting with:

 Continue [yes]?

 Hit return to continue. The script should respond with;

 The directory hdfeos5 already exists.

 [O]verwrite, [R]e-use or [Q]uit (default)?

 Type 'R' and hit return. The script will build HDF-EOS5 for the new architecture
using the existing copy of the directory structure. Libraries and executables will be

 5-19 EED2-333-001

added to the architecture-specific subdirectories of the HDF-EOS5 'bin' and 'lib'
directories, respectively. Do NOT use the Overwrite option - it will clobber the
previous architecture-specific installation(s).

8. This completes the interactive portion of the HDF-EOS5 installation. When the HDF-
EOS5 section is complete, it outputs the message:

 HDFEOS5 installation ending at: <date/time>

 For information about user setup, as well as instructions for compiling and linking
with HDF-EOS, Refer to the file README in the HDF-EOS5 'doc' directory.

 Toolkit Installation Section

1A. SCF Installation

 If the SCF version of the toolkit is being built (the default), the script outputs the
messages:

 Running the Toolkit Installation Script ...

The script prompts with:

 Do you wish to install AA Tool [No]?

If you want AA tool installed, response with ‘y’.

If you do not have the correct version of HDF

The script prompts with:

 No HDF Support…

 If you need install AA Tool, please install HDF package…

 SDP Toolkit installation cancelled….

If you have the correct version of HDF

The scrip responds with:

 Running the Toolkit Installation Script with AA Tool

If you do not want AA Tool installed, hit return

 The script responds with:

 Running the Toolkit Installation Script without AA Tool

 Toolkit installation script: INSTALL-Toolkit

 Starting at: <date/time>

 The SCF version of the toolkit library libPGSTK.a will be built

1B. DAAC Installation

 5-20 EED2-333-001

 If the DAAC version of the toolkit is being built (-daac option), the script outputs the
messages:

Running the Toolkit Installation Script ...

Toolkit installation script: INSTALL-Toolkit

Starting at: <date/time>

The DAAC version of the toolkit library libPGSTK.a will be built.

1C. C++ Installation

 If the C++ version of the Toolkit is being built (-cpp option), the script outputs the
messages

The C++ version of the toolkit library libPGSTKcpp.a will be built

If the C++ install was successful, you should see the following messages:

INSTALL-Toolkit completed successfully at <date/time>

SDP Toolkit installation completed at <date/time>

 NOTE: Currently the script is set up so that the C/FORTRAN version of the library
will be built first with the C++ of the library libPGSTKcpp.a, afterwards.

2. The toolkit installation script outputs status messages as it goes, ending with:

 INSTALL-Toolkit completed successfully at <date/time>

 If an error occurred during the installation process, the last message will appear as:

 INSTALL-Toolkit completed with errors at <date/time>

 NOTE: If the installation was run with the -log option, the above messages will
appear only in the log file, not on the screen.

3. Wait for completion messages. If no errors were encountered during either HDF or
toolkit installation, the final script message is:

 SDP Toolkit installation completed at <date/time>

 Otherwise messages of the following form will appear:

 INSTALL: Error: <error message>

 SDP Toolkit installation canceled

4. Review the installation log.

 Every attempt has been made to trap all possible installation errors and report them at
the end of the installation process. Nonetheless, it is a good idea to review the
installation log to verify that it completed without errors. If errors were noted, the log
can help to identify precisely what went wrong. Please note that some warning

 5-21 EED2-333-001

messages, (NOT fatal errors), may occur in the course of a normal successful
installation run.

 Note regarding the installation of AA tools:

 Starting with SDPTK5.2.7 the user has opportunity not to install AA tools if they do
not need them. The INSTALL script will prompt for User’s response in installing (or
ignoring) AA tools. The default is “N”.

5.1.2.5 User Account Setup

Once the toolkit has been installed, the accounts of SDP toolkit users must be set up to define
environment variables needed to compile and run code with the toolkit (see parts 2 and 3 of the
Notes section 5.1.2.8, below). The type of setup depends on the user's login shell.

1A. C shell (csh) users:

 Edit the SDP Toolkit user's .cshrc file to include ONLY ONE of the following two lines:

 (EITHER:)

 source <SDP-home-dir>/bin/$BRAND/pgs-env.csh

 (OR:)

 source <SDP-home-dir>/bin/$BRAND/pgs-dev-env.csh

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.csh sets up all the variables discussed in part 3 of the Notes section,
below, and it adds the toolkit bin directory to the user path.

 The script pgs-dev-env.csh sets up all of the variables set by pgs-env.csh.cpp and adds the
toolkit bin directory to the user path. In addition, it automatically sets up the compiler flag
variables discussed in part 4 of the Notes section below, to work on any of the system
environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions. To
activate them for the current session, simply type one of the two lines listed above, at the
Unix prompt.

 C++ version of the scripts:

 Edit the SDP Toolkit user's .cshrc file to include ONLY ONE of the following two lines:

 (EITHER:)

 source <SDP-home-dir>/bin/$BRAND/pgs-env.csh.cpp

 (OR:)

 source <SDP-home-dir>/bin/$BRAND/pgs-dev-env.csh.cpp

 5-22 EED2-333-001

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.csh.cpp sets up all the variables discussed in part 3 of the Notes
section, below, and it adds the toolkit bin directory to the user path.

 The script pgs-dev-env.csh.cpp sets up all of the variables set by pgs-env.csh.cpp and
adds the toolkit bin directory to the user path. In addition, it automatically sets up the
compiler flag variables discussed in part 4 of the Notes section below, to work on any of
the system environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions. To
activate them for the current session, simply type one of the two lines listed above, at the
Unix prompt.

Note: setting of users PGS_PC_INFO_FILE shell environment variable:

 The scripts pgs-env.csh and pgs-dev-env.csh will by default define the environment
variable PGS_PC_INFO_FILE to have the value $PGSRUN/$BRAND/PCF.relB0 (see
Note 3, below). Individual users should make local copies of this file and then set the
environment variable PGS_PC_INFO_FILE to point to this local copy, which should be
modified to suit the purposes of the user. This can be done by adding the following line
to the users .cshrc file (e.g.):

 setenv PGS_PC_INFO_FILE $HOME/PCF.relB0

 This should be done in the .cshrc file AFTER the file pgs-env.csh (or pgs-dev-env.csh)
has been used to establish the users Toolkit environment.

 Note regarding path setup with pgs-dev-env.csh and pgs-dev-env.csh.cpp:

 The scripts pgs-dev-env.csh and pgs-dev-env.csh.cpp also make available a variable
called pgs_path. This can be added to the user's path to ensure that it accesses the
directories necessary for the compilers and other utilities used to generate executable
programs. It is not added to the user path by default, because in many cases it adds
unnecessary complexity to the user path. To add pgs_path to the user path, modify the
SDP Toolkit user's .cshrc file to include the following:

 set my_path = ($path) # save path
source <SDP-HOME-DIR>/bin/$BRAND/pgs-dev-env.csh # PGS setup
set path = ($my_path $pgs_path) # add pgs_path

 INSTEAD OF either of the two options listed at the beginning of this step. Note that it is
the user's responsibility to set up his or her own path so that it doesn't duplicate the
directories set up in pgs_path. Please also note that the pgs_path is added AFTER the
user's path. This way, the user's directories will be searched first when running Unix
commands.

1B. Korn shell (ksh) users:

 5-23 EED2-333-001

 Edit the SDP Toolkit user's .profile file to include ONLY ONE of the following two
lines:

 (EITHER:)

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 (OR:)

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.ksh sets up all the variables discussed in part 3 of the Notes section,
below, and it adds the toolkit bin directory to the user path.

 The script pgs-dev-env.ksh sets up all of the variables set by pgs-env.ksh and adds the
toolkit bin directory to the user path. In addition, it automatically sets up the compiler flag
variables discussed in part 4 of the Notes section below, to work on any of the system
environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions. To
activate them for the current session, simply type one of the two lines listed above, at the
Unix prompt.

 Note: setting of users PGS_PC_INFO_FILE shell environment variable:

 The scripts pgs-env.ksh and pgs-dev-env.ksh will by default define the environment
variable PGS_PC_INFO_FILE to have the value $PGSRUN/$BRAND/PCF.relB0 (see
Note 3, below). Individual users should make local copies of this file and then set the
environment variable PGS_PC_INFO_FILE to point to this local copy, which should me
modified to suit the purposes of the user. This can be done by adding the following line
to the users .profile file (e.g.):

 set PGS_PC_INFO_FILE=$HOME/PCF.relB0
export PGS_PC_INFO_FILE

 This should be done in the .profile file AFTER the file pgs-env.ksh (or pgs-dev-env.ksh)
has been used to establish the users Toolkit environment.

 Note regarding path setup with pgs-dev-env.ksh and pgs-dev-env.ksh.cpp:

 The script pgs-dev-env.ksh.cpp and pgs-dev-env.ksh.cpp also make available a variable
called pgs_path. This can be added to the user's path to ensure that it accesses the
directories necessary for the compilers and other utilities used to generate executable
programs. It is not added to the user path by default, because in many cases it adds
unnecessary complexity to the user path. To add pgs_path to the user path, modify the
SDP Toolkit user's .profile file to include the following:

 my_path="$PATH" # save path

 5-24 EED2-333-001

 <SDP-HOME-DIR>/bin/$BRAND/pgs-dev-env.ksh # PGS setup

 PATH="$my_path:$pgs_path" ; export PATH # add pgs_path

 INSTEAD OF either of the two options listed at the beginning of this step. Note that it is
the user's responsibility to set up his or her own path so that it doesn't duplicate the
directories set up in pgs_path. Please also note that the pgs_path is added AFTER the
user's path. This way, the user's directories will be searched first when running Unix
commands.

 C++ version of the scripts:

Edit the SDP Toolkit user's .profile file to include ONLY ONE of the following two lines:

 (EITHER:)

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh.cpp

 (OR:)

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh.cpp

 where <SDP-home-dir> is the full path of the toolkit home directory, and $BRAND is an
architecture-specific value for your host. Please refer to part 2 of the Notes section,
below, to determine the correct value.

 The script pgs-env.ksh.cpp sets up all the variables discussed in part 3 of the Notes
section, below, and it adds the toolkit bin directory to the user path.

 The script pgs-dev-env.ksh.cpp sets up all of the variables set by pgs-env.ksh.cpp and
adds the toolkit bin directory to the user path. In addition, it automatically sets up the
compiler flag variables discussed in part 4 of the Notes section below, to work on any of
the system environments listed in part 1 of the Notes section, below.

 The environment variables will become available during all subsequent login sessions. To
activate them for the current session, simply type one of the two lines listed above, at the
Unix prompt.

1C. Bourne shell (sh) users:

 Set up the required toolkit environment variables by appending the contents of the file

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 or the file

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh

 to the end of the SDP Toolkit user's .profile, where <SDP-home-dir> is the full path of
the toolkit home directory, and $BRAND is an architecture-specific value for your host.
Please refer to part 2 of the Notes section, below, to determine the correct value.

 5-25 EED2-333-001

 The environment variables will become available during all subsequent login sessions.
To activate them, log out and then log back in.

 Bourne shell (sh) users:

 Set up the required toolkit environment variables by appending the contents of the file

 <SDP-home-dir>/bin/$BRAND/pgs-env.ksh

 or the file

 <SDP-home-dir>/bin/$BRAND/pgs-dev-env.ksh

 to the end of the SDP Toolkit user's .profile, where <SDP-home-dir> is the full path of
the toolkit home directory, and $BRAND is an architecture-specific value for your host.
Please refer to part 2 of the Notes section, below, to determine the correct value.

 The environment variables will become available during all subsequent login sessions.
To activate them, log out and then log back in.

Note: setting of users PGS_PC_INFO_FILE shell environment variable:

 The scripts pgs-env.ksh and pgs-dev-env.ksh will by default define the environment
variable PGS_PC_INFO_FILE to have the value $PGSRUN/$BRAND/PCF.relB0 (see
Note 3, below). Individual users should make local copies of this file and then set the
environment variable PGS_PC_INFO_FILE to point to this local copy, which should be
modified to suit the purposes of the user. This can be done by adding the following line
to the users .profile file (e.g.):

 set PGS_PC_INFO_FILE=$HOME/PCF.relB0
export PGS_PC_INFO_FILE

 This should be done in the .profile file AFTER the file pgs-env.csh (or pgs-dev-env.csh)
has been included.

5.1.2.6 File Cleanup
Once the toolkit has been built and tested, you can delete certain temporary files and directories
to save some disk space. Note that once these files have been removed, you will need to unpack
the original distribution file in order to re-do the installation. To remove these files:

 cd <SDP-home-dir>/bin/$BRAND
 /bin/rm -r tmp # delete temp files used in bin
 cd <SDP-home-dir>/database
 /bin/rm de200.dat # delete ephemeris ASCII file

If you plan to use the Ancillary (AA) data access tools, you must now install the AA tools data
files, located in an additional compressed tar file, which must be downloaded separately. The
installation instructions are located in Section 5.1.4, Installation of AA Tools.

 5-26 EED2-333-001

5.1.2.7 Rebuilding the toolkit library
The toolkit installation procedure now makes it easy to rebuild the toolkit library without having
to re-install the entire toolkit. This may be useful in the event that any problems are encountered
during the installation process.
SCF Installation
To rebuild the toolkit library at an SCF site do the following:
Set directory.

 cd <SDP-home-dir>
Type:

 bin/INSTALL-Toolkit <install-options> -lib_only
Where, <install-options> are the installation options set in step 2 of Starting the Installation
Procedure, above.
SCF Installation
To rebuild the C++ version toolkit library at an SCF site do the following:
Set directory.

 cd <SDP-home-dir>
Type:

 bin/INSTALL-Toolkit <install-options> -cpp_lib_only
where <install-options> are the installation options set in step 2 of Starting the Installation
Procedure, above.

5.1.2.8 NOTES:
1. The SDP Toolkit was built and tested* in a multi–platform environment using the

following platforms, operating systems, and compilers:

Table 5-1. SDP Toolkit Development Configuration
Platform OS Version C Compiler C++ Compiler FORTRAN

DEC Digital UNIX 4.0 DEC C 4.10 DEC FORTRAN 4.10
HP HP–UX 11.0 HP C 11.02.02 HP FORTRAN 11.01.27
IBM AIX 4.2 IBM C 3.1.4 IBM FORTRAN 3.2.5
SGI IRIX 6.5 SGI C 7.4.2m SGI C++ SGI FORTRAN 7.4.2m
Sun Solaris 5.10 Sun C 5.7 Sun C++ 5.7 Sun FORTRAN 8.1 (f95)
Sun Sparc Solaris 5.11 gcc gfortran
Intel Mac 32-bit Darwin 14.5.0 gcc 4.2.1 gfortran 5.2.0
Intel Mac 64-bit Darwin 14.5.0 gcc 4.2.1 gfortran 5.2.0
Linux 32-bit Red Hat Linux

4.4.7-18
2.6.32-
358.2.1.e16
.x86_64 #1 SMP

gcc 4.4.7 g++ gfortran 4.4.7

Linux 64-bit Red Hat Linux
4.4.7-18

Same as above gcc 4.4.7 g++ gfortran 4.4.7

Windows 7, 10 MS VS .net 2008 Visual c++ Intel Visual
Fortran 11.1

Cygwin Cygwin 1.7.29 gcc 4.8.2 gfortran 4.8.2

* Officially SUN, DEC, IBM, HP, Sun5.8, Power Mac, and SGI are not supported anymore and they were not tested for this release

 5-27 EED2-333-001

Notes:
a. SGI was also running SGI FORTRAN 90 version 7.0 and NAG FORTRAN-90 2.2.
b. Compilers are provided by platform vendors unless specified.

2. Toolkit architecture type names

 To track architecture dependencies, the toolkit defines the environment variable
$BRAND. Following is a list of valid values for this variable, which is referred to
throughout this document:

$BRAND Architecture
dec DEC Alpha
ibm IBM AIX
hp HP 9000, HP-UX11 9000/785
sgi SGI Power Challenge (old-style 32-bit mode)
sgi32 SGI Power Challenge (new-style 32-bit mode)
sgi64 SGI Power Challenge (64-bit mode)
sun5.8, sun5.9, sun5.10 Sun:SunOS 5.8, OS5.9, OS5.10
linux LINUX 32-bit Platforms
linux32 64-bit LINUX Platforms for 32-bit mode
linux64 64-bit LINUX Platforms for 64-bit mode
macintel (32-bit, 64-bit) Macintosh platforms with Intel chip
macintosh Macintosh Power PC (MAC OS X)
cygwin CYGWIN 32-bit Platform

3. In order to use the SDP Toolkit libraries and utilities, a number of environment variables
MUST be set up to point to SDP directories and files. These variables are automatically
set up in User Account Setup section of the installation instructions. They are listed here
for reference:

Table 5-2. Required Directory Environment Variables
Name Value Description

PGSHOME <install–path>/TOOLKIT (where <install–
path> is the absolute directory path above
TOOLKIT)

top level directory

PGSBIN ${PGSHOME}/bin/($BRAND) executable files
PGSDAT ${PGSHOME}/database/

($BRAND)
toolkit database files

PGSINC ${PGSHOME}/include include (header) files
PGSMSG ${PGSHOME}/message SMF message files
PGSLIB ${PGSHOME}/lib/($BRAND) library files
PGSOBJ ${PGSHOME}/obj/$BRAND) toolkit object files
PGSCPPO ${PGSHOME}/objcpp/($BRAND) toolkit C++ version object files
PGSRUN ${PGSHOME}/runtime runtime work files
PGSSRC ${PGSHOME}/src toolkit source files
PGSTST ${PGSHOME}/test test area
PGS_PC_INFO_FILE ${PGSRUN}/PCF.relB Process Control File

 5-28 EED2-333-001

4. Other toolkit environment variables

 In addition, the makefiles, which are used to build the libraries, require certain
machine–specific environment variables. These set compilers, compilation flags and
libraries, allowing a single set of makefiles to serve on multiple platforms. The User
Account Setup section of the installation instructions explains how to set them up
They are listed here for reference:

Table 5-3. Required Compiler and Library Environment Variables
Name Description

CC C compiler
CFLAGS Default C flags (optimize, ANSI)
C_CFH C w/ cfortran.h callable from FORTRAN
CFHFLAGS CFLAGS + C_CFH
CPP C++ compiler
CPPFHFLAGS Default C++ flags
CPPFHFLAGS CPPFLAGS
C_F77_CFH C w/ cfortran.h calling FORTRAN
C_F77_LIB FORTRAN lib called by C main
F77 FORTRAN compiler
F77FLAGS Common FORTRAN flags
F77_CFH FORTRAN callable from C w/ cfortran.h
F77_C_CFH FORTRAN calling C w/ cfortran.h
CFH_F77 Same as F77_C_CFH
F77_C_LIB C lib called by FORTRAN main

5. For a complete list of the tools provided with this release of the SDP Toolkit, please refer
to Section 1, Table 1–2

6. The majority of the SDP Toolkit functions are written in C. These C–based tools include
the file cfortran.h, using it to generate machine–independent FORTRAN bindings.

5.1.3 Compiling User Code with the Toolkit

In order to compile your programs in conjunction with the toolkit, certain flags MUST be set on
the compiler command lines. These flags vary, depending on the platform type and operating
system.

The toolkit includes command files that set up environment variables to simplify the task of
compiling with toolkit code. The user is responsible for ensuring that his or her code complies
with the ANSI standards. The following subset is relevant for this discussion:

 CC the name of the C compiler (usually cc)
CFHFLAGS required C compilation flags (ANSI C mode, optimized)
CPP the name of the C++ compiler (usually CC)

 5-29 EED2-333-001

CFHFLAGS required C++ compilation flags
F77 FORTRAN compiler (usually f77 in unix, gfortran in Mac/Linux)
F77_CFH required FORTRAN compilation flags
HDFSYS a flag used to tell the code what platform is being used

 PGSINC the location of the toolkit include files
PGSLIB the location of the toolkit library libPGSTK.a
HDFINC HDF4 include files
HDFLIB HDF4 Library files

 HDF5INC HDF5 include files
HDF5LIB HDF5 Library files

To automatically set up these variables for your platform do the following:

 for csh users, type:
 source <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.csh

 for ksh users, type:
 . <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.ksh

 where <TOOLKIT-HOME-DIRECTORY> is the location where the toolkit is installed
(e.g. /usr/local/PGSTK)

 for C++ version, csh users, type:
 source <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.csh.cpp

 for C++ version, ksh users, type:
 . <TOOLKIT-HOME-DIRECTORY>/bin/${BRAND}/pgs-dev-env.ksh.cpp

 where <TOOLKIT-HOME-DIRECTORY> is the location where the toolkit is installed
(e.g. /usr/local/PGSTK)

 You may then view the settings of these variables with the command:

 $PGSBIN/pgs-flags

 NOTE: On some platforms, some of these variables are blank. This is normal—the
compile lines given below should work anyway.

You may then view the settings of these variables with the command for the C++ version:

 $PGSBIN/pgs-flags-cpp

 NOTE: On some platforms, some of these variables are blank. This is normal—the
compile lines given below should work anyway.

Once the variables have been set as indicated above, the following command lines may be used
as a guide to compiling your programs with the toolkit.

 5-30 EED2-333-001

C to object:
 $CC -c $CFHFLAGS -D$HDFSYS -I$PGSINC myfile.c

C++ to object:
 $CPP -c $CPPFHFLAGS -D$HDFSYS -I$PGSINC myfile.c

C to executable:
 $CC $CFHFLAGS -D$HDFSYS -I$PGSINC -L$PGSLIB \
 myfile.c -lPGSTK (-l...) -o myfile

C++ to executable:
 $CPP $CPPFHFLAGS -D$HDFSYS -I$PGSINC -L$PGSLIB \
 myfile.c -lPGSTK (-l...) -o myfile

FORTRAN to object:
 $F77 -c $F77_CFH myfile.f

 FORTRAN to executable:
 $F77 -c $F77_CFH myfile.f $PGSLIB/libPGSTK.a (other libraries ...) \
 -o myfile

If the toolkit was built with HDF support included, and your code uses tools that require HDF
support, you may use the lines listed below:

C to object:

 $CC -c $CFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC myfile.c

C++ to object:
 $CPP -c $CPPFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC \

 myfile.c

C to executable:
 $CC $CFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –I$HDF5INC

-L$PGSLIB -L$HDFLIB –L$HDF5LIB \
 myfile.c -lPGSTK -ldf –lhdf5 (-l ...) -o myfile

 C++ to executable:
 $CPP $CPPFHFLAGS -D$HDFSYS -I$PGSINC -I$HDFINC –IHDF5INC

-L$PGSLIB -L$HDFLIB –L$HDF5LIB \
 myfile.c -lPGSTK -ldf -lhdf5 (-l ...) -o myfile

FORTRAN to object:
 $F77 -c $F77_CFH myfile.f

FORTRAN to executable:
 $F77 -c $F77_CFH myfile.f $PGSLIB/libPGSTK.a $HDFLIB/libdf.a
$HDF5LIB/libhdf5.a \
 (other libraries ...) -o myfile

 5-31 EED2-333-001

The important thing in this case is that your code gets linked with the HDF4 and HDF5 libraries.
You do not need -I$HDFINC or –I$HDF5INC unless your C or C++ code makes direct calls to
HDF4 and/or HDF5.

5.1.4 Installation of AA Tools

This section covers installation of the data files needed to use the Ancillary/auxiliary (AA) data
access tools. These files include the Digital Chart of the World and other earth sciences data sets.
If you do not plan to use these tools or data sets, it is not necessary to install the files.

These files will require approximately 260 Mb of disk space. They may be installed in any
location; i.e., they do not have to be stored under the SDP Toolkit home directory.

The tool PGS_AA_dcw MUST have access to the files contained in the four directories named
/soamafr, /sasaus, /noamer, /eurnasia in order to work. These files comprise about 80 Mbytes.
The other tools (PGS_AA_2/3DRead PGS_AA_2/3Dgeo, PGS_AA_dem) are designed to work
with a large range of gridded data sets. Those in the tar file are samples of data from National
Geophysical Data Center (NGDC) which need not be maintained by the user; i.e., the user should
delete which ever are not pertinent. These files comprise about 180 Mbytes.

The installation script for the AA tools data files is included as part of the main SDP Toolkit
distribution. Due to space constraints, the data files themselves are located in a separate
compressed tar file, called SDPTK5.1v1.00-AAdata.tar.Z, which must be downloaded separately.

You must first install the SDP Toolkit BEFORE installing the AA tools data files. The AA tools
data files installation requires a disk partition with about 400 Mb of free space.

To install the AA tools data files from the tar file:

a. Run the INSTALL-AAdata script

1. If you have already modified your login files, as in the toolkit installation instructions,
simply type:

 INSTALL-AAdata

 from any directory.

2. If you haven't yet done this, then proceed by typing the following:

 cd <SDP-home-dir>
bin/INSTALL-AAdata

 where <SDP-home-dir> is the full path of the toolkit home directory.

b. The script contains a default name for the distribution file containing the AA tools data
files. That name should be correct for the current release of the toolkit. The script will
display the default distribution file name and prompt the user for an override. If the name
is correct, press return to continue. If installing from a different distribution file for any
reason, please enter the name and press return.

 5-32 EED2-333-001

c. By default, the script looks for the tar file in your current directory and also in <SDP-
home-dir>. If the file is found in one of the default locations, the script will continue to
the next step. Otherwise, please enter the correct location when the script prompts for it.

d. The script then asks where the AAdata directory will be created. The default is <SDP-
home-dir>. If you want it installed elsewhere, please enter the pathname when the script
prompts for the location. Otherwise, simply hit return to continue.

e. The script asks you to verify the information entered. Type 'y' and hit return to continue.
The contents of the distribution file are then extracted into the specified location. Please
note that this is a lengthy process that will probably take somewhere between 0.5 and 1.5
hours, depending on your host.

f. The script then asks if the Process Control files, should be patched so that the PRODUCT
INPUT FILES directory is set to point to the AA data directory. The default is yes. If you
answer no, you must you must edit the Process Control File yourself, in order for the AA
tools to work.

g. The script then asks if the distribution file should be removed. The default is no. Once
you are satisfied that the files have successfully been installed, you will probably want to
get rid of this file, as it takes up a lot of disk space.

 If you wish to get a listing of the files contained in the distribution file, for verification
purposes, follow the steps below. Please be aware that this is no small task, as there are
literally thousands of data files contained in the distribution file. To see the listing, go to
the directory where the distribution file is located and type.

 zcat SDPTK5.1v1.00-AAdata.tar.Z | tar xvf -

 You may wish to pipe the output to the UNIX 'more' command, to allow you to see a
screen at a time.

 zcat SDPTK5.1v1.00-AAdata.tar.Z | tar xvf - | more

This completes the installation of the AA tools data files.

5.2 Instructions on Making Changes to Installation Procedures
The installation procedures given in the previous subsection should work seamlessly for a
platform in Table 5–1. This subsection gives instructions on making changes to the installation
procedure of subsection 5.1, which may be necessary if one uses a different configuration. Here
we give a step–by–step procedure for making these modifications.

In the following procedure, <SDP-home-dir> refers to the SDP Toolkit home directory.

a. After unpacking the tar file, but before running bin/INSTALL, (steps a–e in Section 5.1,
corresponding to steps 1–7 in <SDP-home-dir>/README), edit the file INSTALL in
<SDP-home-dir>/bin.

 The section starting with the comment at line #266 and ending at line 442 must be
modified for your platform. This section consists of a switch block that checks the value

 5-33 EED2-333-001

of the environment variable BRAND and sets the flags for each platform accordingly.
Modify ONLY the block associated with your platform.

 The proper block can be determined from the following table:

Table 5-4. Values of OSTYPE
value of $BRAND Platform type

sun5.X Sun Sparc (SunOS 5.X)
hp HP 9000
dec DEC Alpha
sgi SGI Indigo
sgi32 SGI new 32-bit
sgi64 SGI 64-bit
ibm IBM RS–6000
cray Cray
linux, linux32, linux64 Linux
cygwin Cygwin
macintel MAC with Intel chip (MAC OS X)
macintosh MAC Power PC (MAC OS X)

Within each block the following variables are set:

Table 5-5. Environment Variables
Name Description

CC C compiler
CFLAGS Default C flags (optimize, ANSI)
C_CFH C w/ cfortran.h callable from FORTRAN
CFHFLAGS CFLAGS + C_CFH
CPP C++ compiler
CPPFLAGS Default C++ flags
CPPFHFLAGS CPPFLAGS + CPP_CFH
C_F77_CFH C w/ cfortran.h calling FORTRAN
C_F77_LIB FORTRAN lib called by C main
F77 FORTRAN compiler
F77FLAGS Common FORTRAN flags
F77_CFH FORTRAN callable from C w/ cfortran.h
F77_C_CFH FORTRAN calling C w/ cfortran.h
CFH_F77 Same as F77_C_CFH
F77_C_LIB C lib called by FORTRAN main
HDFSYS System type as defined by HDF

 5-34 EED2-333-001

 Modify the code to set these variables to the appropriate values for your compilers.
Variables CFHFLAGS, CFH_F77, and HDFSYS should never require modifications. The
most important ones are:

CC the C compiler

CPP the C++ compiler

F77 the FORTRAN compiler

CFLAGS MUST set the C compiler for ANSI C code

CPPFLAGS MUST set the C++ compiler for ANSI C++

F77_CFH needed when compiling FORTRAN to object code callable from C using
cfortran.h

F77_C_CFH needed when compiling FORTRAN drivers that call C subroutines with
FORTRAN bindings written in C using cfortran.h

 These flags MUST be properly set in order to build the SDP toolkit.

b. edit the file pgs-dev-env.csh.tmp in <SDP-home-dir>/bin/tmp

 The section starting with comment at line #124 and ending at line #445 is identical to the
previously mentioned section in the file bin/INSTALL, and must be modified in the
same way.

c. continue with the SDP Toolkit installation by running bin/INSTALL (step f in Section
5.1, corresponding to step 6 in <SDP-home-dir>/README).

5.3 Link Instructions
This subsection gives instructions on how to link SDP Toolkit libraries with your code.

The delivery consists of a single SDP Toolkit library called libPGSTK.a.

Here we give generic command lines for linking with this library We use $C_COMPILER,
$CPP_COMPILER, and $F77_COMPILER to indicate both the compiler name and any
machine–specific compiler flags used by the science software developer. The relevant
environment variables must have been previously set up; see the "Installation Procedures"
subsection of this section.

To link C code in file "main.c" with the toolkit, on all machines:

 $C_COMPILER -I$PGSINC -L$PGSLIB main.c -lPGSTK -lm

To link C++ code in file "main.c" with the toolkit, on all machines:

 $CPP_COMPILER -I$PGSINC -L$PGSLIB main.c -lPGSTK -lm

To link FORTRAN 77 code in file "main.f" with the toolkit, on all machines:

 $F77_COMPILER main.f $PGSLIB/libPGSTK.a

 5-35 EED2-333-001

NOTES:

Specific examples on how to link particular Toolkit functions on the Toolkit development
platforms are given with the separately supplied tool test drivers. See the "Test Drivers" in
Section 5.4.

If you are using a different development configuration than one of those given in table 5–1 ("SDP
Toolkit Development Configuration") of Section 5.1, see Section 5.2 ("Instructions on Making
Changes to Installation Procedures") above.

To ensure compatibility of code at the DAACs, science teams are strongly encouraged to use the
same compiler switches used by the SDP Toolkit where possible. These switches enforce
ANSI/POSIX standards, necessary for compiling the toolkit with the same functionality on all
tested platforms; using the same switches in your code makes it more likely that your code will
quickly pass integration and test at the DAAC. The compilers and their respective switches are
represented by the environment variables $CC, $CFLAGS, $CPP, $CPP_FLAGS, $F77,
$F77FLAGS, and are defined in the file $PGSHOME/bin/pgs_dev_env.csh and
$PGSHOME/bin/pgs_dev_env.csh.cpp respectively. $CC, $CPP, and $F77 contain the names
of the C and FORTRAN compilers respectively. $CFLAGS, CPPFLAGS, and $F77 flags
contain the compiler switches (options) used by the SDP Toolkit with the C and FORTRAN
compilers respectively.

5.4 Test Drivers
Also included with this toolkit delivery is a tar file containing test driver programs.

These test programs are provided to aid the user in the development of software using the toolkit.
The user may run the same test cases as included in this file to verify that the toolkit is
functioning correctly. These programs were written to support the internal test of the toolkit and
are not an official part of the Toolkit delivery; users make use of them at their own risk. No
support will be provided to the user of these programs. The tar file contains source code for a
driver in C and FORTRAN for each tool; readme files explaining how to use each driver; sample
output files; and input files and/or shell scripts, where applicable.

The UNIX command

 zcat SDPTK5.2.20v1.00_TestDrivers.tar.Z | tar xvf -

will create a directory called test drivers beneath the current directory containing all these test
files.

5.5 User Feedback Mechanism
The mechanism for handling user feedback, documentation and software discrepancies, and bug
reports follows:

a. An account at the ECS Riverdale facility has been set up for user response:

 RVL_PGSTLKIT@raytheon.com

 5-36 EED2-333-001

b. Users will e–mail problem reports and comments to the above account. A receipt will be
returned to the sender. A work off plan for the discrepancy will be developed and status
report issued once a month. Responses will be prioritized based on the severity of the
problem and the available resources. Simple bug fixes will be turned around sooner,
while requested functional enhancements to the Toolkit will be placed in a recommended
requirements database (RRDB) and handled more formally.

c. The following format will be used for email response. It can be found in the tar file in the
SDP Release 9 Toolkit 5.2.20 delivery package.

 Name:

 Date:

 EOS Affiliation (DAAC, Instrument, Earth Science Data and Information System
(ESDIS), etc.):

 Phone No.:

 Development Environment:

 Computing Platform:

 Operating System:

 Compiler and Compiler Flags:

 Tool Name:

 Problem Description:

 (Please include exact inputs to and outputs from the toolkit call, including error code
returned by the function, plus exact error message returned where applicable.)

 Suggested Resolution (include code fixes or workarounds if applicable):

d. A list of Frequently Asked Questions (FAQ) for Toolkits is also available.

 The URL for the SDP Toolkit Frequently Asked Questions (FAQ) page is
http://newsroom.gsfc.nasa.gov/sdptoolkit/faq.html

 You can also get there from the EDHS Home Page http://edhs1.gsfc.nasa.gov/. Click
on “ECS Development”, then “Toolkit”. The "Toolkit Frequently Asked Questions
(FAQ)" link is on the SDP Toolkit webpage.

 6-1 EED2-333-001

6. SDP Toolkit Specification

6.1 Introduction
In this section, we give a descriptive list of Toolkit software tools designed to satisfy the
requirements listed in PGS Toolkit Requirements Specification for the ECS Project, Hughes
Information Technology Systems, Inc. 193-801-SD4-001, October 1993 and updated in version
through November 1997. The following fields are provided: a name, a synopsis field, a
description of each tool, a list of input and output, an error return field, examples, notes, and a
cross reference to the target Toolkit requirement(s).

It is assumed that ECS science software requests for system services, for system and resource
accesses, file I/O requests, error message transaction, metadata formatting, accesses to spacecraft
orbit and attitude, and time and date requests must be made through the Toolkit, as explained in
section 4.1. This usage will be tested at integration time at the DAACs. These tools are described
in Section 6.2. Other services, such as geographic information data base requests, geolocation
tools, scientific and math library calls, requests for physical constants and unit conversions, will
be provided; their usage will be encouraged, but not enforced. They are the subject of
Section 6.3.

Toolkit routines use the following naming convention:

PGS_GROUPNAME_FUNCTIONALNAME. The GROUPNAME denotes the function of that
group of Toolkit routines: IO=Input/Output, SMF=Status/message Facility, MEM=Memory
Management, MET=metadata, EPH=Ephemeris/Attitude data access, TD=time and date
conversion, PC=ProcessControl, DEM=Digital Elevation Model access, AA=Ancillary Data
Access, CBP=Celestial Body Position, GCT=Geo-coordinate Transformation, CUC=Constant
and Unit Conversion, CSC=Coordinate System Conversion. The remaining part of the name has
sufficient detail to indicate the functionality of the tool. (See also Section 3.2)

There are several C (.h) and FORTRAN (.f) include files listed in the tool descriptions in the
following sections, e.g., PGS_IO.h. These files are meant to contain descriptions of data
structures, constants; headers; configuration information for data files called by the tools;
common symbols; return codes, etc., used in that section. To view these files, look in Toolkit
directory $PGSHOME/include.

A note on error handling: Since each function has only one return value; every effort has been
made to preserve the most important warning or error value on returning. Given that subordinate
functions often have several possible returns, and different users have different priorities, it is
always advisable to check the message log in $PGSRUN as well as examining the return. When
totally inconsistent behavior is found in a return from a subordinate function, the returned value
is PGS_E_TOOLKIT. Example: a Toolkit function passes an internally generated vector, whose
length is certain to be nonzero, to a subordinate function. The lower-level function then returns a
warning or error return saying that the vector is of zero length; while the higher-level function

 6-2 EED2-333-001

returns PGS_E_TOOLKIT. Another example: if a valid spacecraft tag is passed in, but rejected
as invalid down the processing line, the error PGS_E_TOOLKIT is returned by the higher-level
function. Thus return value PGS_E_TOOLKIT indicates a flaw in the software, the violation of
an array boundary, a hardware, compiler, or system error, corrupted data, or some similarly
serious condition that invalidates the processing.

6.2 SDP Toolkit Tools-Mandatory

6.2.1 File I/O Tools

This section describes the set of tools used to perform file I/O, including Level 0 access generic
and temporary I/O tools, also proposed metadata tools. An explanation of usage of the Toolkit as
regards Hierarchical Data Format (HDF) is also included.

6.2.1.1 Level 0 Science Data Access Tools

6.2.1.1.1 Introduction

These Level 0 access tools are used to open and read data from Level 0 data files. These files are
generated and formatted by EDOS for AM, PM and AURA platform data, and by the science
data processing facility (SDPF) for TRMM platform data.

The Level 0 access tool design has simple user interfaces, and allows science software to do
much of the data unpacking in whatever manner is desired. Essentially all header and packet data
are returned in character buffers. The packet data is returned a single packet at a time, so the
science software can decide whether to store it or to immediately process it.

A complete specification of the Level 0 file formats used in construction of this software is found
in Appendix F.

6.2.1.1.2 Design Overview

The design focuses on the idea of a “virtual" data set, consisting of all staged physical L0 files for
a particular data type. By data type is meant data that are related in some way; most often this
means data with a common application process identifier (APID). There may be many virtual
data sets for a given production run. For example, main Clouds and Earth Radiant Energy System
(CERES) L0 processing involves science data (APID 54) and housekeeping data (all other
APIDs). Each of these two sets of data corresponds to a single virtual data set in the Level 0 tool
design. Each virtual data set corresponds to a single logical file ID in the science software and (at
the SCF) in the Process Control File (PCF).

For a given run, if a given set of data for a single set of data (science or housekeeping) needs to
be broken into more than one file, then each physical file corresponds to a different version of the
same logical file ID in the PCF. (This is never expected to be the case for TRMM, but may be for
EOS AM (TERRA) or PM (AQUA) or AURA.).

 6-3 EED2-333-001

Next is given a brief summary of the functions of the L0 tools. The tools are divided into two
groups: one group consisting of required tools for reading L0 data in production software, and
one group for use only at the SCF for generation of test data sets.

6.2.1.1.3 Tools for Reading Production L0 Data

PGS_IO_L0_Open sets up internal tables that allow the SDP Toolkit to provide the science
software with time-ordered access to file attributes. It opens the first physical file and positions
the file pointer at the earliest packet in the staged data. It returns the virtual file handle used by
other L0 access tools.

PGS_IO_L0_SetStart is for optionally positioning the virtual file pointer at a start time that is
different from the earliest packet in the staged data.

PGS_IO_L0_SetStartCntPkts is for optionally positioning the virtual file pointer at a start time
that is different from the earliest packet in the staged data. Also tracks the number of packets
skipped in the current file

PGS_IO_L0_GetHeader is for retrieving data from the physical L0 file header; in addition, for
TRMM processing, it retrieves data from the file footer, which consists of quality and missing
packet information. Data is returned in a simple character buffer.

PGS_IO_L0_GetPacket retrieves a single packet’s worth of data. Data is also returned in a
simple character buffer by this function.

PGS_IO_L0_Close is for closing a L0 virtual data set.

6.2.1.1.4 Tools for Generating Simple Simulated L0 Data Sets

The above tools satisfy SDP Toolkit requirements for tools that read Level 0 data files; along
with these, a means is provided to generate simple simulated Level 0 files. A major portion of
TRMM Level 0 processing may be simulated using these files; for EOS AM, PM and AURA
platforms, packet and Construction Record File simulation included in the simulator. Provided
for simulated file generation are:

L0sim, an executable interactive utility that queries the user about parameters used in creation of
a simulated Level 0 data set. It can create file(s) for a single APID, or a housekeeping file with
many APIDs; one or many physical files per APID; and many other things. See Appendix E for
an example of its use.

PGS_IO_L0_File_Sim, a function callable from C or FORTRAN; it is the underlying function
used by L0sim. Users who prefer to customize file simulations to fit their own needs may use this
function.

6.2.1.1.5 Use of L0 Read Tools In Science Software Processing
Next is presented a brief summary of how science software might use the L0 read tools to do
Level 0 processing. A full example of L0 processing using CERES as an example is given in
Appendix E. Examples are also provided in individual tool descriptions below.

 6-4 EED2-333-001

In the production system, once the required L0 data and other data are staged, the PGE kicks off
automatically. During development at the SCF, the developer must first generate file(s) using the
simulator tools, then prepare entries in the Process Control File (PCF).

The science code might proceed as follows:

a. Call PGS_IO_L0_Open; with the logical file ID as input parameter used in the PCF. Get
back a virtual file handle for use in other tools.

b. Optionally call PGS_PC_GetFileAttr or PGS_PC_GetFileByAttr to read an “attribute”
file associated with the L0 data file. For example, for TRMM this might be the detached
standard formatted data unit (SFDU) header file.

c. Optionally call PGS_PC_SetStart if a starting time other than the earliest in the data set is
desired.

d. Allocate memory for as much data as is desired to save, based on the start and stop times
returned from PGS_IO_L0_Open. (In FORTRAN 77 this will have to be hardcoded to
some maximum.)

e. While there is still data left, first call PGS_IO_L0_GetHeader to read the physical file
header, and also the footer (TRMM quality and accounting capsule (QAC) and missing
data unit list (MDUL) data).

f. Call PGS_IO_L0_GetPacket to read a single packet. Repeat until end of data reached,
storing the data as desired.

g. If PGS_IO_L0_GetPacket returns a value indicating a new physical file has been opened,
loop back to call PGS_IO_L0_GetHeader again to read the new file header.

h. Call PGS_IO_L0_Close to close this virtual data set.

i. If there are more virtual data sets (e.g., APIDs) to process, loop back to call
PGS_IO_Gen_Open again.

Note that this algorithm is just one example of how this might be done. Another way is to open
several virtual data sets at once.

Please note also that science software is responsible for unpacking headers, packets and footers
as it sees fit. Specification of their formats as used in this version of the software appears in
Appendix F.

6.2.1.1.6 Special Note on Processing TRMM and ADEOS-II Files

In order to process the Level 0 data files the Level 0 access tools must be able to convert the time
found in the data files to TAI. Special preparation is required to do this in the case of TRMM and
ADEOS-II.

To properly convert times to or from TRMM s/c clock time the value of the TRMM Universal
Time Correlation Factor (UTCF) must be known. This value must be supplied by the user in the

 6-5 EED2-333-001

Process Control File (PCF). The following line MUST be contained in the PCF for any process
that is converting to or from TRMM s/c clock time:

10123|TRMM UTCF value|<UTCF VALUE>

Where the proper value of the UTCF should be substituted for <UTCF VALUE>.

To properly convert times to or from ADEOS-II s/c clock time the ADEOS-II Time Differential
(TMDF) values must be known. These values must be supplied by the user in the Process
Control File (PCF). The following lines MUST be contained in the PCF for any process that is
converting to or from ADEOS-II s/c clock time:

<UTC VALUE>

10120|ADEOS-II s/c reference time|<S/C REFERENCE TIME>
10121|ADEOS-II ground reference time|<GROUND REFERENCE TIME>
10122|ADEOS-II s/c clock period|<S/C PERIOD>

Where:

the proper value of the S/C clock reference time should be substituted for
< S/C REFERENCE TIME>.

the proper value of the ground reference time should be substituted for
<GROUND REFERENCE TIME> (this time should be in TAI format-see sec. 6.2.7 Time and
Date Conversion Tools).

the proper value of the S/C clock period should be substituted for <S/C PERIOD>.

 6-6 EED2-333-001

Open a Virtual Data Set

NAME: PGS_IO_L0_Open

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_Open(
 PGSt_PC_Logical file_logical,
 PGSt_tag spacecraft_tag,
 PGSt_IO_L0_VirtualDataSet *virtual_file,
 PGSt_double *start_time,
 PGSt_double *stop_time)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function
PGS_IO_L0_Open(
+ file_logical,
+ spacecraft_tag,
+ virtual_file,
+ start_time,
+ stop_time)

 integer file_logical
 integer spacecraft_tag
 integer virtual_file
 double precision start_time
 double precision stop_time

DESCRIPTION This tool opens the virtual data set pointed to by file_logical. A virtual
Level 0 data set is defined by the set of physical data files that have been
staged for this Level 0 process.

 The tool returns a descriptor that is used by all the Level 0 tools to access
the specified virtual data set. The tool also returns the start and stop times
of this virtual data set.

 6-7 EED2-333-001

INPUTS: file_logical-The logical file descriptor for this virtual data set, as given in
 the Process Control File

 spacecraft_tag-The tag identifying which of the supported spacecraft
 platforms generated this virtual data set. Must be either
 PGSd_EOS_AM, PGSd_EOS_AURA, PGSd_EOS_PM_GIIS,
 PGSd_EOS_PM_GIRD, PGSd_TRMM, or PGSd_ADEOS_II.

OUTPUTS: virtual_file-The file descriptor used by all other Level 0 access tools to
 refer to the virtual data set

 start_time-The start time of this virtual data set

 stop_time-The stop time of this virtual data set

Time format is TAI: continuous seconds since 12AM UTC Jan. 1, 1993

RETURNS:
Table 6-1. PGS_IO_L0_Open Returns

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_W_L0_CORRUPT_FILE_HDR Corrupted file header
PGSIO_E_L0_BAD_SPACECRAFT_TAG Invalid spacecraft tag
PGSIO_E_L0_INIT_FILE_TABLE Error during read of physical file header for initialization
PGSIO_E_L0_INVALID_FILE_LOGICAL Failed to process this file logical in process control file
PGSIO_E_L0_MAP_VERSIONS Failed to initialize internal physical file table
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_SEEK_1ST_PACKET Can’t find 1st packet in dataset

EXAMPLES: Prepare in part for Lightening Imaging Sensor (LIS) Level 0 processing by
opening the LIS/TRMM Level 0 virtual data set for science APID 61.

 For TRMM, there is expected to be only one physical file per APID per
day. In this case each virtual data set (APID) corresponds to exactly one
physical file.

 At the SCF, you must prepare entries of the following form in the Process
Control File:

 ? PRODUCT INPUT FILES
[set env var PGS_PRODUCT_INPUT for default location]

61|TRMM_G0091_1997-11-
 01T00:00:00Z_dataset_V01_01||||TRMM_G0091_1997-11-
 01T00:00:00Z_sfdu_V01_01|1

 6-8 EED2-333-001

(Here the logical ID used is arbitrarily set to the APID.)

Note: In the above Process Control File entry, the file name in the next-to-last field is the TRMM
SFDU header file, which is a file that contains data associated with the
given L0 file. Use functions PGS_IO_PC_GetFileAttr or
PGS_IO_PC_GetFileByAttr to retrieve data from this file. Also, the PCF
entry must appear on a single line, and not be broken into several lines as
shown here.

C: #define SCIENCE_FILE 61

 PGSt_IO_L0_VirtualDataSet virtual_file;
PGSt_PC_Logical file_logical;
PGSt_tag spacecraft_tag;
PGSt_double start_time;
PGSt_double stop_time;
PGSt_SMF_status returnStatus;

 file_logical = SCIENCE_FILE;
spacecraft_tag = PGSd_TRMM;

 returnStatus = PGS_IO_L0_Open(
 file_logical,
 spacecraft_tag,
 &virtual_file,
 &start_time,
 &stop_time);

 /# Virtual file handle virtual_file may now be used as
input to other L0 access tools #/

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’
integer SCIENCE_FILE

 parameter (SCIENCE_FILE=61)
integer pgs_io_l0_open
integer file_logical
integer spacecraft_tag
integer virtual_file
double precision start_time

 6-9 EED2-333-001

double precision stop_time
integer returnstatus

 file_logical = SCIENCE_FILE
spacecraft_tag = PGSd_TRMM

 returnstatus = pgs_io_l0_open(
 file_logical,
 spacecraft_tag,
 virtual_file,
 start_time,
 stop_time)

C Virtual file handle virtual_file may now be used as input to

C other L0 access tools

NOTES: A virtual data set is defined by a set of one or more related Level 0
physical files. For example, it might consist of all physical files
corresponding to a single TRMM science application ID (APID) for a
single production run. In the case of EDOS formatted Level 0 data files, a
virtual data set consists of all physical files comprising an EDOS
PDS/EDS. Only one PDS/EDS is allowed per virtual file.

 The maximum number of virtual data sets that may be open at any one
time is 20.

 This function must be called first; before any other Toolkit Level 0 access
tools are called.

 A virtual data set may consist of several physical files. In this case the files
are listed in the process control file with the same logical ID (1st field) but
different instance number (last field).

 The physical file version corresponding to the first time-ordered set of
packets for the virtual data set is opened by this tool. The file pointer is left
positioned so that the next call to PGS_IO_L0_GetPacket will read the
first packet in the file.

 To get file header and footer (TRMM only) information for the newly
opened physical file, use tool PGS_IO_L0_GetHeader. A rudimentary
check is done on the header of the first physical file of the virtual data set.
If an error is found in the header this function will return the value
PGSIO_W_L0_CORRUPT_HEADER. The file will be opened anyway
and the user may use the function PGS_IO_L0_GetHeader() to retrieve the
header. That function will give a more detailed analysis of the problem.
Users should be aware, though, that if they proceed after getting the return
PGSIO_W_L0_CORRUPT_HEADER from this function they do so at
THEIR OWN RISK. This return value indicates that the file header is

 6-10 EED2-333-001

corrupt and the use of any further Toolkit functions to attempt to read the
file may produce unexpected results.

 In the case of EDOS formatted Level 0 data files (PDS/EDS) the “header”
returned will actually be the Construction Record.

RELEASE NOTES:

 This function conforms to EDOS-EGS ICD (June 28, 1996)

 Note Regarding Use of the Process Control File:

 If more than one physical file is associated with a given virtual data set,
the entries in the Process Control File that map the data set from
file_logical to the physical files must appear in reverse numerical order.
For example, in a three-file data set, file instance #3 is listed first and file
instance #1 is listed last. This mechanism will become transparent in the
production system.

REQUIREMENTS: PGSTK-0140, PGSTK-0190, PGSTK-0240

 6-11 EED2-333-001

Set Start Time

NAME: PGS_IO_L0_SetStart

SYNOPSIS:
C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_SetStart(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_double start_time)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_SetStart(virtual_file, start_time)
 integer virtual_file
 double precision start_time

DESCRIPTION Sets the virtual file pointer so that the next call to the tool
PGS_IO_L0_GetPacket will read the first available packet at or after the
specified time.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open

start_time-The start time of the desired packet. Format is TAI:
 continuous seconds since 12AM UTC Jan. 1, 1993.

OUTPUTS: NONE

RETURNS:
Table 6-2. PGS_IO_L0_SetStart Returns (1 of 2)

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_W_L0_TIME_NOT_FOUND Requested start time not found; file pointer position was unchanged
PGSIO_W_L0_PHYSICAL_CLOSE Failed to close physical file
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file

 6-12 EED2-333-001

Table 6-2. PGS_IO_L0_SetStart Returns (2 of 2)
Return Description

PGSIO_E_L0_SEEK_PACKET Unable to find requested packet
PGSIO_M_L0_HEADER_CHANGED New physical file open-file header has changed
PGSIO_W_L0_BITFLIP_IN_MICSEC Bit flip problem in the micro second field of a packet time

EXAMPLES: Set the time to start processing at 20 minutes after the data set start time.
Examples assume the data set start time has previously been returned from
PGS_IO_L0_Open.

C: PGSt_IO_L0_VirtualDataSet virtual_file;
PGSt_double start_time;
PGSt_double new_start_time;
PGSt_SMF_status returnStatus;

 new_start_time = start_time + 1200.0;

 returnStatus = PGS_IO_L0_SetStart(virtual_file,
 new_start_time);
if ((returnStatus != PGS_S_SUCCESS)&& (returnStatus
!=PGSIO_W_L0_BITFLIP_IN_MICSEC))
{
 goto EXCEPTION; /# GO TO EXCEPTION HANDLING #/
}

 else

 do something else;

}

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_l0_setstart
integer virtual_file
double precision start_time
double precision new_start_time
integer returnstatus

 new_start_time = start_time + 1200.0

 returnstatus = pgs_io_l0_setstart(virtual_file,
 new_start_time)

 6-13 EED2-333-001

if (returnStatus .ne.
PGS_S_SUCCESS.and.returnStatus.ne.PGSIO_W_L0_BITFLIP_IN_MICS
EC) goto EXCEPTION

NOTES: Normal return is PGS_S_SUCCESS. During the search for the desired
packet for AM spacecraft a packet with bitflip problem in the micro
second field may be encountered. In that case the problematic packet will
be ignored and the search will continue. If no other errors occur them the
tool will return PGSIO_W_L0_BITFLIP_IN_MICSEC.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called.

RELEASE NOTES:

 There are no Release Notes.

REQUIREMENTS: PGSTK-0140, PGSTK-0200, PGSTK-0220, PGSTK-0240

 6-14 EED2-333-001

Set Start Time and Count Packets

NAME: PGS_IO_L0_SetStartCntPkts

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_SetStart(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_double start_time
 PGSt_integer* totpacket_skip)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_SetStart(virtual_file, start_time,
 totpacket_skip)
 integer virtual_file
 double precision start_time
 integer totpacket_skip

DESCRIPTION Sets the virtual file pointer so that the next call to the tool
PGS_IO_L0_GetPacket will read the first available packet at or after the
specified time. Also tracks the number of packets skipped in the current
file.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open

start_time-The start time of the desired packet. Format is TAI:
 continuous seconds since 12AM UTC Jan. 1, 1993.

OUTPUTS: totpacket_skip – The total number of packets skipped before the desired
packet selected at the specified time

 6-15 EED2-333-001

RETURNS:
Table 6-3. PGS_IO_L0_SetStart Returns

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_W_L0_TIME_NOT_FOUND Requested start time not found; file pointer position was unchanged
PGSIO_W_L0_PHYSICAL_CLOSE Failed to close physical file
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file
PGSIO_E_L0_SEEK_PACKET Unable to find requested packet
PGSIO_M_L0_HEADER_CHANGED New physical file open-file header has changed
PGSIO_W_L0_BITFLIP_IN_MICSEC Bit flip problem in the micro second field of a packet time

EXAMPLES: Set the time to start processing at 20 minutes after the data set start time.
Examples assume the data set start time has previously been returned from
PGS_IO_L0_Open.

C: PGSt_IO_L0_VirtualDataSet virtual_file;
PGSt_double start_time;
PGSt_double new_start_time;
PGSt_SMF_status returnStatus;
PGSt_integer totalpacket_skip;

 new_start_time = start_time + 1200.0;

 returnStatus = PGS_IO_L0_SetStart(virtual_file,
 new_start_time, &totalpacket_skip);
if ((returnStatus != PGS_S_SUCCESS)&&(returnStatus
!=PSGIO_W_L0_BITFLIP_IN_MICSEC))
{
 goto EXCEPTION; /# GO TO EXCEPTION HANDLING #/
}

 else

 }

 do something else;

 }

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’

 6-16 EED2-333-001

INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_l0_setstart
integer virtual_file
integer totalpacket_skip
double precision start_time
double precision new_start_time
integer returnstatus

 new_start_time = start_time + 1200.0

 returnstatus = pgs_io_l0_setstart(virtual_file,
 new_start_time,totalpacket_skip)
if (returnStatus .ne.
PGS_S_SUCCESS.and.returnStatus.ne.PGSIO_W_L0_BITFLIP_IN_MICS
EC) goto EXCEPTION

NOTES: Normal return is PGS_S_SUCCESS. During the search for the desired
packet for AM spacecraft a packet with bit flip problem in the micro
second field may be encountered. In that case the problematic packet will
be ignored and the search will continue. If no other errors occur then the
tool will return PGSIO_W_L0_BITFLIP_IN_MICSEC.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called.

RELEASE NOTES:

 There are no Release Notes.

REQUIREMENTS: PGSTK-0140, PGSTK-0200, PGSTK-0220, PGSTK-0240

 6-17 EED2-333-001

Get Header Data

NAME: PGS_IO_L0_GetHeader

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_GetHeader(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_integer header_buffer_size,
 PGSt_IO_L0_Header *header_buffer,
 PGSt_integer footer_buffer_size,
 PGSt_IO_L0_Footer *footer_buffer)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_GetHeader(virtual_file, header_buffer_size,
 header_buffer,
 footer_buffer_size,
 footer_buffer)
 integer virtual_file
 integer header_buffer_size
 character*(*) header_buffer
 integer footer_buffer_size
 character*(*) footer_buffer

DESCRIPTION: This tool reads header and footer information for the currently open
physical file into the user-supplied buffers. It is intended to be called
whenever the file header and footer data change, though it may be called at
any time. In the case EDOS formatted files this tool will return the entire
contents of the PDS/EDS Construction Record.

 The file header and footer data will change whenever a call to one of the
tools causes a new physical file to be opened. This will always occur upon
a call to PGS_IO_L0_Open, and may also occur upon calls to
PGS_IO_L0_SetStart and PGS_IO_L0_GetPacket. These latter two
signal this event via a return status code of
PGSIO_M_L0_HEADER_CHANGED. In the case of EDOS files, which

 6-18 EED2-333-001

have no headers, no notice will be given when a new physical file is
opened. Typical use of this tool is in a loop of calls to read data packets.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open

 header_buffer_size-Size in bytes of user-supplied header buffer

footer_buffer_size-Size in bytes of user-supplied footer data buffer. If 0,
do not read footer data (TRMM only)

OUTPUTS: header_buffer-User-supplied buffer containing the header, read in from
 the current physical file

footer_buffer-User-supplied buffer containing the footer data, read in from
the current physical file (TRMM only)

RETURNS:

Table 6-4. PGS_IO_L0_GetHeader Returns
Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_BAD_BUF_SIZ Buffer size must be a positive integer
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_E_L0_FSEEK Failed to locate requested byte in file
PGSIO_W_L0_HDR_TIME_ORDER Time of last packet is earlier than first packet in file header
PGSIO_E_L0_BAD_VAR_HDR_SIZE Size of the variable header is invalid
PGSIO_W_L0_BAD_PKT_DATA_SIZE Total size of packet data is invalid
PGSIO_W_L0_BAD_PACKET_COUNT Total number of packets is invalid
PGSIO_W_L0_BAD_FOOTER_SIZE Size of the file footer is invalid
PGSIO_W_L0_ZERO_PACKET_COUNT Total number of packets is zero
PGSIO_W_L0_HDR_BUF_TRUNCATE Insufficient header buffer size - data
PGSIO_W_L0_FTR_BUF_TRUNCATE Insufficient footer buffer size - data
PGSIO_W_L0_ALL_BUF_TRUNCATE Insufficient header buffer AND footer buffer sizes - data

truncated
PGSIO_E_L0_UNEXPECTED_EOF Encountered unexpected end-of-file
PGS_E_UNIX UNIX error (check log file for type of error)
PGSIO_E_L0_BAD_SPACECRAFT_TAG Invalid spacecraft tag

EXAMPLES: The example shows how to use this function in conjunction with
PGS_IO_L0_GetPacket to read Level 0 data from a single virtual data set.
This algorithm works whether the virtual data set consists of only one, or
of several physical files. All data in the virtual data set are read.

 For clarity, error handling is omitted from the examples.

 6-19 EED2-333-001

C: #define HEADER_BUFFER_MAX 556 /# max # header bytes #/
#define FOOTER_BUFFER_MAX 100000 /# max # footer bytes #/
#define PACKET_BUFFER_MAX 7132 /# max # packet bytes #/

 PGSt_IO_L0_VirtualDataSet virtual_file;

 PGSt_IO_L0_Header header_buffer[HEADER_BUFFER_MAX];
PGSt_IO_L0_Footer footer_buffer[FOOTER_BUFFER_MAX];
PGSt_IO_L0_Packet packet_buf[PACKET_BUFFER_MAX];

 PGSt_integer file_loop_flag;
PGSt_integer packet_loop_flag;

 file_loop_flag = 1;
while(file_loop_flag)
{
 returnStatus = PGS_IO_L0_GetHeader(virtual_file,
 HEADER_BUFFER_MAX, header_buffer,
 FOOTER_BUFFER_MAX, footer_buffer);

 /# Unpack and/or save or process header and footer data
 here #/

 packet_loop_flag = 1;
 while(packet_loop_flag)
 {
 returnStatus = PGS_IO_L0_GetPacket(
 virtual_file, PACKET_BUFFER_MAX,
 packet_buf);

 switch (returnStatus)
 {
 case PGSIO_M_L0_HEADER_CHANGED:
 /# end of this physical file #/
 packet_loop_flag = 0;
 break;

 case PGSIO_W_L0_END_OF_VIRTUAL_DS:
 /# end of this virtual data set #/
 file_loop_flag = 0;
 packet_loop_flag = 0;
 break;
 }

 /# Unpack and/or save or process packet data here #/

 } /# End while (packet_Loop_flag) #/

 } /# End while (file_Loop_flag) #/

 6-20 EED2-333-001

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 character*556 header_buffer
character*7132 packet_buffer
character*100000 footer_buffer
integer pgs_io_l0_getheader
integer pgs_io_l0_getpacket
integer virtual_file
integer file_loop_flag
integer packet_loop_flag
integer returnstatus

 file_loop_flag = 1
do while(file_loop_flag)

 returnstatus = pgs_io_l0_getheader(virtual_file,
 556, header_buffer,
 100000, footer_buffer)

C Unpack and/or save or process header and footer data here

packet_loop_flag = 1

do while(packet_loop_flag)

returnStatus = pgs_io_l0_getpacket(

virtual_file, PACKET_BUFFER_MAX, packet_buf)

if (returnstatus .eq. PGSIO_M_L0_HEADER_CHANGED) then

C end of this physical file

packet_loop_flag = 0

 else if (returnstatus .eq.
PGSIO_W_L0_END_OF_VIRTUAL_DS) then

C end of this virtual data set

file_loop_flag = 0
packet_loop_flag = 0
end if

C Unpack and/or save or process packet data here

 6-21 EED2-333-001

end do
end do

NOTES: Memory must be allocated to the output buffers before this tool is called.
Failure to do this may result in a core dump. (In FORTRAN 77, the buffer
CHARACTER array length must be hardcoded.)

 If the tool determines that the actual size of the file header or footer is
larger than the user-supplied buffer size, the header or footer data is
truncated to fit the user buffer. In this case, the return status will be
PGSIO_W_L0_HDR_BUF_TRUNCATE (if header buffer too small),
PGSIO_W_L0_FTR_BUF_TRUNCATE (if footer buffer too small), or
.PGSIO_W_L0_ALL_BUF_TRUNCATE (if both buffers too small).

 To retrieve the header and footer information from the first physical file in
a virtual data set, this tool must be called after first having opened the
virtual data set using the tool PGS_IO_L0_Open. To retrieve the header
and footer information from subsequent physical files within a virtual data
set, this tool should be called after the science software receives the return
status PGSIO_M_L0_HEADER_CHANGED from the tool
PGS_IO_L0_GetPacket.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called. If the header of the currently open physical file is
found to be corrupted, this function will return a warning to that effect:

 PGSIO_W_L0_HDR_TIME_ORDER
PGSIO_E_L0_BAD_VAR_HDR_SIZE
PGSIO_W_L0_BAD_PKT_DATA_SIZE
PGSIO_W_L0_BAD_PACKET_COUNT
PGSIO_W_L0_BAD_FOOTER_SIZE
PGSIO_W_L0_ZERO_PACKET_COUNT

 The above returns indicate an error was found in the file header. The
header buffer will be returned, although it MAY be truncated. Similarly
the footer buffer (TRMM only) may be truncated or even missing if the
corrupt header file indicated that the start of the footer buffer was at an
offset (in the file) greater than the size of the physical file. The user is
cautioned to check the returned buffer(s) carefully in these cases. Further,
the user is cautioned that while the function PGS_IO_L0_GetPacket() may
still be called, that function may produce unexpected results if the file
header is corrupt.

RELEASE NOTES:

This function conforms to EDOS-EGS ICD (June 28, 1996)

REQUIREMENTS: PGSTK-0140, PGSTK-0210, PGSTK-0230, PGSTK-0240

 6-22 EED2-333-001

Get a Single Packet

NAME: PGS_IO_L0_GetPacket

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_GetPacket(
 PGSt_IO_L0_VirtualDataSet virtual_file,
 PGSt_integer packet_buffer_size,
 PGSt_IO_L0_Packet *packet_buffer)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_GetPacket(virtual_file, packet_buffer_size,
 packet_buffer)
 integer virtual_file
 integer packet_buffer_size
 character*(*) packet_buffer

DESCRIPTION: Reads a single data packet from a Level 0 virtual data set into the user-
supplied buffer.

INPUTS: virtual_file-The file descriptor for this virtual data set returned by
 PGS_IO_L0_Open.

packet_buffer_size-Size in bytes of user-supplied packet buffer.

OUTPUTS: packet_buffer-User-supplied buffer containing the data packet read in
 from the specified virtual data set.

 6-23 EED2-333-001

RETURNS:
Table 6-5. PGS_IO_L0_GetPacket Returns

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_L0_PHYSICAL_NOT_OPEN No physical file currently open for this virtual data set
PGSIO_E_L0_PKT_BUF_OVERFLOW Packet buffer too small; no data was read
PGSIO_E_L0_UNEXPECTED_EOF Encountered unexpected end-of-file
PGSIO_W_L0_PKT_BUF_TRUNCATE Insufficient buffer size-data truncated
PGSIO_W_L0_END_OF_VIRTUAL_DS Reached end of the current data set
PGSIO_M_L0_HEADER_CHANGED New physical file open-file header has changed
PGSIO_E_L0_NEXT_PHYSICAL Error opening next physical file in sequence
PGSIO_E_L0_SEEK_1ST_PACKET Can’t find first packet in dataset
PGSIO_W_L0_BUFTRUNC_END_DS Insufficient packet buffer size-reached end of the current

data set
PGSIO_W_L0_BUFTRUNC_HDR_CHG Insufficient packet buffer size-new physical file open-file

header has changed
PGSIO_E_L0_BUFTRUNC_NXTFILE Insufficient buffer size-error opening next physical file in

sequence
PGS_E_UNIX UNIX error (check StatusLog file)

EXAMPLES: The example shows how to use this function in conjunction with
PGS_IO_L0_GetPacket to read Level 0 data from a single virtual data set.
This algorithm works whether the virtual data set consists of only one, or
of several physical files. All data in the virtual data set are read.

 For clarity, error handling is omitted from the examples.

C: #define HEADER_BUFFER_MAX 556 /# max # header bytes #/
#define FOOTER_BUFFER_MAX 100000 /# max # footer bytes #/
#define PACKET_BUFFER_MAX 7132 /# max # packet bytes #/

 PGSt_IO_L0_VirtualDataSet virtual_file;

 PGSt_IO_L0_Header header_buffer[HEADER_BUFFER_MAX];
PGSt_IO_L0_Footer footer_buffer[FOOTER_BUFFER_MAX];
PGSt_IO_L0_Packet packet_buf[PACKET_BUFFER_MAX];

 PGSt_integer file_loop_flag;
PGSt_integer packet_loop_flag;

 file_loop_flag = 1;
while(file_loop_flag)
{
 returnStatus = PGS_IO_L0_GetHeader(virtual_file,

 6-24 EED2-333-001

 HEADER_BUFFER_MAX, header_buffer,
 FOOTER_BUFFER_MAX, footer_buffer);

 /# Unpack and/or save or process header and footer data
 here #/

 packet_loop_flag = 1;
 while(packet_loop_flag)
 {
 returnStatus = PGS_IO_L0_GetPacket(
 virtual_file, PACKET_BUFFER_MAX,
 packet_buf);

 switch (returnStatus)
 {
 case PGSIO_M_L0_HEADER_CHANGED:
 /# end of this physical file #/
 packet_loop_flag = 0;
 break;

 case PGSIO_W_L0_END_OF_VIRTUAL_DS:
 /# end of this virtual data set #/
 file_loop_flag = 0;
 packet_loop_flag = 0;
 break;
 }

 /# Unpack and/or save or process packet data here #/

 } /# End while (packet_loop_flag) #/

 } /# End while (file_loop_flag) #/

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 character*556 header_buffer
character*7132 packet_buffer
character*100000 footer_buffer
integer pgs_io_l0_getheader
integer pgs_io_l0_getpacket
integer virtual_file
integer file_loop_flag

 6-25 EED2-333-001

integer packet_loop_flag
integer returnstatus

 file_loop_flag = 1
do while(file_loop_flag)

 returnstatus = pgs_io_l0_getheader(virtual_file,
 556, header_buffer,
 100000, footer_buffer)

C Unpack and/or save or process header and footer data here

packet_loop_flag = 1

do while(packet_loop_flag)

returnStatus = pgs_io_l0_getpacket(

virtual_file, PACKET_BUFFER_MAX, packet_buf)

if (returnstatus .eq. PGSIO_M_L0_HEADER_CHANGED) then

C end of this physical file

packet_loop_flag = 0

 else if (returnstatus .eq.
PGSIO_W_L0_END_OF_VIRTUAL_DS) then

C end of this virtual data set

file_loop_flag = 0

packet_loop_flag = 0

end if

C Unpack and/or save or process packet data here

end do

end do

NOTES: Memory must be allocated to the output buffer before this tool is called.
Failure to do this may result in a core dump. (In FORTRAN 77, the buffer
CHARACTER array length must be hardcoded.)

 Normal return is PGS_S_SUCCESS. If getting the next packet requires
that a new physical file be opened, the header and quality data will change.
In this case, the return status is set to
PGSIO_M_L0_HEADER_CHANGED. This allows the user to test the
return status and get updated header and quality data using the tool

 6-26 EED2-333-001

PGS_IO_L0_GetHeader, in the case where there is more than one physical
file per virtual data set.

 If the tool determines that the size of the packet is larger than the user
buffer size, as specified by the parameter packet_size, it will truncate the
packet to fit the user buffer. In this case, the return status will be
PGSIO_W_L0_BUFFER_TRUNCATE.

 Packet formats for TRMM, EOS AM (GIIS), EOS PM (GIRD and GIIS)
and EOS AURA (GIRD) are supported.

 The source document for EOS AM, EOS PM and EOS AURA packet data
format is the Interface Control Document Between The Earth Observing
System (EOS) Data and Operation System (EDOS) and the EOS Ground
System (EGS) Elements (510-ICD-EDOS/EGS CDPL B301), Mission
Operations and Data System Directorate, Goddard Space Flight Center,
November 5, 1999.

 A virtual data set must have been opened by PGS_IO_L0_Open before
this function is called.

 This function returns no data if the packet buffer size is less than 6 bytes
(the primary packet header size). It returns a warning and a truncated
buffer if the packet buffer size is more than 6 bytes but less than the actual
packet length.

REQUIREMENTS: PGSTK-0140, PGSTK-0200, 0240

 6-27 EED2-333-001

Close a Virtual Data Set

NAME: PGS_IO_L0_Close

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_L0_Close(
 PGSt_IO_L0_VirtualDataSet virtual_file)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function PGS_IO_L0_Close(virtual_file)
 integer virtual_file

DESCRIPTION: This tool closes a virtual data set opened by a call to the tool
PGS_IO_L0_Open.

INPUTS: virtual_file-The file descriptor for this virtual data set, returned by the
 call to PGS_IO_L0_Open.

OUTPUTS: NONE

RETURNS:
Table 6-6. PGS_IO_L0_Close Returns

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_E_L0_VIRTUAL_DS_NOT_OPEN Virtual data set is not open
PGSIO_E_L0_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_W_L0_PHYSICAL_CLOSE Failed to close physical file

EXAMPLES: Close a virtual data set opened with a call to PGS_IO_L0_Open. Go to
exception handling if there was an error.

C: PGSt_SMF_status returnStatus = PGS_S_SUCCESS;
PGSt_IO_L0_VirtualDataSet virtual_file;

 returnStatus = PGS_IO_L0_Close(virtual_file);
if (returnStatus != PGS_S_SUCCESS) goto EXCEPTION;

 6-28 EED2-333-001

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’
integer pgs_io_l0_close
integer returnstatus
integer virtual_file

 returnstatus = pgs_io_l0_close(virtual_file)
if (returnstatus != PGS_S_SUCCESS) goto 9999

NOTES: If a physical file is currently open, PGS_IO_Gen_Close is called to close
it. Otherwise this step is skipped. In either case, the return will be
PGS_S_SUCCESS.

REQUIREMENTS: PGSTK-0140, PGSTK-0190

 6-29 EED2-333-001

Create a Simulated Level 0 Data File

NAME: PGS_IO_L0_File_Sim

SYNOPSIS:

C: #include <PGS_IO.h>
#include <PGS_IO_L0.h>

 PGSt_SMF_status
PGS_IO_L0_File_Sim(
 PGSt_tag spacecraftTag,
 PGSt_integer appID[],
 PGSt_integer firstPacketNum
 char startUTC[28],
 PGSt_integer numValues,
 PGSt_double timeInterval,
 PGSt_integer dataLength[],
 PGSt_integer otherFlags[2],
 char *filename,
 void *appData,
 PGSt_uinteger qualMissLen[2])
 void *qualData)
 void *missData)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_TD.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function pgs_io_l0_file_sim (spacecrafttag, appid,firstpacketnum,
 startutc, numvalues,
 timeinterval, datalength,
 otherflags, filename,appdata,
 qualmisslen, qualdata,
 missdata)
 integer spacecrafttag
 integer appid(*)
 integer firstpacketnum
 character*27 startutc
 integer numvalues
 double precision timeinterval
 integer datalength(*)

 6-30 EED2-333-001

 integer otherflags(2)
 character*(*) filename
 (any) appdata
 integer qualmisslen(2)
 (any) qualdata
 (any) missdata

DESCRIPTION: This tool creates file(s) containing simulated Level 0 data, each of which
has a file header, packet data, and a file footer. For TRMM, a detached
SFDU header file is also created for each Level 0 data file.

INPUTS: spacecraftTag-The spacecraft identifier desired for the output data.
 appID-Array of application process identifiers (APIDs), one for each

 packet to be generated
 firstPacketNum-Value of Packet Sequence Count to use for the initial

 packet
 startUTC-The UTC time of the first packet. Formats supported:

 a) YYYY-MM-DDThh:mm:ss.dddddd
b) YYYY-DDDThh:mm:ss.dddddd

 numValues-The number of packets to generate
 timeInterval-Time interval (in seconds) between packets
 dataLength-Array of lengths, in bytes, of the Application Data for each

packet. Does not include lengths of primary and secondary packet headers.
 otherFlags-Array of length 2 with file header values

 otherFlags[0]: bit-packed “Processing Options” byte TRMM
 values:

 bit 3 on-Redundant Data Deleted
 bit 6 on-Data Merging
 bit 7 on-RS Decoding
 bits 1,2,4,5,8-always off

For example, to simulate Redundant Data Deleted and RS Decoding, turn
bits 3 and 7 on, which is decimal 68.

 So set otherFlags[0]=68.
 otherFlags[1]: “Data type Flags” byte TRMM values:

 otherFlags[1]=1, Routine production data
 otherFlags[1]=2, Quicklook data

(NOTE: These two fields are simply written to the appropriate place in the
file header; no processing is done in this function based on their
values.)

 filename-The name of the file to be created containing the L0 packets.

 6-31 EED2-333-001

 appData-Optional user-defined input of the packet application data field.
Does not include packet header data.
In C, if appData=NULL, a block of data of length equal to the largest

value in array dataLength is filled with zeroes, for each packet.
 (The remaining inputs are for TRMM file footer processing only. They are

ignored for other platforms.)
 qualMissLen-Array of length 2 with file footer section lengths

 qualMissLen[0]: quality (QAC) buffer length if qualMissLen[0]=0,
 no quality data are written to the file qualMissLen[1]: missing data
 (MDUL) buffer length if qualMissLen[1]=0 or qualMissLen[0]=0,
 no missing data are written to the file (QAC length and MDUL
 length are always written to the file)

 qualData-Quality and Accounting Capsule (QAC) data In C, if
 qualData=NULL, a block of data of length qualMissLen[0] is filled
 with zeroes and written to the file. (In FORTRAN you pass a zero-
 filled array for this.)

 missData-Missing Data Unit List (MDUL) data In C, if
 missData=NULL, a block of data of length qualMissLen[1] is
 filled with zeroes and written to the file. (In FORTRAN you pass a
 zero-filled array for this.)

OUTPUTS: NONE

RETURNS:
Table 6-7. PGS_IO_L0_File_Sim Returns

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_L0_BAD_NUM_PKTS Illegal number of packets
PGSIO_E_L0_BAD_APP_ID At least 1 packet had a bad Application ID
PGSIO_E_L0_BAD_FIRST_PKTNUM Illegal first packet number
PGSTD_E_SC_TAG_UNKNOWN spacecraft tag is unknown or not currently supported
PGSIO_E_L0_BAD_DATA_LENGTH At least 1 packet had a bad data length
PGSIO_E_L0_BAD_NUM_APP_IDS Illegal number of differing Application IDs
PGSTD_E_TIME_FMT_ERROR Error in ASCII time string format (generic format: YYYY-MM-

DDThh:mm:ss.ddddddZ)
PGSTD_E_TIME_VALUE_ERROR Error in ASCII time string value (e.g., hours > 23)
PGS_E_TOOLKIT Unspecified Toolkit error (check StatusLog file)
PGS_E_UNIX UNIX error (check StatusLog file)
PGSMEM_E_MAXSIZE Maximum memory size reached: %d in bytes
PGSIO_E_L0_PHYSICAL_OPEN Unable to open physical file
PGSTD_E_DATE_OUT_OF_RANGE the input time is outside the range of allowable values for the spacecraft clock

 6-32 EED2-333-001

EXAMPLES: Generate a CERES L0 science telemetry file named
TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01, containing 3
packets of different lengths, starting at midnight Dec. 1, 1997 and spaced
at 6.6 second intervals; also add QAC and MDUL data, filled with zeroes.

C: #define N 3

 PGSt_tag spacecraftTag = TRMM;
PGSt_integer appID[N] = {54,54,54};
PGSt_integer firstPacketNum = 1;
char *startUTC = “1997-12-01T00:00:00”;
PGSt_integer numValues = N;
PGSt_double timeInterval = 6.6;
PGSt_integer dataLength[N];
PGSt_integer otherFlags[2];
char *filename
 = “TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01”;
char appData[9000];
PGSt_uinteger qualMissLen[2]={28,16};
char *qualData=NULL;
char *missData=NULL;

PGSt_SMF_status returnStatus;

 otherFlags[0] = 68; /* Redundant Data Deleted & RS Decoding
 */
otherFlags[1] = 1; /* Routine production data */

 /* Set lengths of packet application data */
dataLength[0] = 2000;
dataLength[1] = 3000;
dataLength[2] = 4000;

 /* Fill appData buffer as desired here.

 Do not include packet header data—it is filled by this
 tool.

Fill first 2000 bytes with first packet data,

next 3000 bytes with second packet data,

last 4000 bytes with third packet data */

/* Create simulated file */

 returnStatus =
 PGS_IO_L0_File_Sim(
 spacecraftTag,

 6-33 EED2-333-001

 appID,
 firstPacketNum,
 startUTC,
 numValues,
 timeInterval,
 dataLength,
 otherFlags,
 filename,
 appData,
 qualMissLen,
 qualData,
 missData,
);

FORTRAN: implicit none

 integer pgs_io_l0_file_sim

 integer spacecraftTag
integer appid(3)
integer firstpacketnum
character*27 startutc
integer numvalues
double precision timeinterval
integer datalength(3)
integer otherflags(2)
character*256 filename
character*9000 appdata
integer qualmisslen(2)
character*28 qualdata
character*16 missdata

 integer returnstatus

 spacecraftTag = TRMM
appid(1) = 54
appid(2) = 54
appid(3) = 54
firstpacketnum = 1
startutc = ‘1994-12-31T12:00:00.000000’
numvalues = 3
timeinterval = 6.6

C Set lengths of packet application data
datalength(1) = 2000
datalength(2) = 3000
datalength(3) = 4000

 6-34 EED2-333-001

C Fill data to write to file header
otherflags(1) = 68 ! Redundant Data Deleted & RS Decoding
otherflags(2) = 1 ! Routine production data
filename = ‘TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01’
qualmisslen(1) = 28
qualmisslen(2) = 16

C Fill appData buffer as desired here.

C Do not include packet header data—it is filled by this tool.

C Fill first 2000 bytes with first packet data,

C next 3000 bytes with second packet data,

C last 4000 bytes with third packet data

C Create simulated file

returnstatus = pgs_io_l0_file_sim(

 spacecrafttag,
 appid,
 firstpacketnum,
 startutc,
 numvalues,
 timeinterval,
 datalength,
 filename,
 otherflags
 appdata,
 qualmisslen,
 qualdata,
 missdata)

NOTES: This tool is intended for use in science software development and testing,
but not for production purposes.

 When used to create file for EOS AM or EOS PM or EOS AURA (EDOS
format) the Construction Record creation tool
(PGS_IO_L0_EDOS_hdr_Sim()) must also be called to create the
PDS/EDS Construction Record.

RELEASE NOTES:

 This function conforms to EDOS-EGS ICD (June 28, 1996)

REQUIREMENTS: There is no SDP Toolkit requirement for this functionality. This tool was
created to support internal ECS SDP Toolkit development and testing, and
it is being provided as a service to the user.

 6-35 EED2-333-001

6.2.1.2 HDF File I/O Tools

The ECS standard file format for transmission of datasets is The HDF Group’s (THG’s)
Hierarchical Data Format (HDF). ECS has built extensions to HDF4 and HDF5, known as
HDF-EOS and HDF-EOS5, which will support most recognized EOS era earth sciences data
structures. Presently these data structures are grid, point and swath structures. If, in some cases,
these are not sufficient, HDF could be used along with ECS metadata to specify an output file.
Version 2.19 of HDF-EOS and version 1.15 of HDF-EOS5 are delivered with SCF
Toolkit 5.2.19.

HDF-EOS (HDF-EOS5) is built on HDF4 (HDF5) low level functions and The HDF Group
conventions were adhered to. The most prominent example is the user input of physical file
handles. HDF requires physical handles, while the SDP toolkit requires logical handles. In order
to make the toolkit compatible with HDF, the user will make one additional call to a process
control function, obtain a physical handle and then open an HDF (HDF-EOS) file. Toolkit error
handling functions may be used as necessary or desired. See the example in this section.

Important: HDF was designed to be a transport file format only, and support for such endeavors
as updating a pre-existing file is very weak. Because of this and other performance
considerations, HDF may not be the best choice of file format to use in internal processing of
your files. We therefore strongly recommend that you use the Generic (Section 6.2.1.3) and
Temporary (Section 6.2.1.6) I/O functions for internal processing, and reserve the use of HDF for
initial read and final write of data products meant for archival and distribution.

EXAMPLE OF USAGE OF HDF FUNCTIONS

The following code fragments are simple examples of how the science software might use the
SDP Toolkit logical-to-physical filename translation function in conjunction with the HDF4 open
function. See Sections 6.2.2, 6.2.3, Appendices C and B.

The examples assume the following exists in the Process Control File (PCF):

? PRODUCT OUTPUT FILES

399|test10.hdf|/fire2/toma/data||||3

399|test9.hdf|/fire2/toma/data||||2

399|test8.hdf|/fire2/toma/data||||1

C #include <PGS_PC.h>
#include <hdf.h>
#include <dfi.h>
#define HDF_INFILE 399
PGSt_integer version;
char physical_filename[PGSd_PC_FILE_PATH_MAX];
PGSt_SMF_status returnStatus;
int32 hdf_status;
int16 n_dds;

 6-36 EED2-333-001

/*
Begin example
*/
version = 1;
returnStatus = PGS_PC_GetReference
 (HDF_FILE, &version, physical_filename);
/*
Variable physical_filename now contains the string
“/fire2/toma/data/test10.hdf”
Variable version now contains the value 2, i.e., the number
of versions left in order, below this version in the PC file
*/
/*
Open the HDF file
*/
n_dds = 5; /* No. HDF data descriptor blocks */
hdf_status = Hopen(physical_filename,DFACC_CREATE,n_dds);

FORTRAN: implicit none

 INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INTEGER HDF_INFILE
PARAMETER (HDF_INFILE=399)
CHARACTER*(*) physicalfilename
INTEGER pgs_pc_getreference
INTEGER version
INTEGER returnstatus
INTEGER hdfstatus
INTEGER ndds

 C

 C Begin example

 C

 version = 1
returnstatus = pgs_pc_getreference
 . (HDF_INFILE, version, physicalfilename)

 C

 C Variable physicalfilename now contains the string

 C “/fire2/toma/data/test10.hdf”

 C Variable version now contains the value 2, i.e., the number

 6-37 EED2-333-001

 C of versions left in order below this version in the PC file

 C

 C Open the HDF file

 C

 ndds = 5 ! No. HDF data descriptor blocks
hdfstatus = hopen(physicalfilename,DFACC_CREATE,ndds)

NOTES:

a. In order for this tool to work properly in the SCF environment, a Process Control File
(PCF) must first be created by the science software developer. This file is part of the
mechanism that maps the logical file identifiers in the science code to physical filenames.
(This mapping will be performed by the scheduling subsystem in the DAAC
environment.) See Section 4.2.2, “File Management,” for further discussion. UNIX
environment variable $PGS_PC_INFO_FILE must point to this file.

 In general, the PCF created by the user must follow the format given in Appendix C.

b. Currently, the Toolkit installation script installs HDF-4.2.10 and hdf5-1.8.12.

c. Functions that write error messages to a log file are now available. See the Status
Message (SMF) tool section.

6.2.1.3 Generic File I/O Tools

This section includes tools for performing I/O functions on files that are not in the ECS standard
format, i.e., HDF. The file open tools (Gen_Open and Gen_OpenF) are used by the science
software to open miscellaneous files, which means any files that are not HDF, Level 0, ancillary,
temporary or intermediate files (see sections 6.2.1.2, 6.2.1.1, 6.3.1, and 6.2.1.6). The file close
tools (Gen_Close and Gen_CloseF) are used in science software to close these miscellaneous
files, and also to close temporary and intermediate files.

The tools in this section are also used by other Toolkit functions, to access ancillary files (section
6.3.1), Level 0 files (section 6.2.1.1) and other miscellaneous files.

There are three items that apply to this entire subgroup of tools:

a. These tools only perform open and close functions on files. Reads, writes and other I/O
functions are to be done by native C and FORTRAN I/O.

b. Due to file handle and other considerations it was not possible to bind FORTRAN to the
C tools using the macro binding package. Unlike the rest of the Toolkit, these functions
have separate FORTRAN versions.

c. Science software should use the PGS_IO_Temp_Open tool to open a temporary or
intermediate file; see Section 6.2.1.6.

 6-38 EED2-333-001

Special note regarding FORTRAN 90: Tools PGS_IO_Gen_OpenF and
PGS_IO_Gen_Temp_OpenF now have FORTRAN 90 versions. These versions support two
specific usages of the F90 OPEN function that are not supported in ANSI FORTRAN 77; they do
not support all F90 options of OPEN. At Toolkit installation time, you select between F77 and
F90, and the appropriate source code file is compiled; the function names are the same in both
versions of FORTRAN. Options and text that apply only to FORTRAN 90 are marked in this
document as ***F90 SPECIFIC***.

 6-39 EED2-333-001

Open a Generic File (C Version)

NAME: PGS_IO_Gen_Open()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Open(
 PGSt_PC_Logical file_logical,
 PGSt_IO_Gen_AccessType file_access,
 PGSt_IO_Gen_FileHandle **file_handle,
 PGSt_integer file_version)

FORTRAN: (not applicable)

DESCRIPTION: Upon a successful call, this function will provide the argument
PGSt_IO_Gen_FileHandle to support other “C” library stream
manipulation routines.

INPUTS: file_logical-User defined logical file identifier

 file_access-type of access granted to opened file:

Table 6-8. File Access Type
Toolkit C Description

PGSd_IO_Gen_Read “r” Open file for reading
PGSd_IO_Gen_Write “w” Open file for writing, truncating existing file to 0 length, or creating a

new file
PGSd_IO_Gen_Append “a” Open file for writing, appending to the end of existing file, or creating

file
PGSd_IO_Gen_Update “r+” Open file for reading and writing
PGSd_IO_Gen_Trunc “w+” Open file for reading and writing, truncating existing file to zero

length, or creating new file
PGSd_IO_Gen_Append
Update

“a+” Open file for reading and writing, to the end of existing file, or
creating a new file; whole file can be read, but writing only appended

file_version-specific version of the logical file. (NOTE: this value will
default to ‘1’ for the interim delivery. Multiple file versions will
be a capability in Toolkit 3 and later.)

OUTPUTS: file_handle-used to manipulate files with other “C” library stream I/O
 routines

 6-40 EED2-333-001

RETURNS:
Table 6-9. PGS_IO_Gen_Open Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX system error
PGSIO_E_GEN_OPENMODE Invalid access mode
PGSIO_E_GEN_FILE_NOEXIST No entry for file logical ID in $PGS_PC_INFO_FILE
PGSIO_E_GEN_REFERENCE_FAILURE Can not find physical file name with logical ID in

$PGS_PC_INFO_FILE
PGSIO_E_GEN_BAD_ENVIRONMENT Environment error reported by Process Control

 (NOTE: the above are short descriptions only; full text of messages
appears in files $PGSMSG/PGS_IO_1.t. Descriptions may change in
future releases depending on external ECS design.)

EXAMPLE: // This example illustrates how to open a Product Output
 File for writing //

 PGSt_SMF_status returnStatus;
PGSt_PC_Logical logical;
PGSt_IO_Gen_AccessType access;
PGSt_IO_Gen_FileHandle *handle;
PGSt_integer version;

 logical = 10;
version = 1; // will default to 1 for Toolkit 3 on out //
access = PGSd_IO_Gen_Write;
returnStatus = PGS_IO_Gen_Open(logical,access,&handle,
 version);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
 .
 .
 .
EXCEPTION:

NOTES: A file opened for write that already exists will be overwritten.

 This function will support all POSIX modes of fopen.

 While all modes of access are supported for this tool, those modes that
allow for writing to a file (i.e., not PGSd_IO_Gen_Read) are intended for
Toolkit access only. The only files that the science software should write
to are product output files (HDF) and Temporary, or Intermediate files.

 6-41 EED2-333-001

The only exceptions to this are for Support Output files that may need to
be archived, but which are not considered to be products.

!!!!!!!!!!! ALERT !!!!!!!!!!!

During testing of this tool, the mode AppendUpdate (a+)!! was found to
produce results that were not consistent with the documented POSIX
standard. The sort of behavior that was typically observed was for data,
buffered during a read operation, to be appended to the file along with
other data that was being written to the file. Note that this behavior could
not be attributed to the Toolkit since the same behavior was revealed when
purely “POSIX” calls were used.

IMPORTANT TOOLKIT 5 NOTES
The following environment variable MUST be set to assure proper
operation:
PGS_PC_INFO_FILE path to process control file
However, the following environment variables are NO LONGER
recognized by the Toolkit as such:
 PGS_PRODUCT_INPUT path to standard input files

PGS_PRODUCT_OUTPUT path to standard output files
PGS_SUPPORT_INPUT path to supporting input files
PGS_SUPPORT_OUTPUT path to supporting output files

Instead, the default paths, which were defined by these environment
variables in previous Toolkit releases, may now be specified as part of the
Process Control File (PCF). Essentially, each has been replaced by a
global path statement for each of the respective subject fields within the
PCF. To define a global path statement, simply create a record that begins
with the ‘!’ symbol defined in the first column, followed by the global path
to be applied to each of the records within that subject field. Only one such
statement can be defined per subject field and it must be appear prior to
any dependent subject entry.

 The status condition PGSIO_E_GEN_BAD_ENVIRONMENT now
indicates an error status on the global path statement as defined in the
PCF, and NOT on an environment variable. However, as with previous
releases, the status message associated with this condition may reference
the above “tokens,” but this is only to indicate which of the global path
statements is problematic.

REQUIREMENTS: PGSTK-0360, PGSTK-1360

 6-42 EED2-333-001

Open a Generic File (FORTRAN Version)

NAME: PGS_IO_Gen_OpenF()

SYNOPSIS:

C: (not applicable)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function pgs_io_gen_openf(file_logical, file_access,
 record_length, file_handle,
 file_version)

 integer file_logical
integer file_access
integer record_length
integer file_handle
integer file_version

DESCRIPTION: Upon a successful call, this function will allocate a logical unit number to
support FORTRAN READ and WRITE statements. This is returned to the
user via the parameter file_handle. The user provides the logical file
identifier and file version number, which internally get mapped to the
associated physical file.

INPUTS: file_logical-User defined logical file identifier

 file_access-type of access granted to opened file:

Table 6-10. File Access Type (1 of 2)
PGS FORTRAN Access Mode Rd/Wr/Update/

Append
FORTRAN 77/90

‘access=’
FORTRAN 77/90

‘form=’
PGSd_IO_Gen_RseqFrm Read Sequential Formatted
PGSd_IO_Gen_RseqUnf Read Sequential Unformatted
PGSd_IO_Gen_RdirFrm Read Direct Formatted
PGSd_IO_Gen_RdirUnf Read Direct Unformatted
PGSd_IO_Gen_WseqFrm Write Sequential Formatted
PGSd_IO_Gen_WseqUnf Write Sequential Unformatted
PGSd_IO_Gen_WdirFrm Write Direct Formatted

 6-43 EED2-333-001

Table 6-10. File Access Type (2 of 2)
PGS FORTRAN Access Mode Rd/Wr/Update/

Append
FORTRAN 77/90

‘access=’
FORTRAN 77/90

‘form=’
PGSd_IO_Gen_WdirUnf Write Direct Unformatted
PGSd_IO_Gen_UseqFrm Update Sequential Formatted
PGSd_IO_Gen_UseqUnf Update Sequential Unformatted
PGSd_IO_Gen_UdirFrm Update Direct Formatted
PGSd_IO_Gen_UdirUnf Update Direct Unformatted
F90 SPECIFIC
PGSd_IO_Gen_AseqFrm Append Sequential Formatted
PGSd_IO_Gen_AseqUnf Append Sequential Unformatted

 record_length-record length must be greater than 0 for direct access

F90 SPECIFIC must be greater than or equal to 0 for sequential access; if 0, file is opened
with default record length

file_version-version of file to open (minimum value = 1)

OUTPUTS: file_handle-used to manipulate files READ and WRITE

RETURNS:
Table 6-11. PGS_IO_Gen_OpenF Returns

Return Description
PGS_S_SUCCESS Successful completion
PGSIO_E_NO_FREE_LUN All logical unit numbers are in use
PGSIO_E_GEN_OPENMODE Illegal open mode was specified
PGSIO_E_GEN_OPEN_OLD Attempt to open with STATUS=OLD failed
PGSIO_E_GEN_OPEN_NEW Attempt to open with STATUS=NEW failed
PGSIO_E_GEN_OPEN_RECL Invalid record length specified
PGSIO_E_GEN_FILE_NOEXIST File not found, cannot create
PGSIO_E_GEN_REFERENCE_FAILURE Can’t do Temporary file reference

EXAMPLE: integer returnstatus
integer file_logical
integer file_access
integer record_length
integer file_handle
integer file_version

 file_version = 3
file_logical = 101
file_access = PGSd_IO_Gen_WSeqFrm

 6-44 EED2-333-001

 returnstatus = PGS_IO_Gen_OpenF(file_logical, file_access,
 record_length, file_handle,
 file_version)

if (returnstatus .NE. PGS_S_SUCCESS) then

 C goto 1000
end if
 .
 .
 .

1000 <error handling goes here>

NOTES: While all modes of access are supported for this tool, those modes that
allow for writing to a file (i.e., not PGSd_IO_Gen_Read) are intended for
Toolkit access only. The only files that the science software should write
to are product output files (HDF) and Temporary, or Intermediate files.

 In order to ascertain the number of versions currently associated with the
logical identifier in question, make a call to
PGS_PC_Get_NumberOfFiles() first (Toolkit 3 and later.)

 Due to the nature of FORTRAN IO, it is possible to write a file opened for
reading as well as read a file opened for writing. The matching of access
mode to IO statement cannot be enforced by the tool. This is up to the
user.

 Once a file has been opened with this tool, it must be closed with a call to
PGS_IO_Gen_CloseF before being re-opened. Failure to do this will result
in undefined behavior.

 IMPORTANT TOOLKIT 5 NOTES

 The following environment variable MUST be set to assure proper
operation:

 PGS_PC_INFO_FILE path to process control file

 However, the following environment variables are NO LONGER
recognized by the Toolkit as such:

 PGS_PRODUCT_INPUT path to standard input files
PGS_PRODUCT_OUTPUT path to standard output files
PGS_SUPPORT_INPUT path to supporting input file
PGS_SUPPORT_OUTPUT path to supporting output files

 Instead, the default paths, which were defined by these environment
variables in previous Toolkit releases, may now be specified as part of the
Process Control File (PCF). Essentially, each has been replaced by a

 6-45 EED2-333-001

global path statement for each of the respective subject fields within the
PCF. To define a global path statement, simply create a record that begins
with the ‘!’ symbol defined in the first column, followed by the global path
to be applied to each of the records within that subject field. Only one such
statement can be defined per subject field and it must be appear prior to
any dependent subject entry.

 It is error condition to have an input file specified in the PCF that does not
exist on disk. The behavior of the tool is undefined when attempting to
open such a file for reading.

REQUIREMENTS: PGSTK-0360

 6-46 EED2-333-001

Close a Generic File, Temporary or Intermediate File (C Version)

NAME: PGS_IO_Gen_Close()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Close(
 PGSt_IO_Gen_FileHandle *file_handle);

FORTRAN: (not applicable)

DESCRIPTION: This tool closes a stream opened by a call to the “C” version of the
Generic I/O Open tools.

INPUTS: fileHandle-file handle returned by PGS_IO_Gen_Open or
 PGS_IO_Gen_Temp_Open.

OUTPUTS: NONE

RETURNS:
Table 6-12. PGS_IO_Gen_Close Returns

Return Description

PGS_S_SUCCESS Success
PGSIO_E_GEN_CLOSE Error closing file

EXAMPLES: PGSt_IO_Gen_FileHandle *handle;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_IO_Gen_Close(handle);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
else
{
 .
 .
 .
}

EXCEPTION:

 6-47 EED2-333-001

NOTES: Usage of this tool is optional, but failure to close a file could result in loss
of data, destroyed files, or possible intermittent errors in your program.

 As a consequence of calling this tool, any data left unwritten in the output
buffer will be flushed to the output stream; likewise, any data left unread
in the input buffer will be discarded.

!!!!!!!!!! ALERT !!!!!!!!!!!

Never attempt to close a file that has not been initialized, or previously
used in an open call. Failure to heed this warning will result in program
abort on many platforms.

REQUIREMENTS: PGSTK-0360

 6-48 EED2-333-001

Close a Generic File (FORTRAN Version)

NAME: PGS_IO_Gen_CloseF()

SYNOPSIS:

C: (not applicable)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_gen_closef(file_handle)
integer file_handle

DESCRIPTION: This tool closes a FORTRAN IO unit opened by call to
PGS_IO_Gen_OpenF or PGS_IO_Gen_Temp_OpenF.

INPUTS: file_handle-file handle returned by PGS_IO_Gen_OpenF or
 PGS_IO_Gen_Temp_OpenF

OUTPUTS: NONE

RETURNS:
Table 6-13. PGS_IO_Gen_CloseF

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_GEN_CLOSE Attempt to close file failed
PGSIO_E_GEN_ILLEGAL_LUN file_handle LUN was out-of-bounds
PGSIO_W_GEN_UNUSED_LUN file_handle LUN was not in use

EXAMPLES: integer handle
integer returnstatus

 returnstatus = PGS_IO_Gen_CloseF(handle)
if (returnstatus != PGS_S_SUCCESS) goto 1000
.
.
.

100 <error handling goes here>

NOTES: Failure to close a file could result in loss of data, destroyed files, or
possible intermittent errors in your program.

 6-49 EED2-333-001

 This tool expects the input file_handle to point to a file that was
successfully opened via a call to either the tool PGS_IO_Gen_OpenF or
the tool PGS_IO_Gen_Temp_OpenF. If this is not the case, the result of
calling the tool is undefined.

REQUIREMENTS: PGSTK-0360

 6-50 EED2-333-001

6.2.1.4 Metadata Tools

This set of tools is designed to manage the metadata that are generated with each EOS product,
i.e., the granule-level metadata. The tools also provide a mechanism for populating the inventory
data base tables with the metadata for each granule. The purpose of these tools is:

• To ensure that the metadata produced conforms to ECS standards in content and format;
and

• To provide access files from within the science algorithms to metadata contained in input
files.

The overall context of metadata in ECS, and further details on the use of the metadata tools are
provided in Appendix J of this document.

The metadata tools in the SDP toolkit library are called from within a PGE to read and write
metadata. The metadata attributes that will be assigned values during processing are identified in
the metadata configuration file (MCF). The MCF is read into memory and toolkit calls are used
to populate values for the attributes. When the metadata population process is complete,
metadata “blocks” are written to product output files as HDF data objects called global attributes
(not to be confused with individual metadata elements which are also called attributes). All
output metadata is in object description language (ODL).

Multiple MCFs may be opened and written to from within a single PGE. The five metadata tools
that are used in conjunction with MCFs must be called in a specific sequence, once for each
MCF. First, each MCF must be initialized with PGS_MET_Init, which also assigns values for
“system” metadata. Values generated within the PGE are assigned to attributes in the MCF using
PGS_MET_SetAttr and/or PGS_MET_SetMultiAttr. To return the value of any metadata
attribute in the MCF that has received a value PGS_MET_GetSetAttr may be used. After all
values have been assigned, PGS_MET_Write is used to write the metadata to the product or,
alternatively for non-HDF products, to a separate ASCII metadata file. Finally,
PGS_MET_Remove frees up memory used by the MCFs. If the HDF file is of type HDF4 user
may still call HDF’s SDstart to open HDF file to write metadata. However, if the HDF file is of
type HDF5 user must call PGS_MET_SDstart to open the file (this function can also be used to
open HDF file of type HDF4). The file opened by PGS_MET_SDstart needs to be closed by a
call to PGS_MET_SDend after writing metadata to it.

Two additional toolkit routines are used to read metadata values from within the PGE. These
may be called independently of any MCF. PGS_MET_GetPCAttr may be used to return the
value of metadata from input files identified to the process control (PC) system.
PGS_MET_GetConfigData may be used to return the value of runtime metadata from the
Process Control File.

The FORTRAN versions of PGS_MET_SetAttr, PGS_MET_SetMultiAttr
PGS_MET_GetConfigData, PGS_MET_GetSetAttr, and PGS_MET_GetPCAttr must include an
underscore and an extra character at the end of the function name to indicate the data type being
handled: _S for string values, _I for integer and unsigned int values, and _D for single or double

 6-51 EED2-333-001

precision real values. For example, the function PGS_MET_SetAttr actually represents three
different FORTRAN functions:

• PGS_MET_SetAttr_S to set the value of string and datetime attributes

• PGS_MET_SetAttr_I to set integer and unsigned int values; and

• PGS_MET_SetAttr_D to set real or double values

As discussed in greater detail in Appendix J, two separate metadata blocks are handled by the
metadata tools. These are called inventory and archive. Inventory consists of “core” attributes,
i.e. those that are part of the ECS Data Model, which will reside in the ECS inventory tables and
will thus be available to query on in locating granules. Archive metadata refers to metadata that a
data producer wants to be included with the data granule, but need not be searchable by the
system and will therefore not be used to populate the inventory tables. Archive metadata can,
however, be read from HDF input files using toolkit calls.

The inventory and archive blocks are referenced in the toolkit calls by an array, e.g.
mdHandles(n), where n=1 (for C, n=2 for FORTRAN) indicates inventory metadata and n=2 (or
n=3 for FORTRAN) indicates archive metadata. To write an ASCII version of the metadata for
non-HDF files mdHandles(0) (or n=1 for FORTRAN) is used to indicate that all metadata block
are to be written together. It is possible to define other blocks and write them to HDF product
output files or to ASCII metadata output files, but these will not be handled by the system. For
example, if the granule is subsetted using ECS routines, only the inventory and archive blocks
will be copied into the resultant file.

Additional description and extensive examples of the usage of MET tools can be found in the
HDF-EOS Users Guide for the ECS Project, Vol. 1, Section 7 and 8.

A description of each MET tool follows:

 6-52 EED2-333-001

Initialize a Metadata Configuration File (MCF) into Memory

NAME: PGS_MET_Init()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_Init(
 PGSt_PC_Logical fileId,
 PGSt_MET_all_handles mdHandles)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_init(fileId, mdHandles)

 integer fileId
character* PGS_MET_GROUP_NAME_L
 mdHandles(PGS_MET_NUM_OF_GROUPS)

DESCRIPTION: Initializes MCF file containing metadata.

INPUTS:
Table 6-14. PGS_MET_Init Inputs

Name Description Units Min Max

fileId MCF file id None variable variable

OUTPUTS:
Table 6-15. PGS_MET_Init Outputs

Name Description Units Min Max

mdHandles metadata groups in MCF None N/A N/A

 6-53 EED2-333-001

RETURNS:
Table 6-16. PGS_MET_Init Returns

Return Description

PGS_S_SUCCESS
PGSMET_E_LOAD_ERR Unable to load <MCF> information. Lower level routines contain

more information
PGSMET_E_GRP_ERR Master groups are not supposed to be enclosed under any other

group or object. The offending group is <name>
PGSMET_E_GRP_NAME_ERR Group name length should not exceed

PGS_MET_GROUP_NAME_L – 5.
PGSMET_E_NO_INVENT_DATA Inventory data section not defined in the MCF
PGSMET_E_DUPLICATE_ERR There is a another object with the same name for object <name>

 Duplicate names are not allowed within master groups
PGSMET_E_NUM)FMCF_ERR Unable to load. The number of MCFs allocated has been exceeded.
PGSMET_E_PCF_VALUE_ERR Metadata objects to be set from values defined in PCF could not be

set. See error returns form the lower level routines. Initialization
takes place nevertheless.

EXAMPLES:

C:

 #include "PGS_MET.h"
#define INVENTORYMETADATA 1
#define MODIS_FILE 10253 /* This value must also be defined in
the PCF
 10253|hdftestfile|/home/asiyyid/pgetest/fortran/|||hdf
 testfile|1 : */

#define ODL_IN_MEMORY 0
int main()
{
PGSt_MET_all_handles handles;
char * fileName = "/home/modis/hdftestfile"; /* the user should
change this accordingly */
int32 hdfRet, sdid;
extern AGGREGATE PGSg_MET_MasterNode;
PGSt_SMF_status ret = PGS_S_SUCCESS;
PGSt_integer fileId = PGSd_MET_MCF_FILE;
PGSt_integer i;
double dval, dval[6];
char* sval;
sval = (char*) malloc(30);
ret= PGS_MET_Init(fileId, handles);
if(ret != PGS_S_SUCCESS)

 6-54 EED2-333-001

 {
printf("initialization failed\n");
return 0;
 }

PGS_MET_Remove();
printf("SUCCESS\n");
return 0;
}

FORTRAN:
 include "PGS_SMF.f"
 include "PGS_MET_13.f"
 include "PGS_MET.f"
C the file id must also be defined in the PCF as follows
C 10253|hdftestfile|/home/asiyyid/pgetest/fortran/|||hd
C testfile|1
 integer pgs_met_init
 integer MODIS_FILE
 parameter(MODIS_FILE = 10253)
 integer INVENTORYMETADATA
 parameter(INVENTORYMETADATA = 2)
 integer ODL_IN_MEMMORY
 parameter(ODL_IN_MEMMORY = 1)
C the groups have to be defined as 49 characters long.
C The C interface is 50.
C The cfortran.h mallocs an extra 1 byte for the null
C character '\0/', therefore making the actual length of a
C string pass as 50.
 character*PGS_MET_GROUP_NAME_L
 1 mdHandles(PGS_MET_NUM_OF_GROUPS)
 character*50 fileName
 integer result
 integer pgs_met_init
 integer hdfReturn
 double precision dval(1), dval(6)
 char*80 sval(5)
C you must change this file spec in the PCF and the example
C before running this example.
 fileName = "/home/asiyyid/pgetest/fortran/hdftestfile"
 result = pgs_met_init(PGSd_MET_MCF_FILE, groups)
 if(result.NE.PGS_S_SUCCESS) then
 print *, "Initialization error. See Logstatus for details"
 endif

 6-55 EED2-333-001

 print *, "SUCCESS"
 end

NOTES: The MCF file must be in the format described in Appendix J.

 Effective with the November 1996 SCF Toolkit release, multiple MCFs can now
be initialized by repeated calls to this function.

REQUIREMENTS: PGSTK-0290, PGSTK-0370

 6-56 EED2-333-001

Assign Values to Metadata Attributes

NAME: PGS_MET_SetAttr()

SYNOPSIS:

C: #include "PGS_MET.h"

PGSt_SMF_status

PGS_MET_SetAttr(
 PGSt_MET_handle mdHandle,
 char *attrNameStr,
 void *attrValue)

FORTRAN: include "PGS_MET_13.f"
 include "PGS_MET.f"
 include "PGS_SMF.h"

 integer function pgs_met_setattr(mdHandle, attrNameStr, attrValue)

 character*(*) mdHandle
character*(*) attrName
'user defined' attrValue

DESCRIPTION: After an MCF file is initialized into memory the user may assign values to
metadata attributes using PGS_MET_SetAttr(). The values can be of
following types and their array counterparts

 PGSt_integer, PGSt_double, PGSt_real, char * (string)

INPUTS:
Table 6-17. PGS_MET_SetAttr Inputs

Name Description Units Min Max

mdHandle metadata group in MCF none N/A N/A
attrNameStr name.class of parameter none N/A N/A
attrValue value of attribute to be inserted none N/A N/A

OUTPUTS: None

 6-57 EED2-333-001

RETURNS:
Table 6-18. PGS_MET_SetAttr Returns

Return Description

PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_NESTED_OBJECTS Object descriptions enclosing related objects must not be

enclosed themselves by other objects
PGSMET_E_ODL_MEM_ALLOC ODL routine failed to allocate memory
PGSMET_E_PARENT_GROUP Multiple objects must have enclosing groups around them
PGSMET_E_CLASS_PARAMETER Container object must also have class parameter defined
PGSMET_E_METADATA_CHILD Metadata Objects are not allowed to enclose other objects
PGSMET_W_NOT_MULTIPLE Object is not supposed to be multiple therefore resetting the

value. The user may have given a class with the metadata
name

PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.
PGSMET_E_ILLEGAL_TYPE Illegal type definition for metadata <attrName>. It should be a

string
PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter> Either type

or numval not defined
PGSMET_E_ILLEGAL_NUMVAL Illegal NUMVAL definition for metadata <attrName>. It should

be an integer
PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not be

found in <agg node>
PGSMET_E_NEW_ODL_DATA_ERR Unable to create a new odl <parameter>, probably due to lack

of memory
PGSMET_E_INV_DATATYPE Invalid data type definition in MCF for parameter <name>
PGSMET_E_INVALID_LOCATION Invalid location for setting attribute value

EXAMPLES:

C:

/* For setting Inventory Attributes in the MCF */

/* NUMVAL i the MCF = 6 */

 dvals[0] = 10.0;
dvals[1] = 20.0;
dvals[2] = 30.0;
dvals[3] = 40.0;
dvals[4] = 50.0;
dvals[5] = 60.0;
ret = PGS_MET_SetAttr(handles[INVENTORYMETADATA],
 "GRingPointLatitude.1", dvals);

 6-58 EED2-333-001

 /* For setting Product Specific Attributes */

strcpy(informationname,"TestingAttribute1");
ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
"AdditionalAttributeName.1",&informationname);
strcpy(informationname,"testingAttributeValue1");
ret=PGS_MET_SetAttr(handles[INVENTORYMETADATA],
FORTRAN:

C For setting Inventory Attributes in an HDF file

 dvals(1) = 10.0
 dvals(2) = 20.0
 dvals(3) = 30.0
 dvals(4) = 40.0
 dvals(5) = 50.0
 dvals(6) = 60.0
 ret =
 pgs_met_setattr_d(groups(INVENTORYMETADATA),
 1 “GRingPointLatitude.1", dvals)

C For setting Product Specific Attributes

 informationname = "TestingAttribute1"
 ret = pgs_met_setattr_s(groups(INVENTORYMETADATA),
 1 "AdditionalAttributeName.1",informationname)
 informationname = "testingAttributeValue1"
 ret = pgs_met_setattr_s(groups(INVENTORYMETADATA),
 1 "ParameterValue.1",informationname)

NOTES: 1. Multiplicity:

In TK5, a CLASS statement was introduced so that metadata objects with the
same name could be distinguished from each other in the ODL tree. In TK5.1 this
functionality was further extended to allow a single metadata object in the MCF to
have multiple instances. This means that all the metadata objects within a master
group in the MCF must have unique names. The use of the CLASS field in the
name of a metadata attribute is optional and is needed only when the attribute in
the MCF is within a group having a CLASS statement. See Appendix J for details
and examples.

2. Nested Metadata:

There are certain metadata objects which are always described as a group of
related metadata. To allow such groups to stay together in the MCF and the ODL
tree, nested metadata objects are defined in the MCF using "Container Objects."
in the MCF with related metadata as its child members. The child members are set
individually as before. The container object does not have a value since it defines
a concept and not an entity.

In the case of multiple container objects (e.g. there could be more than one
instances of gring polygons), when a call to set a value of one of the child

 6-59 EED2-333-001

metadata objects is made, it is the container object which is duplicated with a
different class creating instances of all the child members. It is the users
responsibility to set their values as well with subsequent call. Examples are given
in Appendix J.

3. Array Filling:

TK5 imposed a restriction that metadata objects with values defined as arrays
must be set with all the elements filled. This restriction is now lifted and the user
has the freedom to set 1 to n values for a particular parameter where n is defined
in the NUM_VAL field in the MCF. In this case where the values are being
retrieved, the end of array is marked by:

 INT_MAX for integers
 UINT_MAX for unsigned integers
 DBL_MAX for doubles
 NULL char * (strings)

These values are defined in the limits.h and floats.h. Its analogous to null
terminated strings defined as char[] arrays.

FORTRAN Users:

Use PGSd_MET_INT_MAX, PGSd_MET_DBL_MAX and
PGSd_MET_STR_END respectively.

The user can check for these values to determine the actual number of values
retrieved. In case where the number of values retrieved is equal to n, there is no
end of array marker since user is expected to know n for setting the return buffer.

4. Permissible Data Locations:

PGS_MET_SetAttr can be used to assign values to metadata attributes which have
DATA_LOCATION = “PGE”, “PCF”, or “TK”. Any attribute with
DATA_LOCATION = “DSS”, “DAAC,” or “DP” can not be set by the PGE. An
attempt to do so with PGS_MET_SetAttr will result in an error message of
PGSMET_E_INVALID_LOCATION being generated in the runtime LOG file.

5. Metadata Types:

The tool provides a void interface through which different types of metadata can
be set. The types supported are:

 PGSt_integer
 PGSt_uinteger
 PGSt_double
 string

and their arrays counterparts. PGSt_real has been omitted because of the changes
in TK5.1.

 6-60 EED2-333-001

It is very important that variable string pointers are used for string manipulations.
This is because void interface is used. For example, the following piece of code
would give an error or unexpected results:
.
.
char a[100];
.
.
strcpy(a, "MODIS");
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", a);
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a);

The first call is wrong because the routine expects char** but cannot force it
because of void interface. The second call is wrong too because of the declaration
of 'a' which is a constant pointer, i.e. it would always point to the same location in
memory of 100 bytes. Only the following construct will work with the routine in
which the string pointer is declared as a variable
char *a = "MODIS"
.
.
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a);

The above discussion is also true for arrays of strings. For example, the following
is not allowed for the same reasons as above
.
.
char a[10][100];
.
.
strcpy(a[0], "MODIS");
retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a[0]);

while the following is acceptable:
.
.
char *a[10];
.
.
a[0] = "MODIS";

retVal = PGS_MET_SetAttr(mdHandles[GROUP_GRANULE_DATA],
"SATELLITE_NAME", &a[0]);

IMPORTANT

The void buffer should always be large enough for the returned values otherwise
routine behavior is uncertain.

REQUIREMENTS: PGSTK-0290 PGSTK-0410 PGSTK-380

 6-61 EED2-333-001

Assign Mulitple Values to Metadata Attributes

NAME: PGS_MET_SetMultiAttr()

SYNOPSIS:

C: #include "PGS_MET.h"

PGSt_SMF_status

PGS_MET_SetMultiAttr(
 PGSt_MET_handle mdHandle,
 char *attrNameStr,

PGSt_integer num_val,
 void *attrValue)

FORTRAN: include "PGS_MET_13.f"
 include "PGS_MET.f"
 include "PGS_SMF.h"

 integer function pgs_met_setmultiattr(mdHandle, attrNameStr, numofval,
attrValue)

 character*(*) mdHandle
character*(*) attrName
'user defined' attrValue

 integer num_val

DESCRIPTION: After an MCF file is initialized into memory the user may assign multiple
values to metadata attributes whose NUM_VAL is 1 in the MCF file using
PGS_MET_SetMultiAttr(). This function sets the multi-value attribute
and modifies NUM_VAL value to num_val passed to the function. The
attribute values can be of following types and their array counterparts

 PGSt_integer, PGSt_double, PGSt_real, char * (string)

INPUTS:
Table 6-19. PGS_MET_SetMultiAttr Inputs

Name Description Units Min Max

mdHandle metadata group in MCF None N/A N/A
attrNameStr name.class of parameter None N/A N/A
num_val number of values to be set by the user if

NUM_VAL is 1 in the MCF
None 1 N/A

attrValue value of attribute to be inserted None N/A N/A

OUTPUTS: None

 6-62 EED2-333-001

RETURNS:
Table 6-20. PGS_MET_SetMultiAttr Returns

Return Description

PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_NESTED_OBJECTS Object descriptions enclosing related objects must not be

enclosed themselves by other objects
PGSMET_E_ODL_MEM_ALLOC ODL routine failed to allocate memory
PGSMET_E_PARENT_GROUP Multiple objects must have enclosing groups around them
PGSMET_E_CLASS_PARAMETER Container object must also have class parameter defined
PGSMET_E_METADATA_CHILD Metadata Objects are not allowed to enclose other objects
PGSMET_W_NOT_MULTIPLE Object is not supposed to be multiple therefore resetting the

value. The user may have given a class with the metadata
name

PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.
PGSMET_E_ILLEGAL_TYPE Illegal type definition for metadata <attrName>. It should be a

string
PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter> Either type

or numval not defined
PGSMET_E_ILLEGAL_NUMVAL Illegal NUMVAL definition for metadata <attrName>. It should

be an integer
PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not be

found in <agg node>
PGSMET_E_NEW_ODL_DATA_ERR Unable to create a new odl <parameter>, probably due to lack

of memory
PGSMET_E_INV_DATATYPE Invalid data type definition in MCF for parameter <name>
PGSMET_E_INVALID_LOCATION Invalid location for setting attribute value

EXAMPLES:

C:
char *svals[5];
 PGSt_MET_all_handles handles;
 PGSt_integer num_val;
 char AttrName[256];
 char AttrValString[256];
 char *cptr;

 strcpy (AttrName, "AdditionalAttributeName.1");
 strcpy (AttrValString, "string 1");
 cptr = AttrValString;
 ret = PGS_MET_SetAttr (handles[INVENTORYMETADATA], AttrName, &cptr);

 strcpy (AttrName, "ParameterValue.1");
 svals[0] = (char *) malloc(30);
 svals[1] = (char *) malloc(30);
 svals[2] = (char *) malloc(30);
 svals[3] = (char *) malloc(30);
 svals[4] = NULL;

 6-63 EED2-333-001

 strcpy(svals[0], "Astring 11");
 strcpy(svals[1], "Astring 22");
 strcpy(svals[2], "Astring 33");
 strcpy(svals[3], "Astring 44");
 num_val = 6;
 ret = PGS_MET_SetMultiAttr(handles[INVENTORYMETADATA], AttrName,
num_val, svals);

FORTRAN:

 IMPLICIT NONE

 INCLUDE 'PGS_SMF.f'
 INCLUDE 'PGS_MET.f'
 include 'PGS_MET_13.f'
 INCLUDE 'PGS_PC.f'

 INCLUDE 'hdf.inc'

 integer PGS_MET_Init
 integer PGS_MET_SetAttr_s
 integer PGS_MET_SetMultiAttr_s
 character*50 svals2(5)
 character*(PGSd_MET_GROUP_NAME_L)
 + mdHandles(PGSd_MET_NUM_OF_GROUPS) ! metadata group in MCF
 character*256 AttrName
 character*256 AttrValString
 integer status
 integer num_val

 integer INVENTORY
 PARAMETER (INVENTORY = 2)
 integer MCF_FILE
 PARAMETER (MCF_FILE = 10250)

 status = PGS_MET_Init (MCF_FILE, mdHandles)
 AttrName = "AdditionalAttributeName.1"
 AttrValString = "string 2"
 status = PGS_MET_SetAttr_s (mdHandles(INVENTORY), AttrName,
 & AttrValString)

 AttrName = "ParameterValue.1"
 svals2(1) = "Astring 11"
 svals2(2) = "Astring 22"
 svals2(3) = "Astring 33"
 svals2(4) = "Astring 44"
 svals2(5) = PGSd_MET_STR_END
 num_val = 6

 status = PGS_MET_SetMultiAttr_s(mdHandles(INVENTORY), AttrName,
 & num_val, svals2)

NOTES: See notes for PGS_MET_SetAttr

REQUIREMENTS: PGSTK-0290 PGSTK-0410 PGSTK-380

 6-64 EED2-333-001

Accesses Metadata Attributes Already Set in Memory

NAME: PGS_MET_GetSetAttr()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_GetSetAttr(
PGSt_MET_handle mdHandle,
 char* attrNameStr,
 void* attrValue)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_getsetattr(mdHandle, attrNameStr, attrValue)
character* mdHandle
character* attrName
'user defined' attrValue

DESCRIPTION: The MCF is first initialized into memory and some of the parameters are
automatically set and some are set by the user using PGS_MET_SetAttr().
This tool is used to retrieve these values.

INPUTS:
Table 6-21. PGS_MET_GetSetAttr Inputs

Name Description Units Min Max

mdHandle metadata group none N/A N/A
attrName name.class of parameter none N/A N/A

OUTPUTS:
Table 6-22. PGS_MET_GetSetAttr Outputs

Name Description Units Min Max
attrValue value of attribute to be passed back to the

user
none N/A N/A

 6-65 EED2-333-001

RETURNS:
Table 6-23. PGS_MET_GetSetAttr Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not

 Be found in <agg node>
PGSMET_W_METADATA_NOT_SET The metadata <name> is not yet set
PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter>
 Either NUM_VAL or type is not defined
PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.

EXAMPLES:

C:

/* For accessing Inventory Attributes in an HDF file */

 for(i = 0; i < 6; i++) dvals[i] = 0.0;
 ret = PGS_MET_GetSetAttr(handles[INVENTORYMETADATA],
 "GRingPointLatitude.1", dvals);
 for(i = 0; i < 6; i++) printf("%lf", dvals[i]);
 printf("\n");

/* For accessing Product Specific Attributes in an HDF file */
 strcpy(sval," ");
 ret=PGS_MET_GetSetAttr(handles[INVENTORYMETADATA],
 "AdditionalAttributeName.1",&sval);

 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");
 strcpy(sval," ");
 "ParameterValue.1",&sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");
FORTRAN:

C For accessing Inventory Attributes in an HDF file

 dvals(1) = 0.0
 dvals(2) = 0.0
 dvals(3) = 0.0
 dvals(4) = 0.0
 dvals(5) = 0.0
 dvals(6) = 0.0

 ret = pgs_met_setattr_d(groups[INVENTORYMETADATA],
 1 "GRingPointLatitude.1", dvals)
 print *, dvals(1), dvals(2), dvals(3), dvals(4),
 1 dvals(5), dvals(6)

 6-66 EED2-333-001

C For accessing Product Specific Attributes in an HDF file

 sval = " "
 ret=pgs_met_setattr_s(groups[INVENTORYMETADATA],
 1 "AdditionalAttributeName.1",sval)
 print *, sval
 sval = " "
 ret=pgs_met_setattr_s(groups[INVENTORYMETADATA],
 1 "ParameterValue.1",sval)
 print *, sval

NOTES: (See notes 1,2,3, and 4 in PGS_MET_SetAttrib()

REQUIREMENTS: PGSTK-0290 PGSTK-380

 6-67 EED2-333-001

Accesses Metadata Parameters in HDF Products or
Independent ASCII Files

NAME: PGS_MET_GetPCAttr()

SYNOPSIS:
C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_GetPCAttr(
PGSt_PC_Logical fileId,
PGSt_integer version,
 char * hdfAttrName,
 char * parmName,
 void * parmValue)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_getpcattr(fileId, version, hdfAttrName, parmName,
parmValue)

 character* fileId
integer version
character* hdfAttrName
character* parmName
'user defined' parmValue

DESCRIPTION: Metadata parameters held in HDF attributes or in a separate ASCII file can
be read using this tool

INPUTS:
Table 6-24. PGS_MET_GetPCAttr Inputs

Name Description Units Min Max

fileId product file id none Variable variable
version product version number none 1 variable
hdfAttrName name of HDF attribute containing metadata none N/A N/A
parmName metadata parameter name none N/A N/A

 6-68 EED2-333-001

OUTPUTS:
Table 6-25. PGS_MET_GetPCAttr Outputs

Name Description Units Min Max
attrValue value of attribute to be passed back to the user none N/A N/A

RETURNS:
Table 6-26. PGS_MET_GetPCAttr Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_PCREAD_ERR "Unable to obtain <filename or attribute filename> from the PC

 table" Most likely that <filename or attribute filename> is not
defined in the PCF

PGSMET_E_FILETOODL_ERR "Unable to convert <filename> into an ODL format" error
 returns from lower level routines should explain the problem

PGSMET_E_AGGREGATE_ERR Unable to create ODL aggregate <aggregate name> It
Definitely means that ODL routine has failed to allocate enough
 Memory

PGSMET_E_SYS_OPEN_ERR Unable to open pc attribute file Usually if the file does not exist
 at the path given, check the name and path of the file

PGSMET_E_ODLTOVAL_ERR Unable to convert attribute values from the ODL format error
Returns from lower level routines should explain the problem

PGSMET_E_NULL_PARAMETER The requested parameter is a null value
PGSMET_E_NOT_SET The requested parameter is not set

EXAMPLES:
C:
 char grpName[100];

/* For accessing Inventory Attributes in an HDF file */

 for(i = 0; i < 6; i++) dvals[i] = 0.0;
 ret = PGS_MET_GetPCAttr(MODIS_FILE, 1, "coremetadata",
 "GRingPointLatitude.1", dvals);
 for(i = 0; i < 6; i++) printf("%lf", dvals[i]);
 printf("\n");

/* For accessing Product Specific Attributes in an HDF file */

 strcpy(sval," ");
 ret=PGS_MET_GetPCAttr(MODIS_FILE,1,"coremetadata",
 "TestingAttribute1",&sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");

/* For accessing attributes in the ASCII Metadata file */
/* NOTE: For retrieving attribute values from the ASCII metadata file, users
have to generate a group name first before calling the function
PGS_MET_GetPCAttr. The procedures are as follows:

 6-69 EED2-333-001

1:
 In this case the group name is INVENTORYMETADATA
 sprintf(grpName, "%s%s", PGSd_MET_GROUP_STR, "INVENTORYMETADATA");
2:
 ret = PGS_MET_GetPCAttr(10268, 1, grpName, "REPROCESSINGPLANNED",
 &sval);

*/

 strcpy(sval," ");
 sprintf(grpName, "%s%s", PGSd_MET_GROUP_STR,
 "INVENTORYMETADATA");
 ret = PGS_MET_GetPCAttr(10268, 1, grpName,
 "REPROCESSINGPLANNED", &sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");

/* For LandSat7 Metadata output file */
/* NOTE: For retrieving the attribute from the Landsat7 meta file, users have
to generate a group name first before calling the function PGS_MET_GetPCAttr.
The procedures are as follows:

1:
 In this case the group name is "FORMAT_SUBINTERVAL_METADATA_1"
 sprintf(grpName,"%s%s",PGSd_MET_LSAT_GRP_STR,
 "FORMAT_SUBINTERVAL_METADATA_1");

2:
 ret = PGS_MET_GetPCAttr(10269, 1, grpName,
 "CONTACT_PERIOD_START_TIME", &sval);

*/
 strcpy(sval," ");
 sprintf(grpName,"%s%s",PGSd_MET_LSAT_GRP_STR,
 "FORMAT_SUBINTERVAL_METADATA_1");
 ret = PGS_MET_GetPCAttr(10269, 1, grpName,
 "CONTACT_PERIOD_START_TIME", &sval);
 for(i = 0; i<1; i++) printf("%s", sval);
 printf("\n");

FORTRAN:

 char grpName[100];

C For accessing Inventory Attributes in HDF file

 for(i = 0; i < 6; i++) dvals(i) = 0.0
 ret = pgs_met_getpcattr_d(MODIS_FILE, 1, "coremetadata",
 1 "GRingPointLatitude.1", dvals)
 print *, dval(1), dval(2), dval(3), dval(4), dval(5),
 1 dval(6)

C For accessing Product Specific Attributes in HDF file

 sval = " "
 ret=pgs_met_getpcattr_s(MODIS_FILE, 1, "coremetadata",
 1 " TestingAttribute1",&sval)
 print *, sval

 6-70 EED2-333-001

C For accessing attributes in ASCII Metadata file

 sval = " "
 ret = pgs_met_getpcattr_s(10268, 1, grpName,
 1 "REPROCESSINGPLANNED", &sval)
 print *, sval

C For Landsat7 Metadata file
 sval = " "
 grpName(1:)=PGSd_MET_LSAT_GRP_STR//
 1 "FORMAT_SUBINTERVAL_METADATA_1"
 ret = pgs_met_getpcattr_s(10269, 1, grpName,
 1 "CONTACT_PERIOD_START_TIME", &sval
 print *, sval

NOTES: See Notes 1,2,3, and 4 in PGS_MET_SetAttr

In the ECS production environment all input files are accompanied by an
ASCII version of the metadata (the .met file) so PGS_MET_GetPCAttr
will always read metadata from the .met file. In the SCF environment if
the data input file is in HDF a .met file need not be present and the
metadata can be read from the file itself. This is an example of how an
HDF input file should be designated in the PCF:
10253|hdfinputfile|/my/product/directory/|||hdfinputfile|1

The file names in the second and sixth fields must be identifal. If the input
file is not in HDF, the metadata will be read from an ASCII file which
must be separately identified in the sixth field of the input product entry of
the PCF, as shown in this example:

10253|inputfile|/my/product/directory/|||inputfile.met|1

 The .met file must have the same name as the product input file, with the
.met extension appended. This file must be placed in the same directory as
the input file.

Effective with the November 1996 SCF Toolkit delivery, the separate
ASCII file can now be in the same format as the output from
PGS_MET_Write().

 In the ECS production environment the ASCII metadata file that
accompanies a data input file delivered by Science Data Server does not
contain archive metadata. For this reason, archive metadata can only be
read from input files that are in HDF. If used to read a value for a metadata
attribute that is contained in an HDF global text attribute named
“archivemetadata” or “productmetadata” PGS_MET_GetPCAttr will
attempt to read the metadata from the HDF file, even though an ASCII
.met file is present. In all other cases, PGS_MET_GetPCAttr reads the
ASCII .met file.

 6-71 EED2-333-001

The ASCII file may be in one of two formats; either that written out by
the PGS_MET_Write() routine or simple parameter=value construct.
These formats are shown below for a simple case

 OBJECT = SOMEPARAMETER

 NUM_VAL = 1

 VALUE = 200

 END_OBJECT = SOMEPARAMETER

 or

 SOMEPARAMETER = 200

 Note that if a parameter appears twice in the ASCII file (with the same
parameter name and Class extension) only the first occurrence will be
returned.

REQUIREMENTS: PGSTK-0290 PGSTK-0235

 6-72 EED2-333-001

Accesses Configuration Data in the PC Table

NAME: PGS_MET_GetConfigData()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_GetConfigData(
 char* attrName,
 void* attrValue)

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_getconfigdata(attrName, attrValue)
character* attrName
'user defined' attrValue

DESCRIPTION: Certain configuration parameters are held in the PC table as follows

 10220|REMOTEHOST|sandcrab

This tool would retrieve the value "sandcrab" from the PC table given the
name of the parameter "REMOTEHOST". The parameter id 10220 is not
used here. The value string (e.g.. sandcrab) is assumed to be in ODL
format and therefore different types are supported.

INPUTS:
Table 6-27. PGS_MET_GetConfigData Inputs

Name Description Units Min Max
attrName name of parameter in PCF none N/A N/A

OUTPUTS:
Table 6-28. PGS_MET_GetConfigData Outputs

Name Description Units Min Max
attrValue value of attribute to be passed back to the user none N/A N/A

 6-73 EED2-333-001

RETURNS:
Table 6-29. PGS_MET_GetConfigData Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_AGGREGATE_ERR "Unable to create ODL aggregate <aggregate name>" This

 should never occur unless the process runs out of memory
PGSMET_E_CONFIG_VAL_STR_ERR "Unable to obtain the value of configuration parameter <name>

 from the PCF file". Likelihood is that either the parameter does
 not exist in the PCF or the PCF itself is in error which can be
 tested using pccheck.

PGSMET_E_CONFIG_CONV_ERR "Unable to convert the value of configuration parameter
<name> from the PCF file into an ODL format". Its most likely
 that the string values is not in ODL format.

EXAMPLES:

C:

/* These values must be defined in the PCF otherwise error is returned
*/
 ret = PGS_MET_GetConfigData("REV_NUMBER", &ival);
 strcpy(datetime, "");
 ret = PGS_MET_GetConfigData("LONGNAME", &datetime);
 dval = 0;
 ret = PGS_MET_GetConfigData("CENTRELATITUDE", &dval);
 printf("%d %lf %s\n", ival, dval, datetime);

FORTRAN:

C Retrieve some values from the PCF files. These must be
C defined in the PCF, otherwise the routine would return error
C Note the way _i for integer, _d for double and _s for strings are used
C at the end of the function name. This is necessary because fortran
C compiler would complain about type conflicts if a generic name
C is used
 ret = pgs_met_getconfigdata_i("REV_NUMBER", ival)
 datetime = ""
 ret = pgs_met_getconfigdata_s("LONGNAME", datetime)
 dval = 0
 ret = pgs_met_getconfigdata_d("CENTRELATITUDE", dval)
 if(ret.NE.PGS_S_SUCCESS) then
 print *, "GetConfigData failed.
 endif

 6-74 EED2-333-001

 print *, ival, dval, datetime

NOTES: See Notes 1, 2, 3, and 4 for PGS_MET_SetAttr().

Although This tool ignores the first field in the PCF file depicting the config id, it
is still important that this field is unique for the PC utility to function correctly
User is responsible for the returned buffers to be large enough to hold the returned
values.

Addendum for TK5.1

This routine now simply retrieves the values from the PCF and does not perform
type and range checking. The user is still required to assign enough space for the
returned values.

REQUIREMENTS: PGSTK-0290 PGSTK-0380

 6-75 EED2-333-001

Write Metadata and their Values to HDF Attributes and/or
ASCII Output Files

NAME: PGS_MET_Write()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_Write(
 PGSt_MET_handle mdHandle,
 char * hdfAttrName,
 PGSt_integer hdfFileId)

FORTRAN:

 include 'PGS_MET_13.f'
include 'PGS_MET.f'
include 'PGS_SMF.h'

 integer function pgs_met_write(mdHandle, hdfAttrName, hdfFileId)

 character* mdHandle
 character* hdfAttrName
 integer hdfFileId

DESCRIPTION: This is the final tool that PGE uses when all the metadata parameters are
set in memory. The tool checks that all the mandatory parameters are set.

INPUTS:
Table 6-30. PGS_MET_Write Inputs

Name Description Units Min Max

mdHandle metadata group in MCF none N/A N/A
hdfAttrName HDF attribute name to contain metadata none N/A N/A
hdfFileId HDF file ID none N/A N/A

OUTPUTS: None

 6-76 EED2-333-001

RETURNS:
Table 6-31. PGS_MET_WriteReturns

Return Description

PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_ODL_MEM_ALLOC ODL routine failed to malloc memory space
PGSMET_E_GROUP_NOT_FOUND No group called <name> found in the MCF
PGSMET_E_OPEN_ERR Unable to open <temporary> file with file id <fileId>
PGSMET_E_SD_SETATTR Unable to set the HDF file attribute. Note: HDF4.0r2 and Previous

versions of HDF have imposed a limit.
PGSMET_E_MALLOC_ERR Unable to allocate memory for the hdf attribute
PGSMET_E_MAND_NOT_SET Some of the mandatory parameters were not set
PGSMET_E_FGDC_ERR Note: HDF attribute is still written out. Unable to convert UTC

Input date time string to FGDC values
PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.
PGSMET_E_HDFFILENAME_ERR Unable to obtain HDF filename.
PGSMET_E_ASCII_ERR Unable to open MET ASCII file.

EXAMPLES:

C:
/* Write to ASCII metadata file for non-HDF output product */
 ret= PGS_MET_Write(handles[ODL_IN_MEMMORY],NULL, 101);
 if(ret != PGS_S_SUCCESS)
 {
 printf("ASCII Write failed\n");
 }
/* Write to HDF file */
 ret= PGS_MET_Write(handles[INVENTORYMETADATA], "metadata", sdid);
 if(ret != PGS_S_SUCCESS)
 {
 printf("HDFWrite failed\n");
 }

FORTRAN:
C Write to ASCII file for non-HDF output product
 result= pgs_met_write(groups(ODL_IN_MEMORY),dummyStr, 101)
 if(result.NE.PGS_S_SUCCESS.AND.

result.NE.PGSMET_MAND_NOT_SET) then
 1 print *,"ASCII Write failed"
 endif
C Write to HDF file
 result= pgs_met_write(groups(INVENTORYMETADATA),

 6-77 EED2-333-001

 1 "coremetadata", sdid)
 if(result.NE.PGS_S_SUCCESS.AND. result.NE.PGSMET_MAND_NOT_SET)

then
 1 print *,"ASCII Write failed"
 endif

NOTES: When writing an attribute which has been defined as "UNSIGNED INT", the
value written to the ASCII or HDF file may appear negative. The user should use
the type “unsigned int” or the ECS equivalent (PGSd_uinteger) to interpret the
value correctly. (see Note 4 of PGS_MET_SetAttr in Section 6.2.1.4.)

This routine can be used multiple times to write/attach separate master groups as
local or global HDF attributes. To attach a mastergroup to a local element in an
HDF file, an sds_id must be passed in as an argument, rather than an
sd_id(hdfFileId). !!!NOTE!!! : Attaching metadata to a local element using the
Toolkit is not standard practice for HDF-EOS files and should be avoided.

When writing the inventory metadata (MASTERGROUP =
INVENTORYMETADATA in the MCF, mdHandle = coremetadata in the
function call) to an HDF file, an ASCII version of the metadata is automatically
created in the data product output directory. It is given the same name as the data
product output, with the extension .met, i.e. ProductName.met. If the data product
output is not in HDF, the following lines must be included in the PCF in order to
create this required .met file:

?PRODUCT OUTPUT

100|ProductName|my/output/directory|||1
.
.
.
? USER RUNTIME PARAMETERS

101|ProductMetadataFile|100:1

where the second field is simply a comment.

An ASCII version of the metadata file will be created in the execution directory
with the name ProductName.met. The user needs to call PGS_MET_Write with
mdHandle[0], the HDF attribute name set to NULL and the identifier set to the
logical identifier in the PCF.

2. If MANDATORY parameters are not set, an error
PGSMET_E_MAND_NOT_SET is returned only in a PGE. The value of the
metadata is set to as follows:

 DATA_LOCATION VALUE
 PGE "NOT SET"
 PCF "NOT FOUND"
 MCF "NOT SUPPLIED"

 6-78 EED2-333-001

 TK “NOT OBTAINED”
 DSS “NOT PROVIDED”
 DAAC “NOTSUPPORTED”
 DP “NOT INCLUDED”

The writing of the hdf header is not affected

NOTE: A warning PGSMET_W_METADATA_NOT_SET is issued if
MANDATORY has the value FALSE in the MCF, and the specific attribute will
not appear in the HDF-EOS attribute or the ASCII file.

3. Only system errors such as memory failure, file openings etc. should be
able to abort the write procedure.

4. NUM_VAL and CLASS fields are written in the HDF header

For metadata of type DATETIME, additional metadata is produced:

CALENDATDATETIME becomes CALENDARDATE and TIMEOFDAY.

RANGEBEGININGDATETIME becomes RANGEBEGININGDATE and
RANGEBEGININGTIME

RANGEENDINGDATETIME becomes RANGEENDINGDATE and
RANGEENDINGTIME

The user no longer has to worry about the size of the MCF exceeding the HDF
limit on attribute sizes. This is now handled internally. The user simply needs to
set coremetadata (or archivemetadata) and if the limit is exceeded,
coremetadata.0, .1, etc. are produced.

5. With the release 5.2.16 of TOOLKIT users can get core metadata in XML
format in addition to the ODL format. To get both *.met and *.xml files user need
to modify their PCF file adding 3 lines

10260|XMLstylesheet.temp|||||1

10303|science.xsl|~/database/common/MET||||1

10256|XML METADATA GENERATION FLAG; 0=no, 1=yes|0

(as shown in the template PCF file in the runtime directory of TOOLKIT) and
setting XML

flag to 1. If PCF does not include the line

10256|XML METADATA GENERATION FLAG; 0=no, 1=yes|0

or flage is set to zero (as above), toolkit should work as in previous versions,
creating only ODL metadata. When XML flag is set to 1 in the PCF file,
TOOLKIT will produce *.xml besides the *.met file for INVENTORY metadata

 6-79 EED2-333-001

and also will write XML metadata into the HDF file in the "xmlmetadata" global
attribute as for the coremetadata.

REQUIREMENTS: PGSTK-0290, PGSTK-0380, PGSTK-0400, PGSTK-0450, PGSTK-0510

 6-80 EED2-333-001

Free Memory of MCFs

NAME: PGS_MET_Remove()

SYNOPSIS:

C: #include "PGS_MET.h"

 PGSt_SMF_status
PGS_MET_Remove()

FORTRAN: include "PGS_MET_13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

 integer function pgs_met_remove()

DESCRIPTION: This routine removes ODL representation of all MCF files and some
internal files used by the MET tools.

INPUTS: None

OUTPUTS: None

RETURNS: None

EXAMPLES:
C:
 result = PGS_MET_Remove();
 printf("SUCCESS\n");
 return 0;
FORTRAN:
 print *, ival, dval, datetime
 result = pgs_met_remove()
 print *, "SUCCESS"
 end

NOTES: This routine must be called by the user before the program terminates.

REQUIREMENTS: None

 6-81 EED2-333-001

Open HDF File of Type HDF4 or HDF5 for Writing
Metadata

NAME: PGS_MET_SDstart()

SYNOPSIS:

C: #include <PGS_MET.h>

 PGSt_SMF_status
PGS_MET_SDstart(
char *filename,
uintn access_mode,
PGSt_integer *HDFfid)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_MET.f’

 integer function pgs_met_sfstart(filename, access_mode, hdffid)

 character*(*) filename
integer hdffid

DESCRIPTION: This tool opens the HDF files of type HDF4 and/or HDF5 and initializes
the SD inetface.

INPUTS:
Table 6-32. PGS_MET_SDstart Inputs

Name Description Units Min Max

filename HDF file name (with full path) none variable variable
access_mode Access mode for opening HDF files. It can be:

HDF5_ACC_RDONLY, HDF5_ACC_RDRW,
HDF5_ACC_CREATE for HDF5files and
HDF4_ACC_RDONLY, HDF4_ACC_RDWR,
HDF4_ACC_CREATE for HDF4 files

none

OUTPUTS:
Table 6-33. PGS_MET_SDstart Outputs

Name Description Units Min Max

HDFfid SD id of the file opened none N/A N/A

 6-82 EED2-333-001

RETURNS:
Table 6-34. PGS_MET_SDstart Returns

Return Description

PGS_S_SUCCESS
PGSMET_E_HDF5_FILE_TYPE_E
RROR

Cannot determine whether the file is hdf4, hdf5, or none-hdf type

PGSMET_E_SD_START File <filename> is not HDF type and cannot be opened
PGSMET_E_SD_START Cannot open HDF5 file <filename>
PGSMET_E_SD_START Cannot open HDF4 file <filename>

EXAMPLES:

C:

PGSt_SMF_status retstatus;
PGSt_integer Sdid;
retstatus = PGS_MET_SDstart(“/home/username/myhdf.h5”,

HDF5_ACC_RDWR, &SDid);

if (retstatus != 0)

{

 *** do some error handling ***

:

:

}

FORTRAN:

 implicit none
 integer sdid
 integer status
 status = PGS_MET_SFstart(“/home/username/myhdf.h5”,

 * HDF5_ACC_RDWR, sdid)

 if(status .ne. 0) goto 999

NOTES: None

 6-83 EED2-333-001

Close HDF file of Type HDF4 or HDF5

NAME: PGS_MET_SDend()

SYNOPSIS:

C: #include <PGS_MET.h>

 PGSt_SMF_status
PGS_MET_SDend(cha PGSt_integer HDFfid)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_MET.f’

 integer function pgs_met_sfend(hdffid)
integer hdffid

DESCRIPTION: This tool closes the HDF files of type HDF4 and/or HDF5 that have been
opened by calling PGS_MET_SDstart.

INPUTS:
Table 6-35. PGS_MET_SDend Outputs

Name Description Units Min Max

HDFfid SD id of the file opened none N/A N/A

OUTPUTS: None

RETURNS:
Table 6-36. PGS_MET_SDend Returns

Return Description

PGS_S_SUCCESS
PGSMET_E_SD_END Cannot close the HDF file with ID <sd id>

 6-84 EED2-333-001

EXAMPLES:

C:

PGSt_SMF_status retstatus;
PGSt_integer Sdid;
retstatus = PGS_MET_SDend(SDid);

if (retstatus != 0)

{

 *** do some error handling ***

:

:

}

FORTRAN:

 implicit none
 integer sdid
 integer status
 status = PGS_MET_SFend(sdid)

 if(status .ne. 0) goto 999

NOTES: None

6.2.1.5 Data Quality Assurance

The tools in this section will be used to support the analysis of Q/A data output from the
production processes. There is no Toolkit tool to meet this requirement, however, this
requirement is being met by other HDF functionality

REQUIREMENTS: PGSTK-0510

6.2.1.6 Temporary and Intermediate Files

This section contains descriptions of tools that are specific to temporary and intermediate file
I/O. A temporary file is a file that exists only for the duration of a single PGE; it is deleted
following successful PGE termination. An intermediate file exists for a user-defined time after
the PGE terminates.

After you open a temporary or intermediate file, use the native C or FORTRAN I/O routines to
perform I/O.

 6-85 EED2-333-001

Note that there are no “Temp_Close” tools; use the Gen_Close tools to close files. See “Generic
File I/O Tools” (Section 6.2.1.3).

Special note regarding FORTRAN 90: Tools PGS_IO_Gen_OpenF and
PGS_IO_Gen_Temp_OpenF now have FORTRAN 90 versions. These versions support two
specific usages of the F90 OPEN function that are not supported in ANSI FORTRAN 77; they do
not support all F90 options of OPEN. At Toolkit installation time, you select between F77 and
F90, and the appropriate source code file is compiled; the function names are the same in both
versions of FORTRAN. Options and text that apply only to FORTRAN 90 are marked in this
document as ***F90 SPECIFIC***.

IMPORTANT CHANGES FROM TOOLKIT 4

The following environment variables MUST be set to assure proper operation:

PGS_PC_INFO_FILE path to process control file

However, the following environment variables are NO LONGER recognized by the Toolkit:

PGS_TEMPORARY_IO path to temporary files
PGS_INTERMEDIATE_INPUT path to intermediate input files
PGS_INTERMEDIATE_OUTPUT path to intermediate output files

Instead, the default paths, which were defined by these environment variables in previous Toolkit
releases, may now be specified as part of the Process Control File (PCF). Essentially, each has
been replaced by a global path statement for each of the respective subject fields within the PCF.
To define a global path statement, simply create a record that begins with the ‘!’ symbol defined
in the first column, followed by the global path to be applied to each of the records within that
subject field. Only one such statement can be defined per subject field and it must appear prior to
any dependent subject entry.

The status condition PGSIO_E_GEN_BAD_ENVIRONMENT now indicates an error status on
the global path statement as defined in the PCF, and NOT on an environment variable. However,
as with previous releases, the status message associated with this condition may reference the
above “tokens,” but this is only to indicate which of the global path statements is problematic.

“The environment variable PGS_HOST_PATH, formerly used to direct the Toolkit to the
location of the internet protocol address for the local host, has been replaced by PDPS
functionality which can perform this function in more effective manner. For this reason, the use
of this environment variable is no longer supported. FAILURE TO HEED THIS WARNING
MAY RESULT IN UNPREDICTABLE RESULTS FOR THE PGE. To properly emulate the
manner in which the PDPS system provides this information to the Toolkit, continue to use the
runtime parameter PGSd_IO_Gen_HostAddress to advertise the IP address of the local host.”

 6-86 EED2-333-001

Open a Temporary/Intermediate File (C Version)

NAME: PGS_IO_Gen_Temp_Open()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Temp_Open(
 PGSt_IO_Gen_Duration file_duration,
 PGSt_PC_Logical file_logical,
 PGSt_IO_Gen_AccessType file_access,
 PGSt_IO_Gen_FileHandle** file_handle);

FORTRAN: (not applicable)

DESCRIPTION: This routine lets the user create and open Temporary and Intermediate files
with a variety of access modes. The returned argument
PGSt_IO_Gen_FileHandle is directly compatible with the standard “C”
library stream I/O manipulation routines.

INPUTS: file_duration:
 PGSd_IO_Gen_Endurance // Creates Intermediate File //
 PGSd_IO_Gen_NoEndurance // Creates Temporary File //

 file_logical-User defined logical file identifier

 file_access-type of access granted to opened file:

Table 6-37. File Access Type
Toolkit C Description

PGSd_IO_Gen_Read “r” Open file for reading
PGSd_IO_Gen_Write “w” Open file for writing, truncating existing file to 0 length, or creating a

new file
PGSd_IO_Gen_Append “a” Open file for writing, appending to the end of existing file, or creating

file
PGSd_IO_Gen_Update “r+” Open file for reading and writing
PGSd_IO_Gen_Append
Update

“a+” Open file for reading and writing, to the end of existing file, or
creating a new file; whole file can be read, but writing only appended

OUTPUTS: file_handle-used to manipulate files with other “C” library stream I/O
routines

 6-87 EED2-333-001

RETURNS:
Table 6-38. PGS_IO_Gen_Temp_Open Returns

Return Description
PGS_S_SUCCESS Success
PGSIO_W_GEN_ACCESS_MODIFIED Illegal attempt to open existing file for access mode

PGSd_IO_Gen_Write or PGSd_IO_Gen_Trunc; Access mode
reset to PGSd_IO_Gen_AppendUpdate

PGSIO_W_GEN_NEW_FILE File expected, but was missing; new file created
PGSIO_W_GEN_DURATION_NOMOD Attempt to alter existing intermediate duration attribute ignored
PGS_E_UNIX UNIX system error
PGSIO_E_GEN_OPENMODE Invalid access mode
PGSIO_E_GEN_REFERENCE_FAILURE Can not find physical file name with logical ID in

$PGS_PC_INFO_FILE
PGSIO_E_GEN_BAD_FILE_DURATION Invalid file duration
PGSIO_E_GEN_FILE_NOEXIST No entry for logical ID $PGS_PC_INFO_FILE
PGSIO_E_GEN_CREATE_FAILURE Error creating new file entry in $PGS_PC_INFO_FILE
PGSIO_E_GEN_NO_TEMP_NAME Failed to create temporary filename
PGSIO_E_GEN_BAD_ENVIRONMENT Bad environment detected for I/O path ...

 “Existing file” means that an entry for the file exists in
$PGS_PC_INFO_FILE.

 (NOTE: the above are short descriptions only; full text of messages
appears in files $PGSMSG/*.t . Descriptions may change in future releases
depending on external ECS design.)

EXAMPLE: // This example illustrates how to create an Intermediate
 File //

 PGSt_SMF_status returnStatus;
PGSt_PC_Logical logical;
PGSt_IO_Gen_FileHandle *handle;

 #define INTER_1B 101

 returnStatus =
PGS_IO_Gen_Temp_Open(PGSd_IO_Gen_Endurance,INTER_1B,
 PGSd_IO_Gen_Write,&handle);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
 .
 .
 .
EXCEPTION:

 6-88 EED2-333-001

NOTES: This function will support most POSIX modes of fopen; the only
exception being truncate mode (w+).

 Logical identifiers used for files may NOT be duplicated.

 Existing files will NOT be overwritten by calling this function in mode
PGSd_IO_Gen_Write. Instead, they will be opened in
PGSd_IO_Gen_AppendUpdate mode; a warning will be issued signifying
that this is the case. Warnings will also be issued in the event that a non-
existent file is opened in modes other than explicit write (i.e.,
PGSd_IO_Gen_Append, or PGSd_IO_Gen_AppendUpdate).

 By using this tool, the user understands that a Temporary file may only
exist for the duration of a PGE. Whether or not the user deletes this
Temporary file prior to PGE termination, it will be purged by the Science
Data Processing Segment (SDPS) system during normal cleanup
operations. If the user requires a more static instance of a file, one that will
exist beyond normal PGE termination, that user may elect to create an
Intermediate file instead by specifying some persistence value (currently,
PGSd_IO_Gen_Endurance is the only value recognized); note that this
value is only valid for the initial creation of a file and will not be applied
to subsequent accesses of the same file.

 The following table gives proper use of the file_duration input variable:

Table 6-39. Proper Use of Persistence Values
File Type & Access Duration Factors

TEMPORARY
Creation PGSd_IO_Gen_NoEndurance
Repeated Access NULL

INTERMEDIATE
Creation PGSd_IO_Gen_Endurance
Repeated Access NULL

 FILE CHARACTERISTICS

 All files created by this function have the following form:

 [label][global-network-IP-address][process-id][date][time]

 where:

 label : SDP Toolkit Process Control -> pc

 global-network-IP-address: complete IP address iii.iii.iii.iii -> iiiiiiiiiiii

 (0's padded to maintain triplet groupings)

 6-89 EED2-333-001

 process-id : process identifier of current executable -> pppppp

 date : days from beginning of year & the year -> dddyy

 time : time from midnight local time -> hhmmss

Table 6-40. Temporary File Name Definition
Field Description Format

label SDP Toolkit Process Control “pc”

production-run-id numeric identifier from 1 to 8 places rrrrrrrr

local-network-IP-address local portion of Internet protocol (IP) address
uuu.vvv.ww.xx

vvvwwxx

process-id UNIX identifier for current process pppppp

date # days from beginning of year, and the year dddyy

time time from midnight local time hhmmss

Reference names returned by this function have the following form:

 [label][global-network-IP-address][process-id][date][time]
 where:
 label : SDP Toolkit Process Control -> pc
 global-network-IP-address: complete IP address iii.iii.iii.iii -> iiiiiiiiiiii
 (0's padded to maintain triplet groupings)
 process-id : process identifier of current executable -> pppppp
 date : days from beginning of year & the year -> dddyy
 time : time from midnight local time -> hhmmss
 or 'pciiiiiiiiiiiippppppdddddtttttt'

 ex. pc19811819201701028000395104034
 pc 198118192017 010280 00395 104034
 | | | | |
 (pc) label____________________| | | | |
 (i) full-network-IP-address ________| | | |
 (p) process-id___________________________________| | |
 (d) date__| |
 (t) time__|

 6-90 EED2-333-001

All temporary and intermediate files generated by this tool are uniquewithin the global ECS
community. Also, all file names are NOW exactly 31 characters in length; this should help with
the diagnosis of suspect temporary files (i.e., check the length first).

NOTE: Users should NOT put entries in the TEMP or INTERMEDIATE
OUTPUT sections. The Toolkit will do this.

The behavior of the Toolkit routine PGS_IO_Gen_Temp_Open() of not
allowing file truncations was part of the original design (this is a "feature"
not a bug). I believe the idea was that NO data should be destroyed (not
even intermediate/temporary data). The actual solution for truncation (to
fit the original design) is to delete the temporary files a routine uses when
it exits the routine. This is done with the Toolkit call
PGS_IO_Gen_Temp_Delete(). This will allow the reuse of the same
logical ID to create a temporary file each time the routine is called. The
general usage is: invoke PGS_IO_Gen_Temp_Open() to open the
temporay file do processing making use of temporary file close the
temporary file using PGS_IO_Gen_Close() delete the temporary file using
PGS_IO_Gen_Temp_Delete() repeat as necessary

REQUIREMENTS: PGSTK-0530, PGSTK-0531

 6-91 EED2-333-001

Open a Temporary/Intermediate File (FORTRAN Version)

NAME: PGS_IO_Gen_Temp_OpenF()

SYNOPSIS:

C: (not applicable)

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO.f’
INCLUDE ‘PGS_IO_1.f’

 integer function pgs_io_gen_temp_openf(file_duration, file_logical,
 file_access, record_length, file_handle)
integer file_duration
integer file_logical
integer file_access
integer record_length
integer file_handle

DESCRIPTION: Upon a successful call, this function will return a logical unit number for
use with FORTRAN READ and WRITE statements. This is returned to
the user via the parameter file_handle. The user provides the logical file
identifier that internally gets mapped to the associated physical file. The
user also provides the file duration parameter, to specify whether the file
being opened is to be temporary or intermediate.

INPUTS: file_duration-specifies how long file will last:

Table 6-41. File Duration
PGS-defined value Description

PGSd_IO_Gen_Endurance intermediate file
PGSd_IO_Gen_NoEndurance temporary file

 file_logical-User defined logical file identifier

file_access-type of access granted to opened file:

 6-92 EED2-333-001

Table 6-42. File Access Type

PGS FORTRAN Access Mode

Rd/Wr/Update/Append
FORTRAN 77/90

‘access=’
FORTRAN 77/90

‘form=’

PGSd_IO_Gen_RseqFrm Read Sequential Formatted
PGSd_IO_Gen_RseqUnf Read Sequential Unformatted
PGSd_IO_Gen_RdirFrm Read Direct Formatted
PGSd_IO_Gen_RdirUnf Read Direct Unformatted

PGSd_IO_Gen_WseqFrm Write Sequential Formatted
PGSd_IO_Gen_WseqUnf Write Sequential Unformatted
PGSd_IO_Gen_WdirFrm Write Direct Formatted
PGSd_IO_Gen_WdirUnf Write Direct Unformatted

PGSd_IO_Gen_UseqFrm Update Sequential Formatted
PGSd_IO_Gen_UseqUnf Update Sequential Unformatted
PGSd_IO_Gen_UdirFrm Update Direct Formatted
PGSd_IO_Gen_UdirUnf Update Direct Unformatted
F90 SPECIFIC
PGSd_IO_Gen_AseqFrm Append Sequential Formatted
PGSd_IO_Gen_AseqUnf Append Sequential Unformatted

 record_length-record length for direct access IO:
 mandatory for direct access (minimum value = 1)
 ignored otherwise

 F90 SPECIFIC must be greater than or equal to 0 for sequential
access; if 0, file is opened with default record length

OUTPUTS: file_handle-used to manipulate files with READ and WRITE

RETURNS:
Table 6-43. PGS_IO_Gen_Temp_OpenF Returns

Return Description

PGS_S_SUCCESS Successful completion
PGSIO_E_NO_FREE_LUN All logical unit numbers are in use
PGSIO_W_GEN_ACCESS_MODIFIED The access mode has been modified
PGSIO_E_GEN_OPENMODE Illegal open mode was specified
PGSIO_E_GEN_OPEN_OLD Attempt to open with STATUS=OLD failed
PGSIO_E_GEN_OPEN_NEW Attempt to open with STATUS=NEW failed
PGSIO_E_GEN_OPEN_RECL Invalid record length specified
PGSIO_W_GEN_OLD_FILE File exists: changing access to update
PGSIO_W_GEN_NEW_FILE File not found, created new one
PGSIO_W_GEN_DURATION_NOMOD Illegal attempt to modify file duration
PGSIO_E_GEN_REFERENCE_FAILURE Can’t do Temporary file reference
PGSIO_E_GEN_BAD_FILE_DURATION Illegal file duration value
PGSIO_E_GEN_FILE_NOEXIST File not found, cannot create
PGSIO_E_GEN_CREATE_FAILURE Unable to create new file
PGSIO_E_GEN_NO_TEMP_NAME New name could not be generated

 6-93 EED2-333-001

EXAMPLE: integer returnstatus
integer file_duration
integer file_logical
integer file_access
integer record_length
integer file_handle

 file_duration = PGSd_IO_Gen_NoEndurance
file_logical = 101
file_access = PGSd_IO_Gen_WDirUnf
record_length = 1

 returnstatus = PGS_IO_Gen_Temp_OpenF(file_duration,
 file_logical,
 file_access,
 record_length,
 file_handle)

if (returnstatus .NE. PGS_S_SUCCESS) then

 C goto 1000
endif
.
.
.

100 <error handling goes here>

NOTES: Logical identifiers used for Temporary and Intermediate files may NOT be
duplicated. Existing files will NOT be overwritten by calling this function
in any of the write modes. Instead, they will be opened in the
corresponding update mode; a warning will be issued signifying that this is
the case. Warnings will also be issued in the event that a nonexistent file is
opened in modes other than explicit write.

 By using this tool, the user understands that a Temporary file may only
exist for the duration of a PGE. Whether or not the user deletes this file
prior to PGE termination, it will be purged by the PGS system during
normal cleanup operations. If the user requires a more static instance of a
file, one that will exist beyond normal PGE termination, that user may
elect to create an Intermediate file instead by specifying some persistence
value (currently, PGSd_IO_Gen_Endurance is the only value recognized);
note that this value is only valid for the initial creation of a file and will
not be applied to subsequent accesses of the same file.

 In order to insure that generated temporary file names are unique for the
same host, a delay factor of 1 millisecond is imposed during the name
creation process.

 6-94 EED2-333-001

 Due to the nature of FORTRAN IO, it is possible to write a file opened for
reading as well as read a file opened for writing. The matching of access
mode to IO statement cannot be enforced by the tool. This is up to the
user.

 Once a file has been opened with this tool, it must be closed with a call to
PGS_IO_Gen_CloseF before being re-opened. Failure to do this will result
in undefined behavior.

REQUIREMENTS: PGSTK-0530, PGSTK-0531

 6-95 EED2-333-001

Delete a Temporary File

NAME: PGS_IO_Gen_Temp_Delete()

SYNOPSIS:

C: #include <PGS_IO.h>

 PGSt_SMF_status
PGS_IO_Gen_Temp_Delete(
 PGSt_PC_Logical file_logical);

FORTRAN: INCLUDE ‘PGS_SMF.f’
INCLUDE ‘PGS_PC_9.f’
INCLUDE ‘PGS_IO_1.f’

 integer pgs_io_gen_temp_delete(
 integer file_logical)

DESCRIPTION: Upon a successful call, this function will “effectively” delete the
Temporary file currently referenced by the specified logical identifier. (See
NOTES.) Future references to this logical identifier will no longer provide
access to a file until such time as a new temporary file is created with the
same logical identifier.

INPUTS: file_logical-User defined logical file identifier

OUTPUTS: None

RETURNS: PGS_S_SUCCESS
PGSIO_E_GEN_REFERENCE_FAILURE
PGSIO_E_GEN_FILE_NODEL
PGSIO_W_GEN_FILE_NOT_FOUND

EXAMPLE: PGSt_SMF_status ret_val;
PGSt_PC_Logical logical;

 #define INTER_1B 101

 ret_val = PGS_IO_Gen_Temp_Delete(INTER_1B);
if (ret_val != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
 .
 .
 .
EXCEPTION:

 6-96 EED2-333-001

NOTES: The actual deletion of Temporary files is not carried-out until after the
completion of the PGE run. Instead, these files are marked as deleted
through the Process Control mechanism. This allows for the preservation
of all Temporary files generated during a PGE run, to facilitate error
tracking/debugging following a failed run of a PGE. This in no way
prevents the creation of a new temporary file using the same logical
identifier as one previously deleted.

 Unlike all other IO_Gen tools, this function has a FORTRAN binding
to C. There is no separate FORTRAN version.

 Logical identifiers used for Temporary and Intermediate files may NOT be
duplicated.

 By using this tool, the user understands that a truly Temporary file may
only exist for the duration of a PGE. Whether or not the user deletes this
file prior to PGE termination, it will be purged by the Science Data
Processing System (SDPS) system during normal cleanup operations.

REQUIREMENTS: PGSTK-0520

 6-97 EED2-333-001

6.2.2 Error/Status Reporting (SMF Tools)

To detect and report an error and status conditions in a consistent manner across the ECS,
standardized status messages and status codes must first be established. The method used to
institute these message/code pairs is by way of the ‘smfcompile’ utility. But first, users will need
to create Status Message Files (SMFs) to contain their custom status messages and corresponding
status identifiers. These identifiers take the form of user defined mnemonics that visually convey
the essence of the status message. The user will make direct use of these mnemonics in their
software when testing for status conditions and when interfacing with the SMF Toolkit functions.
Once an SMF is completed, the smfcompile utility is run in order to bind the status messages and
mnemonics with integral status codes. This process facilitates the runtime access of all status
messages and provides for the referencing of status mnemonics within the user’s code.

The status codes generated by the ‘smfcompile’ utility are guaranteed to be unique across the
entire SDPS system to ensure that there will be no ambiguous status conditions, in the event that
code from different Science Computing Facilities (SCFs) is merged into a single executable
and/or PGE. This uniqueness is possible because “seed” values, which are different for every
SMF, are used in the generation of the status codes. Typically, many SMF files will be created in
the course of software development; therefore many seed numbers will be required. However, it
is important to note that valid seed numbers can only be obtained from the Toolkit development
team (landover_PGSTLKIT@raytheon.com). Any attempt to produce SMFs from “home-grown”
seed values may result in the SMFs being unusable at integration & test time.

The SDP Toolkit routines actually contain their own collection of status codes and associated
status messages for describing the state of each Toolkit function. Users of the Toolkit functions
should examine the return values of each tool before performing any other action. To inform a
calling unit (user’s software) about the exit state of a called Toolkit routine, each Toolkit
function sets a status message and assigns a status code to the return value. On the basis of its
interpretation of this return value, the calling unit may elect to perform some error handling. As
part of this procedure, the user should either propagate the existing status code up through their
calling hierarchy, or set a status code and message to represent the outcome of any local error
handling attempt.

Upon detection of an error state, users are advised to report on the existing error prior to
performing an error handling procedure. The content of these reports might include the
following: a user-defined message string to convey the nature of the status condition, a user-
defined action string to indicate the next operation to be performed in response to the status
condition, and a system defined string that uniquely identifies the environment in which the
status condition occurred. However, this is merely a suggestion; the user is free to define the
content of the status reports to satisfy their own requirements. The method for reporting this
information will involve the generation of a report from the information just described and the
subsequent transmission of that report to the appropriate destination(s).

Once software development has been completed, all the Status Message Files (SMFs) created to
support that development will be delivered to the DAAC along with the developed PGE(s). The

 6-98 EED2-333-001

Toolkit SMFs will be delivered to the DAACs along with the Toolkit library, just as they were
delivered to the SCFs.

The tools provided here allow for the propagation of status information within a PGE executable
to facilitate a user’s error handling process. They also provide the means to communicate status
and error information to various monitoring authorities and event logs. Additionally, there is a
tool that enables the user to specify, a priori, the action to be taken in the wake of a fatal
arithmetic event. This mechanism will allow the user to take their own corrective measures to
control an event that is terminal by default. Note that all other event conditions fall under the
purview of system processing and are thereby controlled by the governing SDPS software.

Several new features have been incorporated into these tools for Toolkit 5 in order to improve
their efficiency. One of those features allows for the buffering of individual status messages up to
some user defined runtime limit. This should greatly reduce the amount of I/O required to access
these messages. As a process proceeds to completion, new status messages are buffered as older,
less used status messages become unbuffered. The goal here is to only access status messages
from their runtime file when they are being referenced for the first time. The actual observed
improvement will depend on the degree to which a process’ status messages are localized (i.e., A
particular status message should ideally only be referenced within a short body of code.) and the
buffer size, which is set by the user. Another feature reduces the number of replicated status
messages that can appear in the status log file. This is accomplished by “compressing” duplicate
messages into a count of such messages. This feature should significantly reduce the size of the
status log file and contribute to its general readability.

Please refer to Appendix B for guidance on the creation of Status Message Files and for
examples of SMFs and explicit SMF Toolkit usage.

6.2.2.1 Log File Output Control

Several new features have been added to the Toolkit to allow greater control of message logging.
The behavior of these features is controlled via entries in the Process Control File (PCF). Note
that the use of some or all of these features may be strictly controlled at the DAACs.

6.2.2.1.1 Logging Control

PCF entry:
10114|Logging Control; 0=disable logging, 1=enable logging|1

This may be used to disable logging altogether. If logging is disabled NO message will output to
any log files (although a small header will still be written to the log files indicating that for this
PGE logging has been disabled). The default state is for logging to be enabled.

6.2.2.1.2 Trace Control

PCF entry:
10115|Trace Control; 0=no trace, 1=error trace, 2=full trace|0

 6-99 EED2-333-001

This may be used to specify the trace level for message logging. Tracing is a feature made
possible by the addition of two new SMF tools: PGS_SMF_Begin and PGS_SMF_End (see the
respective entries in 6.2.2.2 Status Reporting Tools). Users may include these tools at the
beginning and ending of their functions (respectively) to signal to the SMF system when each
user defined function is entered and exited. Three levels of tracing are possible:

No Tracing

This is the default state. No information concerning the entering or exiting of functions is
recorded to the log files. No information concerning the path of a function call is recorded to the
log files.

Example Log Entry:
func4():PGSTD_W_PRED_LEAPS:27652
predicted value of TAI-UTC used (actual value unavailable)

Error Tracing

If error tracing is enabled, information concerning the path of a function call is recorded to the
log files any time a status message is logged to a log file. This is useful in determining where in a
chain of function calls an error occurred. No information concerning the entering or exiting of
functions is recorded in this state.

Example Log Entry:
main():
 func1():
 func2():
 func3():
 func4():PGSTD_W_PRED_LEAPS:27652
 predicted value of TAI-UTC used (actual value unavailable)

Full Tracing

If full tracing is enabled, a message will be written to the log files each time a function is entered
and exited (only those user functions with the PGS_SMF_Begin/End calls, see above). Indenting
will also be done to show the path of each function call.

Example Log Entry:

PGS_SMF_Begin: main()

 PGS_SMF_Begin: func1()

 PGS_SMF_Begin: func2()

 PGS_SMF_Begin: func3()

 PGS_SMF_Begin: func4()

 func4():PGSTD_W_PRED_LEAPS:27652
 predicted value of TAI-UTC used (actual value unavailable)

 6-100 EED2-333-001

 PGS_SMF_End: func4()

PGS_SMF_End: func3()

PGS_SMF_End: func2()

PGS_SMF_End: func1()

PGS_SMF_End: main()

6.2.2.1.3 Process ID Logging

PCF entry:
10116|Process ID logging; 0=don’t log PID, 1=log PID|0

This may be used to enable the tagging of log file entries with the process ID of the process from
which the entry came. This is useful for PGEs that run concurrent processes which will all be
writing to a single log file simultaneously. If process ID logging is enabled, each log entry will be
tagged with the process ID of the process making the entry. This can facilitate in post-processing
a log file.

Example Log Entry:
func4():PGSTD_W_PRED_LEAPS:27652 (PID=2710)
predicted value of TAI-UTC used (actual value unavailable)

6.2.2.1.4 Status Level Control

PCF entry:
10117|Disabled status level list (e.g., W S F)|<status level list>

This may be used to disable the logging of status codes of specific severity levels. A list of levels
to be disabled should be substituted for <status level list> (e.g.: N M U). No message of a status
level indicated in the list will be recorded to any log file (see Appendix B for details on status
message levels). The default state is to enable logging for all status levels.

6.2.2.1.5 Status Message Seed Control

PCF entry:
10118|Disabled seed list|<status code seed list>

This may be used to disable the logging of status codes generated from specific seed values. A
list of seed values, the status codes derived from which should be disabled, should be substituted
for <status code seed list> (e.g.: 3 5). No message derived from a seed value indicated in the list
will be recorded to any log file (see Appendix B for details on status message seed values). The
default state is to enable logging for all seed values.

 6-101 EED2-333-001

6.2.2.1.6 Individual Status Code Control

PCF entry:
10119|Disabled status code list|<status code list>

This may be used to disable the logging of specific status codes. A list of status code mnemonics
and/or numeric status codes should be substituted for <status code list> (e.g.:
PGSTD_M_ASCII_TIME_FMT_B 678954). Note that only Toolkit status codes can be disabled
by using mnemonics. To disable a user generated status code a numeric status code must be
used. No messages whose status codes or mnemonics are included in the list will be recorded to
any log file. The default state is to enable logging for all status codes.

6.2.2.1.7 Generating Runtime E-Mail Messages

A PGE may be configured to automatically generate and send e-mail message during runtime
when specific user defined status codes are logged. This is done by assigning an e-mail action to
a given user defined status code.

An e-mail action is an SMF code with the special status level of “C” and a mnemonic that begins
with the characters “PGSEMAIL” (the rest of the mnemonic may contain any other valid
mnemonic characters), for example:

PGS_C_PGSEMAIL_SEND_EMAIL
ASTER_C_PGSEMAIL_ALERT
MODIS_C_PGSEMAIL_ERROR

An e-mail message will be generated anytime a user defined status code with an associated e-
mail action is logged via the SMF logging routines. The contents (body) of these messages will
be the text (message) associated with the user defined status code. The subject of these messages
will be the mnemonic associated with the user defined status code. The list of recipients is
defined in the e-mail action definition.

Example:
In a user defined status message file the following status code mnemonic label and e-mail action
mnemonic label have been defined (the e-mail action is associated with the status code via the
“::” syntax):

MODIS_E_PGE_INIT_FAILED The PGE failed to initialize.
 ::MODIS_C_PGSEMAIL_NOTIFY
MODIS_C_PGSEMAIL_NOTIFY john@modis.org, sue@modis.org

The following lines appear in a C source code file:

 returnStatus = initializePGE();
 if (returnStatus == MODIS_E_PGE_INIT_FAILED)
 {
 PGS_SMF_SetStaticMsg(returnStatus, “main()”);

 6-102 EED2-333-001

 exit(1);
 }

At runtime, if the returned status code from the function initializePGE() has the value defined by
MODIS_E_PGE_INIT_FAILED, this status is logged via the SMF function
PGS_SMF_SetStaticMsg(), and because this status code has an e-mail action associated with it,
an e-mail message will be generated.

The e-mail message will be sent to: sue@modis.org and john@modis.org
The subject field of the e-mail message will be: MODIS_E_PGE_INIT_FAILED
The text of the e-mail message will be: The PGE failed to initialize.

Note:
This functionality will be disabled at the DAACs.

 6-103 EED2-333-001

6.2.2.2 Status Reporting Tools

Get Toolkit Version

NAME: PGS_SMF_GetToolkitVersion()
SYNOPSIS:
C: #include <PGS_SMF.h>

void
PGS_SMF_GetToolkitVersion(
 char version[21]);

FORTRAN: include ‘PGS_SMF.f’
 integer function pgs_smf_gettoolkitversion(

 character*20 version)
DESCRIPTION: This function returns a string describing the current version of the Toolkit.
INPUTS: None
OUTPUTS: version - character string describing the current version of the Toolkit
RETURNS: None
EXAMPLES:
C: char version[21];

PGS_SMF_GetToolkitVersion(version);
FORTRAN: character*20

call pgs_smf_gettoolkitversion(version)
NOTES: User must allocate enough memory to hold the Toolkit version string.This

function does not allocate any memory for the user.

REQUIREMENTS:

 6-104 EED2-333-001

Set UNIX Status Message

NAME: PGS_SMF_SetUNIXMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SetUNIXMsg(
 PGSt_integer unix_errcode,
 char *msg,
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setunixmsg(unix_errcode,msg,funcname)
 integer unix_errcode
 character*240 msg
 character*32 funcname

DESCRIPTION: This tool provides the means to retain UNIX error messages for later
retrieval. Additionally, the user has the flexibility to append a user defined
message to a UNIX message for further clarity.

INPUTS: unix_errcode-the error code set by C library; UNIX system calls; and
 POSIX FORTRAN calls, i.e., the value stored in C ‘errno’ and
 Fortune ‘IERROR’

 msg-user defined status message string

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:
Table 6-44. PGS_SMF_SetUNIXMsg Returns
Return Description

PGS_S_SUCCESS Success
PGSSMF_E_LOGFILE Error opening status, report or user files
PGSSMF_E_UNDEFINED_UNIXERRNO Undefined UNIX error
PGSSMF_E_MSG_TOOLONG Message length exceeded

 6-105 EED2-333-001

EXAMPLES:

C: This example uses the ‘popen()’ C library routine merely to illustrate how
the SMF tool PGS_SMF_SetUNIXMsg() might be used to preserve the
UNIX error condition. Note that ‘popen()’ is not part of the POSIX
standard and therefore should not be used within the science software.

 PGSt_SMF_status Get_Listing()
{
 FILE *stream;
 char buffer[101];
 char directoryEntry[101];
 PGSt_SMF_status returnStatus = PGS_S_SUCCESS;

 if (stream = popen(“ls”,”r”) != NULL)
 {
 while (fgets(buffer,100,stream) != NULL)
 {
 scanf(buffer,”%s”,directoryEntry);
 }
 }
 else
 {
 PGS_SMF_SetUNIXMsg(errno,NULL,”Get_Listing()”);
 pclose(stream);
 returnStatus = PGS_E_UNIX;
 }
}

FORTRAN: implicit none

 integer pgs_smf_setunixmsg
character*1 chr
integer ierror

 PXFFGETC(IPXFCONST(“STDIN_UNIT”),chr,ierror)
IF (ierror .NE. 0) THEN
 pgs_smf_Setunixmsg(ierror,’PXFFGETC() error
occured’,’Get_Listing()’)
ENDIF

NOTES: The parameter “funcname” can be passed in as NULL if you do not wish
to record the routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.
Likewise, the parameter “msg” can be NULL unless you wish to have an

 6-106 EED2-333-001

additional message appended to the system defined UNIX message. The
static variable ‘errno’ has been declared in ‘PGS_SMF.h’. Since UNIX
treats errno as a static parameter, the user will have to save the value
returned from the critical call unless the call to
‘PGS_SMF_SetUNIXMsg()’ is made immediately. If unix_errno is not a
valid constant, the static buffer will be updated with the appropriate error
message.

 This tool is primarily intended for users of the C programming language.
However, we believe that this functionality will support users of the
POSIX FORTRAN language as well. Please refer to POSIX FORTRAN
77 IEEE Std 1003.9-1992 on page 14, Section 2.4 (Error Numbers) for
information regarding POSIX FORTRAN’s implementation of standard
error return values.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0632, PGSTK-0650

 6-107 EED2-333-001

Set Static Status Message

NAME: PGS_SMF_SetStaticMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SetStaticMsg(
 PGSt_SMF_code code,
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setstaticmsg(code,funcname)
 integer code
 character*32 funcname

DESCRIPTION: This tool will provide the means to set a pre-defined error/status message
in response to the outcome of some segment of processing.

INPUTS: code-mnemonic error/status code generated by message compiler (see
 “smfcompile”)

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:
Table 6-45. PGS_SMF_SetStaticMsg Returns

Return Description

PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error message
PGSSMF_E_LOGFILE Error opening status, report or user files
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
returnStatus =
 PGS_SMF_SetStaticMsg(PGSSMF_E_UNDEFINED_UNIXERROR,
 “My_Function()”);

FORTRAN: implicit none

 integer returnstatus
integer pgs_smf_setstaticMsg
returnstatus =

 6-108 EED2-333-001

 pgs_smf_setstaticMsg(PGSSMF_E_UNDEFINED_UNIXERROR,
 ‘my_function()’)

NOTES: The parameter “funcname” can be passed in as NULL if you do not wish
to record that routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

 6-109 EED2-333-001

Set Dynamic Status Message

NAME: PGS_SMF_SetDynamicMsg()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SetDynamicMsg(
 PGSt_SMF_code code,
 char *msg,
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_setdynamicmsg(code,msg,funcname)
 integer code
 character*240 msg
 character*32 funcname

DESCRIPTION: This tool will provide the means to set a runtime specific status message,
for a particular status code, in response to the outcome of come segment of
processing.

INPUTS: code-mnemonic error/status code generated by message compiler

 msg-message string to be saved into the static buffer

 funcname-function where the status condition occurred

OUTPUTS: None

RETURNS:
Table 6-46. PGS_SMF_SetDynamicMsg Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_LOGFILE Error opening status, report or user files

EXAMPLES:

C: Having defined a mnemonic code in the SMF file:

 INSTR_E_BAD_CALIBRATION Calibration value %7.2f
 is not within tolerance

 6-110 EED2-333-001

We would like to insert the calibration factor into the message template
during processing, since the value is not fixed prior to runtime. The
message that would be set in the status buffer would then appear as:

‘Calibration value 356.23 is not within tolerance’

 PGSt_SMF_status returnStatus;
PGSt_SMF_code code;
char msg[PGS_SMF_MAX_MSG_SIZE];
char buf[PGS_SMF_MAX_MSGBUF_SIZE];
float calibration_factor = 356.23;

 calibration_factor = Get_Instrument_Calibration(NIGHT);
/# value of 356.23 returned #/

 returnStatus =
PGS_SMF_GetMsgByCode(INSTR_E_BAD_CALIBRATION,msg);
sprintf(buf,msg,calibration_factor);

PGS_SMF_SetDynamicMsg(INSTR_E_BAD_CALIBRATION,buf,Level1A_In
itialization()”)

FORTRAN: Having defined a mnemonic code in the SMF file:

 INSTR_E_BAD_CALIBRATION Calibration value is not
 within tolerance ->

 We would like to insert the calibration factor to the end of the message
template during processing, since the value is not fixed prior to runtime.
The message that would be set in the status buffer would then appear as:

 ‘Calibration value is not within tolerance -> 356.23’

 implicit none

 integer pgs_smf_getmsgbycode
integer pgs_smf_setdynamicmsg
integer returnstatus
character*240 msg
character*480 buf
real calibration_factor
integer msglen
character*8 coeff_str

calibration_factor = get_instrument_calibration(NIGHT)

C value of 356.23 returned
 returnstatus = pgs_smf_getmsgbycode(
 INSTR_E_BAD_CODE,msg)

 6-111 EED2-333-001

 write(coeff_str,’(F7.2)’) calibration_factor
 msglen = len(msg)
 buf = msg(1:msglen)//coeff_str

 pgs_smf_setdynamicmsg(INSTR_E_BAD_CALIBRATION, buf,
 ‘level1A_initialization’);

NOTES: Note that you can have the flexibility of associating any dynamic message
string to the defined mnemonic code via this routine.

 This tool can be used in various situations. For instance the user might
want to concatenate some message strings together and assign the resultant
string to an existing mnemonic code, so that this message can be passed
forward to another module for further processing. Alternatively it can be
used to embed runtime variables in the defined message template before
saving this message string to the static message buffer.

 The parameter “funcname” can be passed in as NULL if you do not wish
to record the routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.

 The parameter “msg” can be passed in as NULL. If you do, no message is
associated with the mnemonic code.

 Refer to utility “smfcompile” for additional information on the format of
the message compiler.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

 6-112 EED2-333-001

Get Status Message by Code

NAME: PGS_SMF_GetMsgByCode()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GetMsgByCode(
 PGSt_SMF_code code,
 char msg[]);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_getmsgbycode(code,msg)
 integer code
 character*240 msg

DESCRIPTION: This tool will provide the means to retrieve the message string that is
associated with a specific status code in the Status Message Files.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: msg-user pre-defined message string

RETURNS:
Table 6-47. PGS_SMF_GetMsgByCode Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES: See example for PGS_SMF_SetDynamicMsg().

NOTES: This tool provides a simple Status Message File (SMF) lookup function. It
should be used primarily for retrieving messages that contain C-style
formatting tokens to facilitate the replacement of those tokens with
runtime data.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

 6-113 EED2-333-001

Get Status Message

NAME: PGS_SMF_GetMsg()

SYNOPSIS

C: #include <PGS_SMF.h>

 void
PGS_SMF_GetMsg(
 PGSt_SMF_code *code,
 char mnemonic[],
 char msg[]);

FORTRAN: call pgs_smf_getmsg(code,mnemonic,msg)
 integer code
 character*32 mnemonic
 character*480 msg

DESCRIPTION: This tool will provide the means to retrieve status information from the
static buffer, for use when reporting on specific status conditions.

INPUTS: None

OUTPUTS: mnemonic-previously set mnemonic error/status string

 msg-previously set message string

RETURNS: None

EXAMPLES: See example for PGS_SMF_SetDynamicMsg().

NOTES: Until a call is made which sets status information into the buffer, none
exists. Therefore, first time calls to this function may return the following
for each of the arguments: code=0, mnemonic=””, and msg=””.

 A call to any of the PGS_SMF_Set*() functions will load status
information into the static buffer. To ensure that the caller of your function
can receive the intended information, calls to the PGS_SMF_Set*()
functions should be performed just prior to returning control back to the
caller.

 To ensure that the status information received pertains to the status
condition set during the last function call, it is imperative that the user
invoke this function immediately upon gaining control back from the
function that set the status information.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

 6-114 EED2-333-001

Get Action Message by Code

NAME: PGS_SMF_GetActionByCode()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GetActionByCode(
 PGSt_SMF_code code,
 char action[]);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_getactionbycode(code,action)
 integer code
 character*240 action

DESCRIPTION: This tool will provide the means to retrieve an action string corresponding
to a specific mnemonic code.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: action-associated action string

RETURNS:
Table 6-48. PGS_SMF_GetActionByCode Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_W_NOACTION No action defined
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char action[PGS_SMF_MAX_ACT_SIZE];

 returnStatus =
PGS_SMF_GetActionByCode(PGSSMF_E_UNDEFINED_UNIXERROR,
 action);
if (returnStatus != PGS_S_SUCCESS)
{
 /# could not retrieve action message #/
}

 6-115 EED2-333-001

else
{
 /# generate a status report and indicate action to be
 taken #/
}

FORTRAN: implicit none

 integer pgs_smf_getactionbycode
integer returnstatus
character*240 action
 returnstatus = pgs_smf_getactionbycode(
 PGSSMF_E_UNDEFINED_UNIXERROR, action);
 IF (returnstatus .NE. PGS_S_SUCCESS) THEN

C could not retrieve action message
 ELSE

C generate status report and indicate action to be taken
 ENDIF

NOTES: This routine will not return any associated action string if the creator of the
status code did not associate an action label when creating the Status
Message File entry for that status code. If this is the case, the resulting
parameter is action[0] = ‘\0’. Refer to the available documentation for the
‘smfcompile’ utility for additional information on how to define and attach
action messages to status code entries.

REQUIREMENTS: PGSTK-0591, PGSTK-0650

 6-116 EED2-333-001

Create Message Tag

NAME: PGS_SMF_CreateMsgTag()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_CreateMsgTag(
 char systemTag[]);

FORTRAN: integer function pgs_smf_createmsgtag(systemtag)
 char*60 systemtag

DESCRIPTION: The tool described here allows the user to generate a runtime specific
character string that may be useful for tagging important items of data. The
string contains system defined identifiers that, when combined, can be
useful for stamping non-product specific data for system traceability.

INPUTS: None

OUTPUTS: systemTag-system defined message string

RETURNS:
Table 6-49. PGS_SMF_CreateMsgTag Returns

Return Description
PGS_S_SUCCESS Success
PGSSMF_W_NO_CONSTRUCT_TAG No information to construct message tag
PGSSMF_E_BAD_REFERENCE Bad reference

EXAMPLES:

C: char systemTag[PGSd_SMF_TAG_LENGTH_MAX];
PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_CreateMsgTag(systemTag);
if (returnStatus == PGS_S_SUCCESS)
{
 /# create message tag successful #/
}

FORTRAN: implicit none

 integer pgs_smf_createmsgtag
char*60 systemtag
integer returnstatus

 6-117 EED2-333-001

returnstatus = pgs_smf_createmsgtag(systemtag)
 IF (returnstatus .EQ. PGS_S_SUCCESS) THEN

C create message tag successful
 ENDIF

NOTES: Currently, the only system identifiers used to create the message tag are:

the Science Software Configuration ID,

and the Production Run ID.

IMPORTANT TOOLKIT NOTES

The logical parameter identifiers, which are implicitly defined by the PC
tools, are internally mapped to an associated physical parameter through
the Process Control mechanism. Therefore before this tool can be used, a
Process Control Table MUST be created and properly filled out. In
addition, the following environment variables must be set to ensure proper
operation:

 PGS_PC_INFO_FILE path to process control file

REQUIREMENTS: PGSTK-0610

 6-118 EED2-333-001

Get Instrument Name

NAME: PGS_SMF_GetInstrName()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GetInstrName(
 PGSt_SMF_code code,
 char instr[]);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_getinstrname(code,instr)
 integer code
 character*10 instr

DESCRIPTION: This tool may be used to retrieve the instrument name from a given
error/status code.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: instr-corresponding instrument name as it appears in the message text
 file after the token %INSTR.

RETURNS:
Table 6-50. PGS_SMF_GetInstrName Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char instr[PGS_SMF_MAX_INSTR_SIZE];

 returnStatus = PGS_SMF_GetInstrName(MODIS_E_BAD_CALIBRATION
,instr);
if (returnStatus == PGS_S_SUCCESS)
{
 /# record instrument that generated instrument condition
#/
}

 6-119 EED2-333-001

FORTRAN: implicit none

 integer pgs_smf_getinstrname
integer returnstatus
character*10 instr

 returnstatus = pgs_smf_getinstrname(
 MODIS_E_BAD_CALIBRATION, instr)
IF (returnstatus .EQ. PGS_S_SUCCESS) THEN

C record instrument which generated status condition
ENDIF

NOTES: This function may be useful for programs which link in libraries created by
cooperating instrument teams, and where the need to distinguish the status
conditions associated with each instrument team arises.

REQUIREMENTS: PGSTK-0620, PGSTK-0650

 6-120 EED2-333-001

Generate Status Report

NAME: PGS_SMF_GenerateStatusReport()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_GenerateStatusReport(
 char *report);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_generatestatusreport(report)
 char*1024 report

DESCRIPTION: This tool provides the method for the user to create status reports for use
by Science Computing Facility personnel. Each call to this procedure
causes the user defined report to be appended to the status report log.

INPUTS: report-user report generated text

OUTPUTS: None

RETURNS:
Table 6-51. PGS_SMF_GenerateStatusReport Returns

Return Description
PGS_S_SUCCESS Success
PGSSMF_E_LOGFILE Error opening status, report or user files

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_GenerateStatusReport(“Write it into
status report file”);
if (returnStatus == PGS_S_SUCCESS)
{
 /# write to status report successful #/
}

FORTRAN: implicit none

 integer pgs_smf_cgeneratestatusreport
integer returnStatus

 6-121 EED2-333-001

 returnStatus = pgs_smf_cgeneratestatusreport(“Write it into
 status report file”)
IF (returnStatus .EQ. PGS_S_SUCCESS) THEN

C write to status report successful
ENDIF

NOTES: The system defined message tag will automatically be added to the user-
provided report.

 IMPORTANT TOOLKIT NOTES

 The logical file identifier (PGSd_SMF_LOGICAL_LOGSTATUS), which
is implicitly used by this tool, is internally mapped to an associated
physical file through the Process Control mechanism. Therefore before
this tool can be used, a Process Control Table MUST be created and
properly filled out. In addition, the following environment variables must
be set to ensure proper operation:

Table 6-52. Environment Variables
Variable Path

PGS_PC_INFO_FILE path to process control file

REQUIREMENTS: PGSTK-0650

 6-122 EED2-333-001

Send Runtime Data

NAME: PGS_SMF_SendRuntimeData()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_SendRuntimeData(
 PGSt_integer numfiles,
 PGSt_integer files[])
 PGSt_integer version[];

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_sendruntimedata(numfiles,files,version)
 integer numfiles
 integer files(*)
 integer version(*)

DESCRIPTION: This tool provides the user with a method for flagging specific runtime
data files for subsequent post-processing retrieval.

INPUTS: numfiles-exact number of runtime logical file identifiers loaded into the
 array ‘files’

 files-array of logical file identifiers which are to be preserved for later
 retrieval

 version-an associated array for identifying specific versions of the files
 identified in the preceding array of logical identifiers

OUTPUTS: None

RETURNS:
Table 6-53. PGS_SMF_SendRuntimeData Returns

Return Description

PGS_S_SUCCESS Success
PGSSMF_E_SENDRUNTIME_DATA Send runtime file data error
PGSSMF_M_TRANSMIT_DISABLE Transmission of files is disabled

EXAMPLES:

C: ==
/# These constants may be defined in the users include
 file(s). #/

 6-123 EED2-333-001

/# Note that these logical file identifiers would have to
 appear #/
/# in the Process Control file in order for this call to
 work. #/
#define MODIS1A 10
#define MODIS2 20
#define TEMP1 50
#define TEMP2 51
#define TEMP3 52

 PGSt_SMF_status returnStatus;
PGSt_integer numberOfFiles;
PGSt_integer logIdArray[6];
PGSt_integer version[6];
PGSt_integer version_MODIS1A_1 = 1;
PGSt_integer version_MODIS1A_2 = 2;
PGSt_integer version_MODIS2 = 1;
PGSt_integer version_TEMP = 1;

 logIdArray[0] = MODIS1A; version[0] = version_MODIS1A_1;
logIdArray[1] = MODIS1A; version[1] = version_MODIS1A_2;
logIdArray[2] = MODIS2; version[2] = version_MODIS2;
logIdArray[3] = TEMP1; version[3] = version_TEMP;
logIdArray[4] = TEMP2; version[4] = version_TEMP;
logIdArray[5] = TEMP3; version[5] = version_TEMP;
numberOfFiles = 6;

 returnStatus =
PGS_SMF_SendRuntimeData(numberOfFiles,logIdArray,version);
if (returnStatus == PGS_S_SUCCESS)
{
 /# send runtime data success #/
}

FORTRAN:

C The following constants may be defined in the users include file(s).

C Note that the specific logical file identifiers would have to appear

C in the process control file in order for this call to work.

implicit none

 integer pgs_smf_sendruntimedata
integer modis1a
parameter (modis1a = 10)
integer modis2
parameter (modis2 = 20)

 6-124 EED2-333-001

integer temp1
parameter (temp1 = 50)
integer temp2
parameter (temp2 = 51)
integer temp3
parameter (temp2 = 52)

 integer returnStatus
integer numberOfFiles
integer logIdArray(6)
integer version(6)
integer version_modis1a_1
integer version_modis1a_2
integer version_modis2
integer version_temp

 version_modisa_1 = 1
version_modisa_2 = 2
version_modis2 = 1
version_temp = 1

 logIdArray(1) = modis1a
version(1) = version_modis1a_1

 logIdArray(2) = modis1a
version(2) = version_modis1a_2

 logIdArray(3) = modis2
version(3) = version_modis2

 logIdArray(4) = temp1
version(4) = version_temp

 logIdArray(5) = temp2
version(5) = version_temp

 logIdArray(6) = temp3
version(6) = version_temp

 numberOfFiles = 6

return_status =
pgs_smf_sendruntimedata(numberOfFiles,logIdArray,version)

if (return_status .EQ. PGS_S_SUCCESS) then

C send runtime data success
endif

 6-125 EED2-333-001

NOTES: Repeated calls to this tool will cause previously requested files to be
superseded with the list provided during the last call.

 IMPORTANT TOOLKIT NOTES

 This tool does not trigger the spontaneous transmission of runtime files
and e-mail notification, as it did in Toolkit 3. Rather, the requested files
are saved/marked for transmission following the normal termination of the
PGE process. The actual transmission procedure is performed by the
termination process (See PGS_PC_TermCom() for more information on
the steps required to perform this transmission).

 Please refer to the documentation for PGS_PC_TermCom() for directions
on how to activate/deactivate the Toolkit’s transmission capability.

REQUIREMENTS: PGSTK-0630

 6-126 EED2-333-001

Test Error Level

NAME: PGS_SMF_TestErrorLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestErrorLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testerrorlevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘E’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_SMF_boolean levelFlag;
int *intPtr;

 returnStatus = PGS_MEM_Malloc(&intPtr,sizeof(int)*10);
levelFlag = PGS_SMF_TestErrorLevel(returnStatus);
if (levelFlag
if (PGS_SMF_TestErrorLevel(returnStatus) == PGS_TRUE)
{
 /# Branch to handle error condition #/
}
else
{
 /# Some other status level returned #/
}

 6-127 EED2-333-001

FORTRAN: implicit none

 INTEGER pgs_pc_getnumberoffiles
INTEGER returnstatus
INTEGER numfiles
INTEGER levelflag
PARAMETER (ceres4 = 7090)
INTEGER ceres4

 returnstatus = pgs_pc_getnumberoffiles(ceres4,numfiles)
levelflag = pgs_smf_testerrorlevel(returnstatus)
IF (levelflag .EQ. PGS_TRUE) THEN

C Branch to handle error condition
ELSE

C Some other status level returned
ENDIF

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-128 EED2-333-001

Test Fatal Level

NAME: PGS_SMF_TestFatalLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestFatalLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testfatallevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘F’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

NOTES: NONE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-129 EED2-333-001

Test Message Level

NAME: PGS_SMF_TestMessageLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestMessageLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testMessagelevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘M’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

NOTES: None

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

REQUIREMENTS: PGSTK-0590

 6-130 EED2-333-001

Test Warning Level

NAME: PGS_SMF_TestWarningLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestWarningLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testwarninglevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘W’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

NOTES: None

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

REQUIREMENTS: PGSTK-0590

 6-131 EED2-333-001

Test User Information Level

NAME: PGS_SMF_TestUserInfoLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestUserInfoLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testuserinfolevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘U’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-132 EED2-333-001

Test Success Level

NAME: PGS_SMF_TestSuccessLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestSuccessLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testsuccesslevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘S’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-133 EED2-333-001

Test Notice Level

NAME: PGS_SMF_TestNoticeLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_boolean
PGS_SMF_TestNoticeLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_testnoticelevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘N’.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS: PGS_FALSE
PGS_TRUE

EXAMPLES: See example for PGS_SMF_TestErrorLevel();

NOTES: None

REQUIREMENTS: PGSTK-0590

 6-134 EED2-333-001

Test Status Level

NAME: PGS_SMF_TestStatusLevel()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_TestStatusLevel(
 PGSt_SMF_status code);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_teststatuslevel(code)
 integer code

DESCRIPTION: Given the mnemonic status code, this tool will return a defined status level
constant.

INPUTS: code-mnemonic error/status code generated by message compiler

OUTPUTS: None

RETURNS:
Table 6-54. PGS_SMF_TestStatusLevel Returns

Return Description

PGS_SMF_MASK_LEV_S Success level status
PGS_SMF_MASK_LEV_M Message level status
PGS_SMF_MASK_LEV_U User information level status
PGS_SMF_MASK_LEV_N Notice level status
PGS_SMF_MASK_LEV_W Warning level status
PGS_SMF_MASK_LEV_E Error level status
PGS_SMF_MASK_LEV_F Fatal level status
PGSSMF_E_UNDEFINED_CODE Undefined code

EXAMPLES:

C: PGSt_SMF_status returnStatus;
int *intPtr;

 returnStatus = PGS_MEM_Malloc(&intPtr,sizeof(int)*10);
switch(PGS_SMF_TestStatusLevel(returnStatus))
{
 case PGS_SMF_MASK_LEV_S:

 6-135 EED2-333-001

 /# This is a success level status #/
 break;

 case PGS_SMF_MASK_LEV_M:
 /# This is a message level status #/
 break;

 case PGS_SMF_MASK_LEV_U:
 /# This is a user information level status #/
 break;

 case PGS_SMF_MASK_LEV_N:
 /# This is a notice level status #/
 break;

 case PGS_SMF_MASK_LEV_W:
 /# This is a warning level status #/
 break;

 case PGS_SMF_MASK_LEV_E:
 /# This is a error level status #/
 break;

 case PGS_SMF_MASK_LEV_F:
 /# This is a fatal level status #/
 break;

 default:
 /# Undefined status level #/
 break;
}

FORTRAN: implicit none

 INTEGER pgs_pc_getnumberoffiles
INTEGER returnstatus
INTEGER numfiles
INTEGER levelmask
PARAMETER (ceres4 = 7090)
INTEGER ceres4

 returnstatus = pgs_pc_getnumberoffiles(ceres4,numfiles)
levelmask = pgs_smf_teststatuslevel(returnstatus)
IF (levelmask .EQ. PGS_SMF_MASK_LEV_S) THEN

C This is a success level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_M) THEN

C This is a message level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_U) THEN

 6-136 EED2-333-001

C This is a user information level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_N) THEN

C This is a notice level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_W) THEN

C This is a warning level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_E) THEN

C This is a error level status
ELSE IF (levelmask .EQ. PGS_SMF_MASK_LEV_F) THEN

C This is a fatal level status
ELSE

C Undefined status level
ENDIF

NOTES: The returned level constants are ordered by severity with
PGS_SMF_MASK_LEV_S having a small integral value and
PGS_SMF_MASK_LEV_F having the highest. This enables you to
perform conditional tests between a particular status code and one of the
provided level constants.

REQUIREMENTS: PGSTK-0590

 6-137 EED2-333-001

Begin Function

NAME: PGS_SMF_Begin()

SYNOPSIS:

C: #include <PGS_SMF.h>

PGSt_SMF_status
PGS_SMF_Begin(
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_begin(funcname)
character*100 funcname

DESCRIPTION: A call to this tool signals to SMF that a function has started, and thus, the
current message indent level should be incremented.

INPUTS:
Table 6-55. PGS_SMF_Begin Returns

Name Description

funcname The name of the function which calls this routine.

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_Begin(“CallingFunction”);

FORTRAN: integer pgs_smf_begin

integer returnStatus

 returnStatus = pgs_smf_begin(‘CallingFunction’)

NOTES: A message will be written to the status log file indicating that the specified
function has started.

REQUIREMENTS: PGSTK-0580,0590,0650,0663

 6-138 EED2-333-001

End Function

NAME: PGS_SMF_End()

SYNOPSIS:

C: #include <PGS_SMF.h>

 PGSt_SMF_status
PGS_SMF_End(
 char *funcname);

FORTRAN: include ‘PGS_SMF.f’

 integer function pgs_smf_end(funcname)
character*100 funcname

DESCRIPTION: A call to this tool signals to SMF that a function has completed, and thus,
the current message indent level should be decremented.

INPUTS:
Table 6-56. PGS_SMF_End Returns

Name Description

funcname The name of the function which calls this routine.

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 returnStatus = PGS_SMF_End(“CallingFunction”);

FORTRAN: implicit none

 integer pgs_smf_end

 integer returnStatus

 returnStatus = pgs_smf_end(‘CallingFunction’)

NOTES: A message will be written to the status log file indicating that the specified
function has completed.

REQUIREMENTS: PGSTK-0580,0590,0650,0663

 6-139 EED2-333-001

Set Arithmetic Trap

We have found that this function could not be implemented in a POSIX compliant manner
across all development platforms. We note, however, that with the exception of one
platform (IBM), all machines, by default, enable their own implementation-dependent
floating-point exception handling features. In a general sense, these features provide the
functional equivalent of the Toolkit exception handling mechanism. See “Investigation
Results on the use of Signal Exception Handling for ECS Approved Computing Platforms”
on the Toolkit Primer web page for more details.

NAME: PGS_SMF_SetArithmeticTrap()

SYNOPSIS:

C: #include <PGSSMF.h>

 PGSt_SMF_status
PGS_SMF_SetArithmeticTrap(
 void (*func)(int signo));

FORTRAN: TBD

DESCRIPTION: This tool should be used to specify a signal handling function to be called
to handle arithmetic exception events.

INPUTS: func-signal handling function

OUTPUTS: None

RETURNS:
Table 6-57. PGS_SMF_SetArithmeticTrap Returns

Return Description

PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error

EXAMPLES:

C: PGSt_SMF_status returnStatus;

 void SignalHandler(int signo)
{
 /# algorithm to handle SIGFPE #/
}

 main()
{
 /# initialization section #/

 6-140 EED2-333-001

 returnStatus = PGS_SMF_SetArithmeticTrap(SignalHandler);
 if (returnStatus == PGS_S_SUCCESS)
 {
 /# signal trap set successfully #/
 }
 else
 {
 /# signal trap not set #/
 exitStatus = 1;
 goto EXIT;
 }
 /# main body #/
 .
 .
 .
 for (alt=5000; alt<100000; alt+500)
 {
 density[alt]=(GAS_CONST * temp[alt]) / pressure[alt];
 }
 .
 .
 .
 EXIT:
 exit(existStatus);
} /# end main #/

FORTRAN: TBD
NOTES: Use NULL in place of a signal handling function to set the Toolkit default

signal handling function. This handler will force an exit from the user’s
program, which is generally more acceptable than the system’s default
action (i.e., core dump).

 Upon successful completion of the user’s signal handling function,
program control will be returned to the point where the fault occurred. As
a side-effect, the default Toolkit signal handling function will be restored
to safeguard against future occurrences of this event.

 The user’s signal handling routine must accept the integer argument for the
signal number. It is not required for the user to take any action on the
value; it is strictly for informational purposes only.

 This tool only responds to the POSIX signal SIGFPE; all other signals
need to be handled by other means.

REQUIREMENTS: PGSTK-0660

 6-141 EED2-333-001

6.2.2.3 Error and Status Message File Creation Tool

Status Message File Creation

NAME: smfcompile

SYNOPSIS:

C: smfcompile -f textfile [-r] [-i]

 smfcompile -f textfile -c [r] [i]

FORTRAN: smfcompile -f textfile -f77 [-r] [-i]

ALL: smfcompile -f textfile -all [-r] [-i]

Ada: smfcompile -f textfile -ada [-r] [-i]

DESCRIPTION: This utility generates runtime status message files and language dependent
include files from user-defined status message text files.

INPUTS: textfile-status message text file (e.g., PGS_IO_100.t)

• c-create C include file

• f77-create FORTRAN include file

• all-create FORTRAN, C and Ada include files

• r-redirect the created ASCII runtime message file to the directory set in the
environment variable “PGSMSG”

• i-redirect the created language-specific include file to the directory set in
the environment variable “PGSINC”

OUTPUTS: Language-specific include file and ASCII runtime message file (an Ada
 package specification will be produced in place of an include file
 when the ‘-ada’ switch is used).

RETURNS: 1-error occurred

 0-successful operation

EXAMPLES: smfcompile -f PGS_IO_100.t (produces PGS_IO_100.h and PGS_100)

 smfcompile -f PGS_IO_100.t -c (produces PGS_IO_100.h and PGS_100)

 smfcompile -f PGS_IO_100.t -f77 (produces PGS_IO_100.f and
 PGS_100)

 6-142 EED2-333-001

 smfcompile -f PGS_IO_100.t -all (produces PGS_IO_100.f,
 PGS_IO_100.h, PGS_IO_100.a and PGS_100)

NOTES: The environment variable PGSMSG must be set to the local Toolkit
installation directory ‘/../pgs/message’ in order for the Toolkit to function
properly. The reason for this is that Toolkit status message files will
already reside in this directory upon completion of the Toolkit installation
procedure; these files must be visible at runtime for the Toolkit to function
properly.

 If you do not specify the “-r” input parameter to the smfcompile, then
make sure that the newly created ASCII runtime message file is moved to
the directory set in the environment variable “PGSMSG”.

REQUIREMENTS: PGSTK-0581, PGSTK-0590, PGSTK-0591, PGSTK-0600, PGSTK-0650,
PGSTK-0664

 6-143 EED2-333-001

6.2.3 Process Control Tools

The Process Control Tools perform the task of communicating Process Control information to
the PGE. This information may consist of Production Run ID; Science Software ID; physical file
names (or Universal Reference identifiers); input file metadata/ attributes; and PGE specific
runtime parameter information. Access to this data is provided through a library API and a
command-level interface, as described in detail below.

For Toolkit 5, an additional tool has been created which allows the user to query on the type of
file that is of current interest. This tool, PGS_PC_GetReference, provides the user with the
means to determine whether a file is of type temporary or product.

Another important change for Toolkit 5 involves the removal of most Toolkit dependency
information based on environment variables. All the environment variables that define the
default location for PCF information, for each PCF section (e.g., product input), have been
replaced with section headers in the PCF. The means to provide this default information is still
there, but the method has been changed. To reduce the number of environment variables that the
user would otherwise, as in the past, be required to set.

Several new tools were added for Toolkit 4; chief among them was the product metadata retrieval
tools PGS_PC_GetFileAttr and PGS_PC_GetFileByAttr. These tools provide the means to
retrieve metadata that results from an inventory search; a search performed, by the Planning and
Data Processing subsystem, as part of the normal processing setup prior to PGE execution. These
tools should not be confused with the Metadata tools that are more specialized tools for
managing the various types of metadata (See Section 6.2.1.4). These latter tools provide for the
generation and association of product metadata whereas the former only provide for the retrieval
of product metadata. Once the definition for metadata matures and the design for managing it in
the data server becomes clearer, it may be possible to unify these tools in such a way as to
provide for the greatest degree of benefit to the user.

In addition to the above, several new tools were added in Toolkit 4 to provide command, or shell,
level access to most of the process control functionality delivered in Toolkit 3. This additional
interface will provide for a greater degree of flexibility, when developing PGEs, by allowing the
user to take advantage of standard shell level features when manipulating process control
information.

However, some of these new tools have a different objective. To provide for a more seamless
integration of the Toolkit with a PGE, a few command utilities have been incorporated which
perform Toolkit initialization and termination procedures; these steps are necessary to support
the Toolkit to its fullest extent. Since these tools are used outside of the PGE, they do not place
an additional burden on the development of a PGE. The user is however encouraged to activate
these tools whenever testing is performed. To provide for this eventuality, there is now a shell
command that provides an integrated solution for the inclusion of these tools during PGE testing.

As newer, higher-level, tools have emerged, greater has the need become to abstract away the
older, lower-level tools. To safeguard against future changes in the Toolkit API, the
PGS_PC_GetPCSData and PGS_PC_PutPCSData routines were removed from the User’s Guide

 6-144 EED2-333-001

in Toolkit 4. This step is necessitated by the possibility of having to support a different Process
Control implementation for the DAAC environment. We regret any inconvenience that this may
cause.

In order for these tools to function, the actual process control information needs to be specified in
a Process Control file (PCF) prior to activation of the PGE. Each Process Control file contains
various subject fields to hold specific runtime information. All product/support/temporary file
I/O subject fields follow a similar format; the ones that differ deal with system defined and user
defined parameter information. Each subject-field entry contains a key identifier and numerous
attributes that describe the particular entry.

To support testing of a PGE, the user must create entries in a PCF to account for all file inputs,
all file outputs (except intermediate and temporary), and all parameter information that the
particular PGE depends on. The key identifiers that name each entry, also need to be represented
as logical identifiers in the PGE software. Then at runtime, the attributes for a particular entry
may be retrieved by passing a specific key identifier to the appropriate PC Toolkit function.
(Note that certain IO Toolkit functions access the file I/O entries when
product/support/temporary file key identifiers are passed to them) For this reason, it would be
prudent to create a meaningful constant identifier for each key identifier in the PCF, e.g.,
TEMP1=100.

This process of defining a PCF will need to be performed for every unique instance of a PGE. At
runtime, these tools will access the particular PCF that is pointed to by the environment variable
PGS_PC_INFO_FILE.

The measures outlined in the preceding paragraph must be performed to provide the minimal
level of PGS emulation required to support the Toolkit, since many Toolkit functions rely on the
Process Control mechanism for I/O and parameter information. The Process Control File
‘PCF.v5,’ which was delivered along with the Toolkit in directory ‘$PGSHOME/runtime,’
contains all the necessary Toolkit dependencies, some of which may need to be customized for
certain Toolkit functions. To avoid PCF collisions between Toolkit and developer
dependencies, logical identifiers in the range 10,000 to 10,999 have been reserved
exclusively for Toolkit use; any other valid positive integer may be used for development
purposes.

To mediate against any potential problems caused by an improperly constructed Process Control
File; an additional tool has been added which can be used by the developer to screen a PCF for
syntax errors and missing Toolkit dependencies. For more information on the usage of this
utility, refer to the section below for the ‘pccheck’ tool.

Please refer to Appendix C for guidance on the construction of Process Control Files and to
examine a sample PCF. More details and examples on the usage of the ‘pccheck’ utility are also
included in this appendix.

 6-145 EED2-333-001

6.2.3.1 Process Control Command Tools

Toolkit Shell Script Command

NAME: PGS_PC_Shell.sh

SYNOPSIS: PGS_PC_Shell.sh [-h] <PGE file> <Init string> <PCF location>
<SMF Cache Size> [-v] [-p]

C: N/A

FORTRAN: N/A

DESCRIPTION: This shell script accepts four command line arguments as input. The first
argument is the PGE to run. This may be a shell script or an executable.
The second argument is the Init string that contains 4 binary digits that
define how the Toolkit will behave. Together, these instruct the shell about
what to do in the case of using/not using shared memory or using/not using
log files. The third argument is the location of the Process Control File
(PCF). The forth argument is the SMF cache size. A fifth argument may be
used to run this script in verbose mode. A sixth argument may be used to
pass the return value of the PGE through as the return value of the script.

INPUTS: PGE file-The full path/file name of the PGE to be run

 Init string-The string to be passed in with the instructions about what to
do with shared memory and the log file. See NOTES section for
complete description of each field in the Init string flag.

PCF location-The full path/file name of the Process Control File (PCF)

SMF Cache Size-size of SMF message cache in records

v-Run in verbose mode. Output status messages displaying settings,
current file being run.

 p-Make the return value of this script be the return value of the PGE if the
PGE is run. If the PGE does not get run then revert to the normal method
of return values for this shell.

 h-Upon receiving the -h flag a short description of the usage of
PGS_PC_Shell.sh will be provided to the user and the command will exit.

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM

 6-146 EED2-333-001

PGS_SH_MEM_INIT
PGS_SH_PC_DELETETMP
PGS_SH_SMF_SENDRUNTIME
PGS_SH_SMF_SENDLOGFILE
PGS_SH_MEM_TERM
PGS_SH_SMF_LOGFILE
PGS_SH_PC_LOADDATA
PGS_SH_PC_ENV
PGS_SH_SMF_SHMMEM

EXAMPLES: PGS_PC_Shell.sh -h
PGS_PC_Shell.sh /usr/PGE/somePGE 1111
 /usr/PGE/data/PCF.current 50 -v
PGS_PC_Shell.sh /usr/home/PGE/runFile 1010
 /home/PCFDATA/pcf.data 200
PGS_PC_Shell.sh /usr/PGEhome/runThis 0000
 /home/Data/MY.pcf 150 -p

NOTES: This shell script parses the input to ensure correctness and will report any
input problems to the user.

 This shell script acts as the outer most shell for the PGE.

 The Init string flag consists of four (4) fields. Each field contains a single
digit. The digits should be a one (1) or a zero (0). Therefore the Init String
would appear as “1010” or “1111”, etc. For ease of use PGS_PC_Shell.sh
will interpret any non-zero digit as a one. Therefore, 8020 would be
interpreted as 1010, and 5500 would be interpreted as 1100, etc. The field
descriptions are listed as follows:

 FIELD 1 - 1 (or any non-zero digit) = Use shared memory if
 available
 0 = Do not use shared memory

 FIELD 2 - 1 (or any non-zero digit) = If shared memory fails
 continue using ASCII
 files
 0 = If shared memory fails stop now

 FIELD 3 - 1 (or any non-zero digit) = Use Log Files
 0 = Do not use Log Files

 FIELD 4 - 1 (or any non-zero digit) = If Log Files fail
 continue anyway
 0 = If Log Files fail stop now

In order to enable PGS_PC_Shell.sh to delete temporary files
automatically at PGE termination, one needs to call

 6-147 EED2-333-001

PGS_IO_Gen_Temp_Delete within PGE or PGS_PC_TempDelCom
within the PGE shell. These functions mark the temporary file for deletion
(they add flag "D" to temporary files version number) in the PCF. The
shell script that physically removes temporary files is PGS_PC_Term
Com. This is usually the last call in the PGE shell.

REQUIREMENTS: PGSTK-1312

 6-148 EED2-333-001

Toolkit Initialization Command

NAME: PGS_PC_InitCom

SYNOPSIS: PGS_PC_InitCom <shared-memory-flag> <log-file-flag> <num.-smf-
records>

C: N/A

FORTRAN: N/A

DESCRIPTION: This program performs the initialization for the PGE.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-flag stating whether or not to use shared memory

 argv[2]-flag stating whether or not to write to a log file

 argv[3]-number of SMF records to store in shared memory

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_MEM_INIT
PGS_SH_SMF_LOGFILE
PGS_SH_PC_LOADDATA
PGS_SH_PC_ENV
PGS_SH_SMF_SHMMEM

EXAMPLES: PGS_PC_InitCom ShmOn LogOn 50
PGS_PC_InitCom ShmOff LogOn 100

NOTES: This program is intended to be run from within PGS_PC_Shell.sh and is
not designed to be run from the command line as a stand-alone program.

REQUIREMENTS: PGSTK-1311

 6-149 EED2-333-001

Get Physical File Reference Command

NAME: PGS_PC_GetReferenceCom

SYNOPSIS: PGS_PC_GetReferenceCom <logical ID> <version>

DESCRIPTION: This program will retrieve the physical file reference associated with a
logical ID.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the configuration parameter

 argv[2]-version of the physical file reference to retrieve. A one-to-one
relationship exists between all files except for product input files.

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297
Version=1

 Get the physical file reference associated
with ID 12297

 REFERENCE=`PGS_PC_GetReferenceCom $LogicalID $Version`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and versions remaining
can be parsed.
 FILENAME=`echo $REFERENCE | cut -f1 -d” “`
 VERSIONS=`echo $REFERENCE | cut -f2 -d” “`
FILENAME now contains the file reference.
VERSIONS now contains the versions remaining.
else

 6-150 EED2-333-001

report an error found
fi
.
.
.

Another method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297
Version=1

 # Get the physical file reference associated
with ID 12297
set `PGS_PC_GetReferenceCom $LogicalID $Version`
The file reference and versions remaining will
now appear in two separate tokens.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
 FILENAME=$1
 VERSIONS=$2
FILENAME now contains the file reference.
VERSIONS now contains the versions remaining.
else
report an error found
fi
.
.
.

A final method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297
Version=1

 # Get the physical file reference associated
with ID 12297
set “`PGS_PC_GetReferenceCom $LogicalID $Version`”

 6-151 EED2-333-001

Placing double quotes around the command causes
the string to be placed in one token.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and versions remaining
can be parsed.
 FILENAME=`echo $1 | cut -f1 -d” “`
 VERSIONS=`echo $1 | cut -f2 -d” “`
FILENAME now contains the file reference.
VERSIONS now contains the versions remaining.
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE script.

 The user will be required to parse the file name and number of files
remaining from the output string. This can be done using the cut command
(See EXAMPLES). The file name and versions remaining will be
separated by a single space.

REQUIREMENTS: PGSTK-1290

 6-152 EED2-333-001

Get User Defined Configuration Parameters Command

NAME: PGS_PC_GetConfigDataCom

SYNOPSIS: PGS_PC_GetConfigDataCom <logical ID>

DESCRIPTION: This program will retrieve user defined configuration parameters from the
PCF or shared memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the configuration parameter

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297

 # Get the parameter associated with ID 12297
CONFIG=`PGS_PC_GetConfigDataCom $LogicalID`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-1291

 6-153 EED2-333-001

Get Number Of Files Command

NAME: PGS_PC_GetNumberOfFilesCom

SYNOPSIS: PGS_PC_GetNumberOfFilesCom <logical ID>

DESCRIPTION: This program will retrieve the number of product input files from the PCF
or shared memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the product input files to be inquired

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297

 # Get the number of product files associated
with ID 12297
NUMFILES=`PGS_PC_GetNumberOfFilesCom $LogicalID`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-1315

 6-154 EED2-333-001

Get File Attribute Command

NAME: PGS_PC_GetFileAttrCom

SYNOPSIS: PGS_PC_GetFileAttrCom <logical ID> <version> <format flag>

DESCRIPTION: This program will retrieve a file attribute string or location associated with
a product input file from the PCF or shared memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the configuration parameter

 argv[2]-version number of file to retrieve attribute for

 argv[3]-format flag that states whether to return the attribute or the
location of the file attribute. Possible values are:

 PGSd_PC_ATTRIBUTE_LOCATION
PGSd_PC_ATTRIBUTE_STRING

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR
PGS_SH_PC_TRUNC

EXAMPLES: The following example is valid for the Bourne and Korn shells only.

 # This is within a shell script - probably within the
PGE script.
Set our format flag values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_PC_ATTRIBUTE_LOCATION=1}
: ${PGSd_PC_ATTRIBUTE_STRING=2}

 LogicalID=12297
Version=1
FormatFlag=$PGSd_PC_ATTRIBUTE_STRING

 # Get the file attribute string associated with
the first file of product ID 12297
ATTR=`PGS_PC_GetFileAttrCom $LogicalID $Version $FormatFlag`
RETVAL=$?

 6-155 EED2-333-001

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
Variable ATTR now contains the attribute string
else
report an error found
fi
.
.
.

 If the user wishes to use a c-shell script this is the recommended technique
to use. In a c-shell script if the user fails to use this technique the script
will give undefined results (see NOTES).

 # This is within a shell script - probably within the
PGE script.
Set our format flag values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
set PGSd_PC_ATTRIBUTE_LOCATION=1
set PGSd_PC_ATTRIBUTE_STRING=2

 set LogicalID=12297
set Version=1
set FormatFlag=$PGSd_PC_ATTRIBUTE_STRING

 # Get the file attribute string associated with
the first file of product ID 12297
PGS_PC_GetFileAttrCom $LogicalID $Version $FormatFlag
>out.file
set RETVAL=$status

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
File out.file now contains the attribute string
else
report an error found
fi
.
.
.

 6-156 EED2-333-001

NOTES: This program is designed to be run from within the PGE.

 If the format flag passed in is equal to PGSd_PC_ATTRIBUTE_STRING
the return value is the attribute string appended as one long string. If the
format flag passed in is equal to PGSd_PC_ATTRIBUTE_LOCATION
the return value is the attribute location that is a full path and file name of
the file containing the attribute string.

 If the user wishes to use this program in a c-shell script the output of the
program must be re-directed to a file and the file can then be manipulated.
A long string can not be assigned to a variable in a c-shell script.
Attempting to assign a long string to a variable will give undefined results
in the c-shell.

REQUIREMENTS: PGSTK-1314

 6-157 EED2-333-001

Get the Temporary File Reference Command

NAME: PGS_PC_GetTempReferenceCom

SYNOPSIS: PGS_PC_GetTempReferenceCom <logical ID> <duration of file>

DESCRIPTION: This program will retrieve a temporary file reference from the PCF. If a
reference does not exist it will create one.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the temporary file reference

 argv[2]-file duration

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 # Set our endurance values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_IO_Gen_NoEndurance=0}
: ${PGSd_IO_Gen_Endurance=1}

 LogicalID=12297
Endurance=$PGSd_IO_Gen_NoEndurance

 # Get the temporary physical file reference associated
with ID 12297
TEMPREFERENCE=`PGS_PC_GetTempReferenceCom $LogicalID
$Endurance`
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and existence flag
can be parsed.
 FILENAME=`echo $TEMPREFERENCE | cut -f1 -d” “`
 EXISTS=`echo $TEMPREFERENCE | cut -f2 -d” “`

 6-158 EED2-333-001

FILENAME now contains the file reference.
EXISTS now contains the existence flag.
else
report an error found
fi
.
.
.

Another method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 # This is within a shell script - probably within the
PGE script.

 # Set our endurance values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_IO_Gen_NoEndurance=0}
: ${PGSd_IO_Gen_Endurance=1}

 LogicalID=12297
Endurance=$PGSd_IO_Gen_NoEndurance

 # Get the temporary physical file reference associated
with ID 12297
set `PGS_PC_GetTempReferenceCom $LogicalID $Endurance`
The file reference and existence flag will
now appear in two separate tokens.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
 FILENAME=$1
 EXISTS=$2
FILENAME now contains the file reference.
EXISTS now contains the existence flag.
else
report an error found
fi
.
.
.

A final method of performing this task is as listed below. This method
only works in the Korn and Bourne shells.

 6-159 EED2-333-001

 # This is within a shell script - probably within the
PGE script.

 # Set our endurance values. (This is Bourne shell format)
These values are set in PGS_PC_Shell.sh.
: ${PGSd_IO_Gen_NoEndurance=0}
: ${PGSd_IO_Gen_Endurance=1}

 LogicalID=12297
Endurance=$PGSd_IO_Gen_NoEndurance

 # Get the temporary physical file reference associated
with ID 12297
set “`PGS_PC_GetTempReferenceCom $LogicalID $Endurance`”
Placing double quotes around the command causes
the string to be placed in one token.
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
This is how the file name and versions remaining
can be parsed.
 FILENAME=`echo $1 | cut -f1 -d” “`
 EXISTS=`echo $1 | cut -f2 -d” “`
FILENAME now contains the file reference.
EXISTS now contains the existence flag.
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

 If a temporary file reference does not exist for the logical ID then a
reference is created. The user will be able to determine if the reference
existed by checking the existence flag portion of the program return (See
EXAMPLES).

 The user will be required to parse the file name and the existence flag from
the output string. This can be done using the cut command (See
EXAMPLES). The file name and the existence flag will be separated by a
single space.

REQUIREMENTS: PGSTK-0531, PGSTK-0535, PGSTK-1291

 6-160 EED2-333-001

Delete Temporary File Command

NAME: PGS_PC_TempDeleteCom

SYNOPSIS: PGS_PC_TempDeleteCom <logical ID>

DESCRIPTION: This program will flag a temporary file as deleted in the PCF or shared
memory at the command line.

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-logical ID of the temporary file to be deleted

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_NODATA
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell.

 LogicalID=12297

 # Delete the temporary file with the logical ID 12297
PGS_PC_TempDeleteCom $LogicalID
RETVAL=$?

 # Check the return value
if [$RETVAL -eq 0]
then
continue normal processing
else
report an error found
fi
.
.
.

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-0521

 6-161 EED2-333-001

Get File Size Command

NAME: PGS_PC_GetFileSizeCom

SYNOPSIS: PGS_PC_GetFileSizeCom <logical ID>

DESCRIPTION: This program will retrieve the file size of the file associated with the input
logical ID and version in the users Process Control File (PCF).

INPUTS: argc-number of command line arguments
argv[0] - logical ID (in the PCF) of the desired file
argv[1] - file version number

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_SYS_PARAM
PGS_SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PGE shell. This example assumes there is an entry for
for a file in the users PCF with logical ID 101

LogicalID=101
Version=1

Get the physical file size associated with the user's
input arguments LogicalID and Version

SIZE= `PGS_PC_GetFileSizeCom $LogicalID $Version`
RETVAL=$?

Check the return value

if [$RETVAL -eq 0]
then

SIZE now contains the file size.
continue normal processing...

:
:

else

handle error case...
 :
 :
fi

 6-162 EED2-333-001

NOTES: This program is designed to be run from within the PGE.

REQUIREMENTS: PGSTK-1290

 6-163 EED2-333-001

Toolkit Termination Command

NAME: PGS_PC_TermCom

SYNOPSIS: PGS_PC_TermCom <shared-memory-flag> <log-file-flag>

C: N/A

FORTRAN: N/A

DESCRIPTION: This program runs the functions necessary to clean up shared memory,
send runtime files, send logfiles, update the PCF, and remove temporary
files (it removes the temporary files if PGS_IO_Gen_Temp_Delete is
called within PGE or PGS_PC_TempCom is called within the PGE shell).

INPUTS: argc-number of command line arguments

 argv[0]-executable name (not processed but listed here anyway)

 argv[1]-flag stating whether or not to use shared memory

 argv[2]-flag stating whether or not to write to a log file

OUTPUTS: NONE

RETURNS: PGS_S_SUCCESS
PGS_SH_PC_DELETETEMP
PGS_SH_SMF_SENDRUNTIME
PGS_SH_SMF_SENDLOGFILE
PGS_SH_MEM_TERM

EXAMPLES: PGS_PC_TermCom ShmOff LogOff
PGS_PC_TermCom ShmOn LogOff

NOTES: The send file capability of PGS_PC_TermCom is SCF functionality.
This functionality will be disabled at the Release B DAACs, but will
remain available to the SCF toolkit.

The PGS_PC_TermCom tool was developed two years ago to allow SCF
developers to send files to other locations in the absence of a data
distribution capability. This toolkit tool was not meant to replace the ECS
DAAC distribution system, but to supply functionality prior to the system
availability. Instrument teams can use the distribution system, by writing
an ESDT for QA files. The subscription service (B.1) can then push the
files to the requestor.

In the B.0 timeframe, there is no push, per se. A work-around could be to
use the Version 0 Client ordering function. Or, an email message could be
sent, announcing the presence of a QA file. If this message were sent to a

 6-164 EED2-333-001

special account, a script could then be run to pull the QA files out of the
DAAC. This is a temporary solution, prior to B.1 operation.

If a PGE Fails:. Files are marked for sending, packaged up in a Failed
Production History tar file (if and only if the PGE fails), and archived on
the Data Server. The SCF is then notified and can retrieve it. If the PGE
succeeds, the marked files are not put into a tar file.

 The SCF Functionality:

This program is designed to be run from within the PGS_PC_Shell.sh
script and is not intended to be run as a stand alone program from the
command line. Running this program outside the script PGS_PC_Shell.sh
will give undefined results.

 Since this tool now supports the transfer of status and runtime files, certain
steps need to be performed by the user to ensure that this transfer operation
is carried-out properly.

 FILE TRANSFER SETUP

 The current transfer mechanism (ftp) requires the use of a ‘.netrc’ file,
which must reside in the user’s home directory on the execution host. ‘ftp’
accesses this file to establish a connection with the remote host. Once the
connection is made, the process of performing the actual file transfer can
proceed.

 This file must contain information in the following format:

machine <hostname> login <username> password <userpassword>

For example:

machine adriatic login guest password anonymous

For reasons of security, the ‘.netrc’ file should ONLY have read
permission for the user, (i.e., -rw-------).

(Refer to the man pages on netrc for more information.)

PROCESS CONTROL SETUP

As part of the transfer operation, this tool also transmits a notification
message to the interested parties to inform them as to the disposition of the
requested runtime and status files.

As with many other Process Control tools, this tool depends on certain
entries in the Process Control File. The values of these entries however are
user defined according to their local environment.

 6-165 EED2-333-001

Refer to the standard Process Control File to find the following entries:

 10109|TransmitFlag; 1=transmit,0=disable|0
- Set to 1 to enable file/e-mail transmission.

 10106|RemoteHost|<hostname>
- Host should be the same as that which appears in the ‘.netrc’ file.

 10107|RemotePath|<destination directory>
- Directory must be writeable and large enough to hold the
 transferred data.

 10108|EmailAddresses|<list of notification addresses>
- Notification message indicates which files have been transferred
 and where they currently reside.

WARNING-Do not attempt to transfer files to the same host and directory
that this program is running on. The original files will be deleted in
accordance with the ftp protocol for sending and receiving files. That is to
say that, upon determination that the destination file is the same as the
source; the destination file will be removed before sending the source file.

REQUIREMENTS: PGSTK-1311

 6-166 EED2-333-001

6.2.3.2 Process Control API Tools

Get a File Reference from Logical

NAME: PGS_PC_GetReference()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetReference(
 PGSt_PC_Logical prodID,
 PGSt_integer *version,
 char *referenceID)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getreference(prodid,version,referenceid)
 integer prodid
 integer version
 character*200 referenceid

DESCRIPTION: This tool may be used to obtain a physical reference (file name) from a
logical identifier.

INPUTS: prodID-User defined constant identifier that internally represents the
 current product.

version-Version of reference to get. Remember, for standard input files
there can be a many-to-one relationship.

OUTPUTS: referenceID-The actual file reference returned as a string

 version-The number of versions remaining for the requested Product ID

RETURNS:
Table 6-58. PGS_PC_GetReference Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUND link number does not have the data that mode is requesting
PGSPC_E_DATA_ACCESS_ERROR problem while accessing PCS data

 6-167 EED2-333-001

EXAMPLES:

C: #define MODIS1A 2530

 PGSt_integer version;
char referenceID[PGSd_PC_FILE_PATH_MAX];
PGSt_SMF_status returnStatus;

 /# Get first version of the file #/
version = 1;

 returnStatus =
 PGS_PC_GetReference(MODIS1A,&version,referenceID);

/# version now contains the number of versions remaining #/

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{ /# perform necessary operations on file #/ }
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer version
character*135 referenceid
integer returnstatus
integer pgs_pc_getreference
integer modis1a
parameter (modis1a = 2530)

C Get the first version of the file
version = 1

 returnstatus = getreference(modis1a,version,referenceid)

 if (returnstatus .ne. pgs_s_success)
 goto 9999
else

C perform necessary operations on file
 .
 .
 .
9999 return

 6-168 EED2-333-001

NOTES: All reference identifier strings are guaranteed to be no greater than
PGSd_PC_FILE_PATH_MAX characters in length (see PGS_PC.h).

 The version returns the number of files remaining for the product group.
For example, if there are eight (8) versions of a file when the user requests
version one (1) the value seven (7) is returned in version. When the user
requests version two (2) the value six (6) is returned in version, etc.
Therefore, it is not recommended to use version as a loop counter that is
also passed into PGS_PC_GetReference().

REQUIREMENTS: PGSTK-1290

 6-169 EED2-333-001

Access File Reference Type from PCF

NAME: PGS_PC_GetReferenceType()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetReferenceType(
 PGSt_PC_Logical identifier
 PGSt_integer *type)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getreferencetype(identifier,type)
 integer identifier
 integer type

DESCRIPTION: This tool may be used to ascertain the type of file reference that is
associated with a logical identifier within the science software.

INPUTS: identifier-The logical identifier as defined by the user. (This value must
 be mapped to an actual value via the PCF.)

OUTPUTS: type-Reference types that are defined in the PGS_PC header file.
 Possible values are:

 PGSd_PC_INPUT_FILE_NAME
 PGSd_PC_OUTPUT_FILE_NAME
 PGSd_PC_TEMPORARY_FILE
 PGSd_PC_INTERMEDIATE_INPUT
 PGSd_PC_INTERMEDIATE_OUTPUT
 PGSd_PC_SUPPORT_IN_NAME
 PGSd_PC_SUPPORT_OUT_NAME

RETURNS:
Table 6-59. PGS_PC_GetReferenceType Returns

Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_FILES_FOR_ID The Product ID does not contain a physical reference.
PGSPC_E_ENVIRONMENT_ERROR Environment variable not set
PGSPC_E_DATA_ACCESS_ERROR Error accessing Process Control Status data

 6-170 EED2-333-001

EXAMPLES:

C: #define INSTR_SCRATCH_SPACE 2001

 PGSt_SMF_status returnStatus;
PGSt_PC_Logical fileIdentifier;
PGSt_integer fileType;

 fileIdentifier = INSTR_SCRATCH_SPACE;

 /# getting the type attribute of a file #/

 returnStatus =
 PGS_PC_GetReferenceType(fileIdentifier,&fileType);
if (returnStatus != PGS_S_SUCCESS)
{
 goto EXCEPTION;
}
else
{
 switch (fileType)
 {
 case PGSd_PC_INPUT_FILE_NAME:
 case PGSd_PC_OUTPUT_FILE_NAME:
 case PGSd_PC_SUPPORT_IN_NAME:
 case PGSd_PC_SUPPORT_OUT_NAME:
 /#
 open standard product or support file
 #/
 returnStatus = PGS_IO_Gen_Open();
 .
 .
 .
 break;

 case PGSd_PC_INTERMEDIATE_INPUT:
 case PGSd_PC_INTERMEDIATE_OUTPUT:
 case PGSd_PC_TEMPORARY_FILE:
 /#
 open temporary or intermediate file
 #/
 returnStatus = PGS_IO_Gen_Temp_Open();
 .
 .
 .
 break;
 default:

 6-171 EED2-333-001

 /#
 invalid type returned only in the event that
 call to *GetReferenceType was not successful
 #/

 } /# end switch (fileType) #/
}
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 INTEGER INSTR_SCRATCH_SPACE
PARAMETER (INSTR_SCRATCH_SPACE = 2001)

 integer returnstatus
integer fileidentifier
integer filetype
integer pgs_pc_getreferencetype

 fileidentifier = INSTR_SCRATCH_SPACE

C getting the type attribute of a file

 returnstatus =
 pgs_pc_getreferencetype(fileidentifier,filetype)
if (returnstatus .ne. pgs_s_success) then
 goto 9999
else if (
 (filetype .eq. PGSd_PC_INPUT_FILE_NAME) .or.
 (filetype .eq. PGSd_PC_OUTPUT_FILE_NAME) .or.
 (filetype .eq. PGSd_PC_SUPPORT_IN_NAME) .or.
 (filetype .eq. PGSd_PC_SUPPORT_OUT_NAME)
) then

C open standard product or support file

 returnstatus = PGS_IO_Gen_OpenF(...);
 .
 .
 .
else if (
 (filetype .eq. PGSd_PC_INTERMEDIATE_INPUT) .or.
 (filetype .eq. PGSd_PC_INTERMEDIATE_OUTPUT) .or.
 (filetype .eq. PGSd_PC_TEMPORARY_FILE)
) then

 6-172 EED2-333-001

C open temporary or intermediate file

 returnstatus = PGS_IO_Gen_Temp_OpenF(...);
 .
 .
 .
else

C invalid type returned only in the event that
C call to *GetReferenceType was not successful

endif

9999 return

NOTES: This tool will return the reference type (mode) for files that have
references in a Process Control File (PCF). This tool will not identify
runtime parameters as such.

 In order for this tool to function properly, a valid Process Control File will
need to be created first. Please refer to Appendix C (User’s Guide) for
instructions on how to create and validate such a file.

REQUIREMENTS: PGSTK-1290.

 6-173 EED2-333-001

Generate a Unique ID

NAME: PGS_PC_GenUniqueID()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GenUniqueID(
 PGSt_PC_Logical prodID,
 char *uniqueID)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_genuniqueid(prodid,uniqueid)
 integer prodid
 character*200 uniqueid

DESCRIPTION: This tool may be used to generate a unique product identifier. This
identifier may be attached to file metadata to facilitate tracking of
production output. The identifier may include Production Run ID, the
Science Software Program ID, and the actual Product ID.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

OUTPUTS: uniqueID-The unique ID generated by this function. This ID will be
 returned as a string. The ID is guaranteed to be no greater than
 PGSd_PC_LABEL_SIZE_MAX in length (see PGS_PC.h).

RETURNS:
Table 6-60. PGS_PC_GenUniqueID Returns

Return Description

PGS_S_SUCCESS successful execution
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLES:
C: #define CERES3A 300

 PGSt_SMF_status returnStatus;
char uniqueID[PGSd_PC_LABEL_SIZE_MAX];

 returnStatus = PGS_PC_GenUniqueID(CERES3A,uniqueID);

 6-174 EED2-333-001

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

/# attach uniqueID into file metadata field #/

 }
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer returnstatus
character*200 uniqueid
integer pgs_pc_genuniqueid
integer ceres3a
parameter (ceres3a = 300)

 returnstatus = pgs_pc_genuniqueid(ceres3a,uniqueid)

 if (returnstatus .ne. pgs_s_success) then
 goto 9999
else

C attach uniqueid into file metadata field

 endif
 .
 .
 .

return

NOTES: If more than one product is being generated from the same PGE, then the
appropriate product identifier must be used as input to this function when
called from within the science software. Upon entry into this function all
input values will be checked to determine that legal values were passed in.
If any value is illegal, the function will return the proper error value to the
calling function. All unique identifier strings are guaranteed to be no
greater than PGSd_PC_LABEL_SIZE_MAX characters in length (see
PGS_PC.h).

REQUIREMENTS: PGSTK-1280.

 6-175 EED2-333-001

Get User Defined Configuration Values

NAME: PGS_PC_GetConfigData()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetConfigData(
 PGSt_PC_Logical configParamID,
 char *configParamVal)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getconfigdata(configparamid,
* configparamval)
 integer configparamid
 character*200 configparamval

DESCRIPTION: This tool may be used to import run-time configuration parameters into the
PGE.

INPUTS: configParamID-User defined constant that internally represents a
 configuration parameter.

OUTPUTS: configParamVal-A string representation of the configuration parameter
 value. No interpretation of this value will be done in the Toolkit;
 the value returned will be left to the application programmer.

RETURNS:
Table 6-61. PGS_PC_GetConfigData Returns
Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_CONFIG_FOR_ID no configuration data for product id
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLES:

C: #define MODIS1A_CONFIG1 2990

 char configParamVal[PGSd_PC_VALUE_LENGTH_MAX];
PGSt_SMF_status returnStatus;
long config1;

 6-176 EED2-333-001

 returnStatus =
 PGS_PC_GetConfigData(MODIS1A_CONFIG1,configParamVal);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{
 /# MODIS1A_CONFIG1 is integral parameter #/
 config1 = atoi(configParamVal);

 if (config1 > 0)
 {
 /# activate sub-process A #/
 }
 else
 {
 /# activate sub-process B #/
 }
}
 .
 .
 .

 EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 character*200 configparamval
integer returnstatus
integer pgs_pc_getconfigdata
integer config1
integer modis1a_config1
parameter (modis1a_config1 = 2990)

 returnstatus =
 pgs_pc_getconfigdata(modis1a_config1,configparamval)

 if (returnstatus .ne. success) then
 goto 9999
else

C
C modis1a_config1 is integral parameter
C assuming you have a function to convert character
C data to integer data - called.....strtoint.
C strtoint(configparamval,config1)

 6-177 EED2-333-001

 if (config1 .gt. 0) then
C activate sub-process A
 else
C activate sub-process B
 .
 .
 .
 endif

endif

return

NOTES: All configuration parameter value strings are guaranteed to be less than
PGSd_PC_VALUE_LENGTH_MAX characters in length (see
PGS_PC.h). There will be a shell script command version of this routine
to retrieve configuration information from the script.

REQUIREMENTS: PGSTK-1290.

 6-178 EED2-333-001

Get Number of Files Associated with a Product

NAME: PGS_PC_GetNumberOfFiles()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetNumberOfFiles(
 PGSt_PC_Logical prodID,
 PGSt_integer *numFiles)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getnumberoffiles(prodid,numfiles)
 integer prodid,
 integer numfiles)

DESCRIPTION: This tool may be used to determine the number of files that are associated
with a particular Product ID. A many-to-one relationship may exist with
Product Input, Product Output Support Input and Support Output files.
This function will give the user a way to determine how many files exist
for a product ID.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

OUTPUTS: numberOfFiles-Total number of files for a particular product ID.

RETURNS:
Table 6-62. PGS_PC_GetNumberOfFiles Returns

Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_FILES_FOR_ID incorrect number of configuration parameters
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLE:

C: #define CERES4 7090

 PGSt_integer numFiles;
PGSt_integer version;

 6-179 EED2-333-001

PGSt_SMF_status returnStatus;
int loopCounter;
char ceresFiles[10][PGSd_PC_FILE_PATH_MAX];

 returnStatus = PGS_PC_GetNumberOfFiles(CERES4,&numFiles);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

/# loop and get file names #/

 for (loopCounter = 0; loopCounter < numFiles;
 loopCounter++)
 {

/# specify which file to get #/

version = loopCounter + 1;

/# save references for future use #/

 returnStatus =
 PGS_PC_GetReference(CERES4,&version,
 ceresFiles[loopCounter]);
 }
}
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer numfiles
integer version
integer returnstatus
integer loopcounter
character*355 referenceid
character*355 ceresfiles(10)
integer pgs_pc_getnumberoffiles
integer pgs_pc_getreference
integer ceres4
parameter (ceres4 = 7090)

 returnstatus = pgs_pc_getnumberoffiles(ceres4,numfiles)

 6-180 EED2-333-001

 if (returnstatus .ne. pgs_s_success)
 goto 9999
 else
 do 100 loopcounter = 1,numfiles
 version = loopcounter
 returnstatus = pgs_pc_getreference(ceres4,
 * version,
 * ceresfiles(loopcounter))
 100 continue
 .
 .
 .
 9999 return

NOTES: This function will allow a one-to-many relationship to exist between
logical and physical file name. The file version number is returned in
reverse order. For example, if there are eight (8) versions of a Product ID
and the user requests the first one, the value eight (8) would be returned in
numFiles.

REQUIREMENTS: PGSTK-1290

 6-181 EED2-333-001

Get the Attribute of the File Associated with the Particular
Product ID and Version

NAME: PGS_PC_GetFileAttr()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetFileAttr(
 PGSt_PC_Logical prodID,
 PGSt_integer version
 PGSt_integer formatFlag,
 PGSt_integer maxSize,
 char *fileAttribute)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getfileattr(prodid,version,formatflag,fileAttribute)
 integer prodid
 integer version
 integer formatflag
 integer maxSize
 character*(*) fileAttribute

DESCRIPTION: This tool may be used to retrieve an attribute associated with a particular
product ID and version number. The data placed in the attribute will be
defined and interpreted by the user. The SDP Toolkit has no dependency
on the attribute.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

version-The particular version of the Product ID that the attribute is being
requested from. With files there may be a many-to-one
relationship.

 formatFlag-Flag indicating method of attribute return. Possible values
 are:

 PGSd_PC_ATTRIBUTE_LOCATION
 PGSd_PC_ATTRIBUTE_STRING

 6-182 EED2-333-001

maxSize-Amount of space allocated for attribute if formatFlag is
PGSd_PC_ATTRIBUTE_STRING.

OUTPUTS: fileAttribute-The actual file attribute

If formatFlag is PGSd_PC_ATTRIBUTE_LOCATION then fileAttribute
will return the file containing the attribute.

If formatFlag is PGSd_PC_ATTRIBUTE_STRING then fileAttribute will
return the attribute as a string.

RETURNS:
Table 6-63. PGS_PC_GetFileAttr Returns

Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUND no reference found matching product id and version number
PGSPC_W_ATTR_TRUNCATED not enough space passed in for attribute
PGSPC_W_NO_ATTR_FOR_ID a physical reference was found but no attribute exists for

that reference
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data
PGSPC_E_INVALID_MODE invalid format flag value passed in

EXAMPLE:

C: #define MODIS1A 4220

 PGSt_integer version;
PGSt_integer maxSize;
PGSt_SMF_status returnStatus;
char fileAttribute[PGSd_PC_FILE_PATH_MAX];

 version = 1;
maxSize = 0;

 /# get the attribute file name of the first MODIS1A file #/

 returnStatus = PGS_PC_GetFileAttr(MODIS1A,version,
 PGSd_PC_ATTRIBUTE_LOCATION,maxSize,fileAttribute);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

 /# open attribute file and search attribute for particular
 data #/

 }
 .

 6-183 EED2-333-001

 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: implicit none

 integer version
integer returnstatus
integer maxsize
character*355 fileattribute
integer pgs_pc_getfileattr
integer modis1a
parameter (modis1a = 4220)

 version = 1
maxsize = 355

C get the attribute file name of the first modis1a file

 returnstatus = pgs_pc_getfileattr(modis1a,version,
 PGSd_PC_ATTRIBUTE_LOCATION,maxsize,fileattribute)

 if (returnstatus .ne. pgs_s_success) then
 goto 9999

else

C open attribute file and search attribute for
C particular data

 endif
 .
 .
 .
return

NOTES: Allocating enough space for the attribute variable will be the responsibility
of the application programmer. This function will write the attribute into
fileAttribute for maxSize bytes or the end of the attribute, which ever
comes first.

REQUIREMENTS: PGSTK-1290, PGSTK-1310

 6-184 EED2-333-001

Get the Version Number of the Particular File Matching the Attribute

NAME: PGS_PC_GetFileByAttr()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetFileByAttr(
 PGSt_PC_Logical prodID,
 PGSt_integer (*searchFunc)(char *attr),
 PGSt_integer maxSize,
 PGSt_integer *version)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function
pgs_pc_getfilebyattr(prodid,searchfunc,
* maxsize,version)
 integer prodid
 integer searchfunc
 integer maxSize
 integer version

DESCRIPTION: This tool may be used to retrieve the version number associated with a file
with a particular attribute.

INPUTS: prodID-The logical identifier as defined by the user. The user’s
 definitions will be mapped into actual identifiers during the
 Integration & Test procedure.

searchFunc-A user defined function that performs the search on the
attribute. This function must be passed in as a type PGSt_integer
function. It should return type PGSd_PC_MATCH upon a
successful attribute match or PGSd_PC_NO_MATCH upon an
unsuccessful attribute match.

 maxSize-Maximum amount of space to place into attribute.

OUTPUTS: version-The version number of the file with the successful attribute match

 6-185 EED2-333-001

RETURNS:
Table 6-64. PGS_PC_GetFileByAttr Returns

Return Description
PGS_S_SUCCESS successful execution
PGSPC_W_NO_ATTR_MATCH did not find a match with the specified product ID
PGSPC_W_NO_ATTR_FOR_ID the product ID contains no attribute
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

EXAMPLE:

C: #define MODIS1A 5775

 PGSt_integer searchfunc_(char *attr); /# function
 prototype #/

 /# The function passed into PGS_PC_GetFileByAttr() MUST be
 called #/
/# searchfunc_#/

 PGSt_integer maxSize;
PGSt_integer version;
PGSt_SMF_status returnStatus;
char referenceID[PGSd_PC_FILE_PATH_MAX];

 maxSize = 300;

 returnStatus = PGS_PC_GetFileByAttr(MODIS1A,searchfunc_,
 maxSize,&version);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{

/# get file reference #/

 returnStatus =
 PGS_PC_GetReference(MODIS1A,version,referencID);

 }
 .
 .
 .
EXCEPTION:
 return returnStatus;

 6-186 EED2-333-001

FORTRAN: implicit none

 integer version
integer searchfunc

C The function passed into pgs_pc_getfilebyattr() MUST be called searchfunc

 integer maxsize
integer returnstatus
integer pgs_pc_getfilebyattr
integer pgs_pc_getreference
character*355 referenceid
integer modis1a
parameter (modis1a = 5775)

 maxsize = 300

 returnstatus = pgs_pc_getfilebyattribute(modis1a,
 * searchfunc,maxsize,version)

 if (returnstatus .ne. pgs_s_success) then
 goto 9999
else

C
C get file reference
C
 returnstatus = pgs_pc_getreference(modis1a,version,
 * referenceid)
 endif
 .
 .
 .
 return

NOTES: The attribute checking is left to the application programmer. The attribute
for comparison must be passed into searchFunc by means of a global
variable. The attribute to be compared against will be passed into
searchFunc by the function PGS_PC_GetFileByAttr(). The function
searchFunc must have declared a variable large enough to handle the
incoming attribute. The attribute will be read until maxSize bytes or end of
file, which ever come first.

REQUIREMENTS: PGSTK-1290

 6-187 EED2-333-001

Check Process Control Information File (PCF)

NAME: pccheck.sh

SYNOPSIS: pccheck.sh [-h] <-i user-PCF> [-o numbered-PCF] [-c standard PCF] [-s]

C: N/A

FORTRAN N/A

DESCRIPTION: The purpose of this tool is to assist the developer in setting up a Process
Control File (PCF). This utility will help to point out simple syntax and
content errors that might lead to more serious runtime errors, if left
uncorrected. This tool will not, however, detect errors in logic, nor will it
correct PCF files.

INPUTS: -i <PCF>-The -i flag will be followed by the Process Control Information
 File. This flag is mandatory.

• o <outfile>-The -o flag will be followed by a file name that will be output
by this command. The name of output file must be a file that does not
already exist. This flag is optional.

• h-Upon receiving the -h flag a short description of the usage of pccheck.sh
will be provided to the user and the command will exit.

• c-The -c option will cause a compare to be run against a specified template
file. The compare will only compare the reserved Product ID’s.

• s-The -s flag will cause all output except for the output from the -c flag to
be suppressed.

OUTPUTS: NONE

RETURNS: 0 - Normal completion
1 - Error condition

EXAMPLE: pccheck.sh -i $PGSHOME/runtime/pcf.fil -o out.fil
pccheck.sh -o out.fil -i $PGSHOME/runtime/pcf.fil
pccheck.sh -i $PGSHOME/runtime/pcf.fil -o out.fil -c
 $PGSRUN/PC/PCF.v3
pccheck.sh -i $PGSHOME/runtime/pcf.fil -c $PGSRUN/PC/PCF.v3
 -s
pccheck.sh -i in.fil
pccheck.sh -h

 6-188 EED2-333-001

NOTES: This shell script accepts an input file (PCF) and an optional output file.
The output file will be an exact copy of the input file except that line
numbers are inserted into the file. This output file is provided as a
convenience to the user when analyzing the generated report, which
sometimes references line locations in the original PCF. This utility is also
capable of comparing against a “standardized” PCF file to detect changes
that have been made to the SDP Toolkit specific records (those with
reserved logical identifiers in the 10K-11K range); the optional
suppression flag prevents all output, other than the comparison results,
from being reported.

REQUIREMENTS: PGSTK-1313

 6-189 EED2-333-001

Get Universal Reference from Logical

NAME: PGS_PC_GetUniversalRef()

SYNOPSIS:

C: #include <PGS_PC.h>

 PGSt_SMF_status
PGS_PC_GetUniversalRef(
 PGSt_PC_Logical prodID,
 PGSt_integer* version,
 char *universalRef)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function
 pgs_pc_getuniversalref(prodid,version,universalref)
 I nteger prodid
 integer version
 character*150 universalref

DESCRIPTION: This tool may be used to obtain a universal reference from a logical
identifier.

INPUTS: prodID-User defined constant identifier that internally represents the
current product.

version-Version of reference to get. Remember, for Product Input files and
Product Output files there can be a many-to-one relationship.

OUTPUTS: universalRef-The actual universal reference returned as a string.

RETURNS:
Table 6-65. PGS_PC_GetReference Returns

Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUND link number does not have the data that mode is requesting
PGSPC_E_DATA_ACCESS_ERROR problem while accessing PCS data
PGSPC_W_NO_UREF_DATA the product id and version contains no universal reference data

 6-190 EED2-333-001

EXAMPLES:

C:
#define MODIS1A 2530

 PGSt_integer version;
char universalRef[PGSd_PC_UREF_LENGTH_MAX];
PGSt_SMF_status returnStatus;

 /# Get first version of the file #/
version = 1;

 returnStatus =
PGS_PC_GetUniversalRef(MODIS1A,version,universalRef);

 if (returnStatus != PGS_S_SUCCESS)
 goto EXCEPTION;
else
{ /# perform necessary operations on file #/ }
 .
 .
 .
EXCEPTION:
 return returnStatus;

FORTRAN: IMPLICIT NONE

 integer version
character*150 universalRef
integer returnstatus
integer pgs_pc_getuniversalref
integer modis1a
parameter (modis1a = 2530)

C Get the first version of the file
version = 1

 returnstatus =
pgs_pc_getuniversalref(modis1a,version,referenceid)
if (returnstatus .ne. pgs_s_success)
 goto 9999
else

C perform necessary operations on file
 .
 .

 6-191 EED2-333-001

 .
9999 return

NOTES: All reference identifier strings are guaranteed to be no greater than
PGSd_PC_UREF_LENGTH_MAX characters in length (see PGS_PC.h).

 The version returns the number of files remaining for the product group.
For example, if there are eight (8) versions of a file, when the user requests
version one (1) the value seven (7) is returned in version. When the user
requests version two (2) the value six (6) is returned in version, etc.
Therefore, it is not recommended to use version as a loop counter that is
also into PGS_PC_GetReference().

REQUIREMENTS: PGSTK-1290

 6-192 EED2-333-001

Get Size of a File

NAME: PGS_PC_GetFileSize()

SYNOPSIS:

C: #include <PGS_PC.h>
#include <PGS_SMF.h>

 PGSt_SMF_status
PGS_PC_GetFileSize(
 PGSt_PC_Logical prodID,
 PGSt_integer version,
 PGSt_integer* filesize)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_PC.f’
include ‘PGS_PC_9.f’

 integer function pgs_pc_getfilesize(prodid,version,filesize)
 integer prodid,
 integer version,
 integer filesize)

DESCRIPTION: This tool may be used to obtain the size of a file from a logical identifier.

INPUTS: prodID-The logical identifier as defined by the user.
version - Version of reference to get.

OUTPUTS: filesize - The size of a file.

RETURNS:
Table 6-66. PGS_PC_GetFileSize Returns

Return Description

PGS_S_SUCCESS successful execution
PGSPC_W_NO_REFERENCE_FOUND link number does not have the data that mode

is requesting
PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data
PGS_E_UNIX Unix system error
PGS_E_TOOLKIT an unexpected error occurred

 6-193 EED2-333-001

EXAMPLE:

C: #define PROD_ID 10501

PGSt_integer version;
PGSt_integer filesize;
PGSt_SMF_status returnStatus;

/# Get first version of the file #/
version = 1;

returnStatus =
PGS_PC_GetFileSize(PROD_ID,version,&filesize);

/# version now contains the number of versions remaining #/

if (returnStatus != PGS_S_SUCCESS
goto EXCEPTION;

else

{ /# perform necessary operations on file #/ }

.

.

.

EXCEPTION:

return returnStatus;

FORTRAN:

NOTES: In order for this tool to function properly, a valid Process Control file will
need to be created first. Please refer to Appendix C (User's Guide) for
instructions on how to create such a file.

REQUIREMENTS: PGSTK-1290

 6-194 EED2-333-001

6.2.4 Shared Memory Management Tools

The tools described in this section provide for a limited use of shared memory amongst
executables within a PGE. These tools allow for the creation of a single user memory segment
within a PGE, and for the subsequent attachment and detachment of that memory segment to
another executable within the same PGE. Due to the way in which shared memory is accessed,
the APIs for the C and FORTRAN programming languages are necessarily different. C users may
directly manipulate the shared memory area but FORTRAN users are limited to copying to and
from the shared memory area via intermediary Toolkit functions. Note that the operation of
these tools is contingent on the assumption that the user will make proper use of the
initialization and termination commands that have been provided with this release of the
Toolkit (please note that the Memory Management initialization and termination routines
supplied with Toolkit 3 have been subsumed by corresponding Process Control commands
that MUST be invoked before and after the execution of the PGE respectively). The shell
utility PGS_PC_Shell.sh already activates the initialization and termination commands, so
user activation of these commands should not be performed if the shell utility is used.

 6-195 EED2-333-001

Create Shared Memory Segment

NAME: PGS_MEM_ShmCreate()

SYNOPSIS:

C: #include <PGS_MEM1.h>

 PGSt_SMF_status
PGS_MEM_ShmCreate(
 PGSt_uinteger size);

FORTRAN: integer function pgs_mem_shmcreate(size)
integer size

DESCRIPTION: This tool may be used to create a shared memory segment. This tool
should only be called once in a given processing script (PGE).

INPUTS size-size of the shared memory segment in bytes

OUTPUTS: None

RETURNS:
Table 6-67. PGS_MEM_ShmCreate Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment Variable “PGSMEM_SHM_SYSKEY” is not set
PGSMEM_E_SHM_MAXSIZE Maximum system-imposed shared memory exceeded
PGSMEM_E_SHM_MULTICREATE More than one shared-memory is created for a given PGE

EXAMPLES:

C: typedef struct
{
 int id;
 char msg[100];
}TestStruct;

TestStruct *shmPtr;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_ShmCreate(sizeof(TestStruct);
if (returnStatus == PGS_S_SUCCESS)
{
 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);

 6-196 EED2-333-001

 if (returnStatus == PGS_S_SUCCESS)
 {
 shmPtr->id = 123;
 strcpy(shmPtr->msg,”Writing data into shared memory”);
 }
}

FORTRAN: integer pgs_mem_shmcreate

integer returnstatus
integer shm_size
character*100 test_string
shm_size = 100
test_string = “Writing data into shared memory”

 returnstatus = pgs_mem_shmcreate(shm_size)
if (returnstatus .eq. pgs_s_success) then
 returnstatus = pgs_mem_shmwrite(test_string, shm_size)
endif

 ! the contents of test_string have been written to shared
! memory which can be accesses by another process in the
! PGE

NOTES: This shared memory scheme is not A POSIX implementation and will
therefore be subjected to change when the POSIX.4 implementation is
available. System limitations will define the amount of memory that can
be allocated as a shared-memory segment. Only one memory segment may
be created per PGE; it may however be attached/detached as many times
as are required.

REQUIREMENTS: PGSTK-1241

 6-197 EED2-333-001

Attach Shared Memory Segment

NAME: PGS_MEM_ShmAttach()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_ShmAttach(
 void **shm);

FORTRAN: None

DESCRIPTION: This tool may be used by an executable to attach to an existing shared
memory segment. PGS_MEM_ShmCreate() should already be called,
either within the same executable or from an earlier executable within the
PGE. If the shared memory segment has been detached by calling
PGS_MEM_ShmDetach(), then you may re-attach the segment to your
process-space again.

INPUTS: shm-pointer referencing the shared memory segment

OUTPUTS: shm-pointer referencing the shared memory segment

RETURNS:
Table 6-68. PGS_MEM_ShmAttach Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE Shared-memory has not been attached to the process
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process

EXAMPLES: typedef struct
{
 int id;
 char msg[100];
}TestStruct;

 PGSt_SMF_status returnStatus;
TestStruct *shmPtr;

 6-198 EED2-333-001

PROCESS A:

 returnStatus = PGS_MEM_ShmCreate(sizeof(TestStruct));
if (returnStatus == PGS_S_SUCCESS)
{
 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);
 if (returnStatus == PGS_S_SUCCESS)
 {
 shmPtr->id = 123;
 strcpy(shmPtr->msg,”From Process A”);
 }
}

PROCESS B:

 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);
if (returnStatus == PGS_S_SUCCESS)
{
 if ((shmPtr->id = 123) && (strcmp(shmPtr->msg,”From
 Process A”) == 0))
 {
 printf(“Reading data from Process A successful”);
 }
}

NOTES: Before using this function, PGS_MEM_ShmCreate() should have already
be called, either within the same executable or from an earlier executable
within the PGE. If the shared memory segment has been detached by
calling PGS_MEM_ShmDetach(), then you may re-attach the segment to
your process-space again.

 This tool lets the system select the memory location for your shared
memory, thereby allowing the system to make the best possible use of its
memory resources.

 This tool is not part of POSIX and is subjected to change when the
POSIX.4 implementation becomes available.

REQUIREMENTS: PGSTK-1241

 6-199 EED2-333-001

Detach Shared Memory Segment

NAME: PGS_MEM_ShmDetach()

SYNOPSIS:

C: #include <PGS_MEM1.h>

 PGSt_SMF_status
PGS_MEM_ShmDetach(
 void);

FORTRAN: None

DESCRIPTION: This tool may be used to detach a shared memory segment from a process
that it has been attached to.

INPUTS: None

OUTPUTS: None

RETURNS:
Table 6-69. PGS_MEM_ShmDetach Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_NOTATTACH Shared-memory has not been attached to the process

EXAMPLES: typedef struct
{
 int id;
 char msg[100];
}TestStruct;

 PGSt_SMF_status returnStatus;
TestStruct *shmPtr;

 returnStatus = PGS_MEM_ShmCreate(sizeof(TestStruct));
if (returnStatus == PGS_S_SUCCESS)
{
 returnStatus = PGS_MEM_ShmAttach((void **)&shmPtr);
 if (returnStatus == PGS_S_SUCCESS)
 {
 shmPtr->id = 123;
 strcpy(shmPtr->msg,”Writing data into shared memory”);

 6-200 EED2-333-001

 PGS_MEM_ShmDetach();
 }
}

NOTES: Note that this tool is not part of POSIX and is subjected to change when
the POSIX.4 implementation becomes available. This function will only
detach the shared memory segment from the process. The shared memory
segment will not be removed from the system by calling this tool;
therefore one can re-attach it again.

REQUIREMENTS: PGSTK-1241

 6-201 EED2-333-001

Read from Shared Memory Segment

NAME: PGS_MEM_ShmRead()

SYNOPSIS:

C: None

FORTRAN: include ‘PGS_SMF.f
include ‘PGS_MEM_9.f’

 integer function pgs_mem_shmread(mem_ptr, size)
 integer size
 character mem_ptr(size)

DESCRIPTION: This function copies the contents of shared memory into a user allocated
(may be dynamically or statically allocated) memory area. This function is
meant to be used by FORTRAN (77/90) users who cannot take advantage
of the C shared memory tools PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

INPUTS:
Table 6-70. PGS_MEM_ShmRead Inputs

Name Description

size size (in bytes) of mem_ptr (see below)

OUTPUTS:

Table 6-71. PGS_MEM_ShmRead Outputs
Name Description

mem_ptr array or structure to which the contents of the shared
memory area will be written

RETURNS:
Table 6-72. PGS_MEM_ShmRead Returns

Return Description

PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE User defined shared-memory has not been created
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process
PGSMEM_E_SHM_NOTATTACH Failed to attach shared memory to this process shared-memory

 6-202 EED2-333-001

EXAMPLES:

FORTRAN: integer pgs_mem_shmread

integer size

 character shm_buffer(1000)

 integer returnstatus

returnstatus = pgs_mem_shmread(shm_buffer, size)

if (returnstatus .ne. pgs_s_success) goto 999

 ! the contents of shared memory (which may contain data
! from a previous process) have been copied to shm_buffer

 999 continue ! process error conditions

NOTES: This tool is meant to be used by FORTRAN (77/90) users ONLY. C users
should use the functions PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

The tool PGS_MEM_ShmCreate() MUST be called before
PGS_MEM_ShmRead() is invoked.

This tool is not part of POSIX and is subjected to change when the
POSIX.4 implementation becomes available.

The user passes in a pointer to a user defined memory area (an area of
memory which has been either statically or dynamically allocated by the
user) and the size of that area. This function will retrieve the pointer to the
shared memory area and copy the contents of the shared memory into the
users memory area. This function will then detach the shared memory
from the current process. Before exiting from the PGE, the system will
make sure that the attached shared memory segment will be removed from
the system.

REQUIREMENTS: PGSTK-1241

 6-203 EED2-333-001

Write to Share Memory Segment

NAME: PGS_MEM_ShmWrite()

SYNOPSIS:

C: None

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_MEM_9.f’

 integer function pgs_mem_shmwrite(mem_ptr, size)
integer size
character mem_ptr(size)

DESCRIPTION: This function copies the contents of a user allocated (may be dynamically
or statically allocated) memory area into shared memory. This function is
meant to be used by FORTRAN (77/90) users who cannot take advantage
of the C shared memory tool PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

INPUTS:
Table 6-73. PGS_MEM_ShmWrite Inputs

Name Description

mem_ptr array or structure the contents of which will be written
to the shared memory area

size size (in bytes) of mem_ptr (see above)

OUTPUTS: NONE

RETURNS:
Table 6-74. PGS_MEM_ShmWrite Returns

Return Description

PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE User defined shared-memory has not been created
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process
PGSMEM_E_SHM_NOTATTACH Failed to attach shared memory to this process shared-

memory

 6-204 EED2-333-001

EXAMPLES:

FORTRAN: integer pgs_mem_shmwrite

 integer size
integer returnstatus

character shm_buffer(1000)

! fill shm_buffer with interesting data

returnstatus = pgs_mem_shmwrite(shm_buffer, size)

if (returnstatus .ne. pgs_s_success) goto 999

 ! the contents of shm_buffer have been written to the
! shared memory area which can be accessed by a subsequent
! process

 999 continue ! process error conditions

NOTES: This tool is meant to be used by FORTRAN (77/90) users ONLY. C users
should use the functions PGS_MEM_ShmAttach() and
PGS_MEM_ShmDetach().

The tool PGS_MEM_ShmCreate() MUST be called before
PGS_MEM_ShmWrite() is invoked.

This tool is not part of POSIX and is subjected to change when the
POSIX.4 implementation becomes available.

The user passes in a pointer to a user defined memory area (an area of
memory which has been either statically or dynamically allocated by the
user) and the size of that area. This function will retrieve the pointer to the
shared memory area and write the contents of the users memory area to the
shared memory area OVERWRITING whatever was previously in the
shared memory area. This function will then detach the shared memory
from the current process. Before exiting from the PGE, the system will
make sure that the attached shared memory segment will be removed from
the system.

REQUIREMENTS: PGSTK-1241

 6-205 EED2-333-001

6.2.5 Bit Manipulation Tools

It is assumed that bit-manipulation functionality will be provided inherently by the language for
‘C’ and Fortran90 and that users of Fortran77 will use compilers that conform to MIL STD 1753
to obtain these capabilities.

6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools

This tool group contains tools and associated software that provides access to the spacecraft
ephemeris and attitude at a given time. Currently the EOS_AM, EOS_PM, EOS_AURA and
TRMM platforms are supported. In this release of the Toolkit, orbit and attitude data for testing
is supplied by the ECS Spacecraft Orbit and Attitude Simulator. Both binary and HDF formats
for orbit and attitude data is supported. The binary orbit and attitude data files can be produced
on a platform of “big” or “little” endian type. Toolkit will swap the eph and att data after reading
binary files if data files endianness do not agree with the platform’s endianness.

6.2.6.1 Orbit and Attitude Simulator

The ECS Spacecraft Orbit and Attitude Simulator is based on Upper Atmosphere Research
Satellite (UARS) FORTRAN code. It has been completely rewritten in C and revised for EOS.

6.2.6.1.1 Brief Description

The spacecraft orbit simulator orbsim will create files (binary and HDF) of simulated spacecraft
orbit and attitude data necessary to test the SDP Toolkit spacecraft ephemeris and attitude data
access tool (PGS_EPH_EphemAttit()) in the SCF environment. For platforms such as DEC
alpha and PC the binary files will be substituted automatically with the big-endian binary type
data files contained in the testdriver tar file upon running the test shell script runTest. This is for
testing cross endiannes of data files and test platform. Users may alternatively create their own
data files, either on a big-endian or little-endian machines, but MUST follow the ECS ephemeris
and attitude file formats.

WARNING: this simulator uses a relatively simple algorithm and is meant to produce data for
software testing ONLY. This data should not be used for any actual processing or for prediction
purposes.

6.2.6.1.2 The SCF Environment

At the DAACs the users will be responsible for submitting the criteria upon which ephemeris and
attitude files will be staged for their PGE. The DAACs will populate the Process Control File
(PCF) appropriately based on this user supplied criteria. In the SCF environment users must
populate the PCF with appropriate ephemeris and attitude data files themselves. No tools that
require access to spacecraft ephemeris data will function without these ephemeris and attitude
files. An ephemeris file and an attitude file must be provided for any time during which
processing will be requested.

 6-206 EED2-333-001

The PCF file provided with the Toolkit contains the Logical IDs which have been reserved for
the ephemeris and attitude data files. There is one Logical ID for each type of data and the
appropriate Logical ID MUST be used for each set of ephemeris and attitude files of type binary
or HDF. Replace the dummy values in the PCF with the actual location of the ephemeris and
attitude files to be used. Use the given ephemeris file Logical ID for all ephemeris data files and
the given attitude file Logical ID for all attitude files. To include multiple files of either type use
file versioning. The order of the files is not important, the ephemeris and attitude access tool will
sort the files before attempting to access them (WARNING: providing files with overlapping
start/stop times may produce unexpected results).

The unconfigured ephemeris and attitude Logical ID entries in the PCF look as follows
(respectively):

10501|INSERT_EPHEMERIS_FILES_HERE|||||1
10502|INSERT_ATTITUDE_FILES_HERE|||||1

The configured entries should look something like this:

10501|EOSAM1_1995-07-01_12h_01.eph|~/database/sun5/EPH||||5
10501|EOSAM1_1995-07-01_12h_02.eph|~/database/sun5/EPH||||4
10501|TRMM_1994-01-12.eph|~/database/sun5/EPH||||3
10501|TRMM_1994-01-13.eph|~/database/sun5/EPH||||2
10501|TRMM_1994-01-14.eph|~/database/sun5/EPH||||1
10502|EOSAM1_1995-07-01_12h_01.att|~/database/sun5/EPH||||5
10502|EOSAM1_1995-07-01_12h_02.att|~/database/sun5/EPH||||4
10502|TRMM_1994-01-12.att|~/database/sun5/EPH||||3
10502|TRMM_1994-01-13.att|~/database/sun5/EPH||||2
10502|TRMM_1994-01-14.att|~/database/sun5/EPH||||1

or the following if HDF files are used:

10501|EOSAM1_1995-07-01_12h_01.eph.hdf|~/database/sun5/EPH||||5
10501|EOSAM1_1995-07-01_12h_02.eph.hdf|~/database/sun5/EPH||||4
10501|TRMM_1994-01-12.eph.hdf|~/database/sun5/EPH||||3
10501|TRMM_1994-01-13.eph.hdf|~/database/sun5/EPH||||2
10501|TRMM_1994-01-14.eph.hdf|~/database/sun5/EPH||||1
10502|EOSAM1_1995-07-01_12h_01.att.hdf|~/database/sun5/EPH||||5
10502|EOSAM1_1995-07-01_12h_02.att.hdf|~/database/sun5/EPH||||4
10502|TRMM_1994-01-12.att.hdf|~/database/sun5/EPH||||3
10502|TRMM_1994-01-13.att.hdf|~/database/sun5/EPH||||2
10502|TRMM_1994-01-14.att.hdf|~/database/sun5/EPH||||1

See Section 6.2.3 Process Control Tools for a discussion of the PCF and file versioning.

 6-207 EED2-333-001

6.2.6.1.3 Running the Orbit/Attitude Simulator

The executable orbsim is installed in the $PGSBIN directory at installation time. Make sure the
$PGSBIN directory is in your path. To run the program, type “orbsim” at the command line
prompt (from any directory).

The simulator is self-explanatory (if you read the messages on the screen). A “q” may be entered
at any prompt to quit the simulator. At most prompts there will be a default value that can be
selected by merely returning at the prompt without typing any characters. These default values
will be indicated by “[]” (e.g., enter a number [7]:).

The first prompt will request the spacecraft ID. The supported values for this are: TRMM,
EOS_AM, EOS_PM and EOS_AURA.

The second prompt asks whether HDF files to be generated.

The next prompt will ask users to change orbital elements. Users are given the selection to
change the first seven orbital element values. All values should be real numbers, except for the
epoch time, which should be in CCSDS ASCII time code. If users do not change orbital
elements, the default values will be used. If users change them, the values are overwritten. The
fourth prompt will request the start time. Enter the start time in CCSDS ASCII time code (format
A or B-see Time and Date Conversion Tools). If users enter only date portion (e.g., 1995-10-20)
or date and midnight time (e.g., 1995-10-20T00:00:00), the time starts from midnight. If users
enter date and noontime (e.g., 1995-10-20T12:00:00), the time starts from noon. The fifth prompt
will request the stop time that should be entered using the same format as the start time. The stop
time must be later than the start time. If users only enter date portion, the start and stop time are
inclusive (e.g., entering the same start and stop date (e.g., 1995-10-20) will create the spacecraft
ephemeris file for that day). The sixth prompt will request the data (or time) interval in seconds.
This number is a real number that represents the time interval between data records in the file.
These times represent actual ephemeris data. This data will be returned to users directly through
PGS_EPH_EphemAttit(). Ephemeris data requested at times other than the actual record times
will be interpolated. The next prompt will ask users to input the time in hour for the data file. The
simulator only accepts the divisions of 24 (1, 2, 3, 4, 6, 12, 24). The default value is 24 hours. If
users do not enter a value, a whole day data file of 24 hours will be created. Otherwise, the value
will be overwritten. Then the simulator will display the start and stop day and time interval
entered, as well as the total size (in megabytes) of the data files that will be created. The
simulator will then request confirmation of these input values. If the values are rejected the
simulator will request the information again beginning with the start day until the values are
accepted.

Once the time information has been entered and confirmed the simulator will issue a prompt
requesting attitude “noise”. This simulator does not allow for any specific yaw, pitch or roll
variation, however attitude noise may be introduced to simulate small random variations in the
yaw, pitch and roll data reported. At the noise prompt the maximum desired amplitude in
arcseconds of the noise should be entered. This should be entered as a real number whose
magnitude is LESS than 1000.0 arcseconds (only the magnitude will be considered; the sign of

 6-208 EED2-333-001

the number will be ignored). The next prompt will be for attitude rate noise. This should be
entered as a real number whose magnitude is LESS than 1000.0 arcseconds/second. Entering “N”
at the first prompt (for attitude noise) will turn off this feature; and the roll, pitch and yaw will
always be reported as exactly zero. No noise is the default behavior.

The simulator will then prompt for the directory where the ephemeris and attitude files it
generates should be written to. The default installation directory is determined from the location
of the file leapsec.dat which is assumed to be in $PGSDAT/TD, the simulator will then define
the default directory as $PGSDAT/EPH. The location of the output directory is not significant to
the tool PGS_EPH_EphemAttit() in any way. The simulator will issue a prompt indicating the
default location and asking that the installation directory be specified. Any valid directory may be
specified at this prompt (a relative path may be used). The default directory can be selected by
merely entering return at this prompt. If an invalid directory is entered the prompt will be
reissued until a valid directory is entered.

After a valid directory has been indicated the simulator will attempt to create the spacecraft
ephemeris and attitude files for the times requested. The simulator will generate one file each of
ephemeris data and attitude data for each date specified. The files generated will follow the
naming convention <sc_name>_<date>.eph and <sc_name>_<date>.att for ephemeris and
attitude files respectively. The file names and lengths generated by the simulator are for
convenience only. Ephemeris and attitude data files may actually have any name and be of any
time duration. However, because of the simulator convention of one ephemeris file and one
attitude file per day, the simulator will NOT overwrite an existing file for the same spacecraft
and the same day, an error message will be issued and the file(s) will be skipped. If for any other
reason a file cannot be created the simulator will issue an error message and a prompt asking
whether or not it should continue. If directed to continue, the simulator will try one more time to
create the file and then continue on to the next file without further warning whether or not the file
could be created. The most likely scenario for this is when the user does not have write
permission for the directory specified. The above mentioned prompt allows the user to change
the directory permission and continue. If the simulator is unable to write to a file that it has
already opened (e.g., the disk is full) an error message will be issued.

When all files requested have been written (or skipped), a final prompt is issued allowing the
whole process to be repeated.

6.2.6.1.4 Spacecraft Ephemeris and Attitude File Formats

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)

6.2.6.1.5 Tools that Require Spacecraft Ephemeris Files
 PGS_EPH_EphemAttit()

PGS_EPH_GetEphMet()
PGS_EPH_EphAtt_unInterpolate()
PGS_EPH_UnInterpEphAtt()
PGS_CBP_body_inFOV()
PGS_CBP_Sat_CB_Vector()

 6-209 EED2-333-001

PGS_CSC_GetFOV_Pixel()
PGS_CSC_SubSatPoint()
PGS_CSC_Earthpt_FOV()
PGS_CSC_Earthpt_FixedFOV()
PGS_CSC_ECItoORB()
PGS_CSC_ORBtoECI()
PGS_CSC_ECItoSC()
PGS_CSC_SCtoECI()
PGS_CSC_ORBtoSC()
PGS_CSC_SCtoORB()

6.2.6.1.6 Warning

The files created by the simulator can be very large and keeping many of them around can
quickly fill a hard drive (one day of orbit data for EOS_AM at the default time interval is nearly
nine megabytes). The size of the files can be reduced by choosing larger time intervals between
data records.

This tool will create files for time in the far future or distant past if the user specifies them. The
time of each record in spacecraft ephemeris and attitude files is kept in SDP Toolkit internal time
(see Time and Date Conversion Tools) which is a form of TAI time. The user will not be notified
if the file created is outside the times for which TAI is defined or currently known (relative to a
corresponding UTC time). The simulator will estimate the time and create the file. Such files
may contain TAI times on fractional UTC second centers, due to the approximate estimation of
TAI-UTC.

6.2.6.2 Ephemeris File Checker

The ECS Spacecraft Ephemeris File Checker can be used to check the format of exiting
spacecraft ephemeris files and/or attitude files. This is useful for verifying that an ephemeris file
or an attitude file created by a user (i.e., not using the ECS Spacecraft Orbit and Attitude
Simulator) is properly formatted. The Ephemeris File Checker is also useful in checking on the
time resolution and spacecraft ID of an existing spacecraft ephemeris file or attitude file, as well
as in detecting files created without valid leap second data (see Sect. 6.2.6.1.6).

6.2.6.2.1 Brief Description

The spacecraft ephemeris file checker (chkeph) will check the contents of spacecraft ephemeris
and attitude files. The checker will read the file header and verify that the metadata contained
therein is reasonable. If the header checks out, the checker will then check each record in the file
to verify that the times are properly specified (i.e., that the records are properly spaced in time).

6.2.6.2.2 Running the Ephemeris File Checker

The executable chkeph is installed in the $PGSBIN directory at installation time. Make sure the
$PGSBIN directory is in your path. To run the program type “chkeph” at the prompt with the
name(s) of any file(s) to be checked, e.g.,

 6-210 EED2-333-001

chkeph TRMM_1998-02-01.eph TRMM_1998-02-02.eph

If the file to be checked is not in the same directory as the one from which chkeph was invoked,
the path name must be specified as well (e.g., chkeph ../EPH/TRMM_1998-02-02.eph).

For each file specified chkeph will print out the data contained in the header and check the data
records. The first line printed will be the name of the spacecraft and the corresponding numeric
value of the Toolkit spacecraft ID (if the spacecraft is an ECS supported s/c). The next two lines
will be the numeric start and stop times (respectively) indicated in the header in internal time.
Each time will be followed on the same line with the CCSDS ASCII Code (format A)
representation of the equivalent UTC time. The next line will be the time interval. Note that this
quantity is for record keeping only (i.e., the value has no effect on Toolkit operation). Users
creating their own files (i.e., without using the orbsim utility--see above) may set this field to any
value. The next line will be the number of records expected to be in the file based on the number
of records specified in the file header. The first record will be checked to verify that the time of
the record is the same as the time specified as the start time in the file header. Each subsequent
record will then be checked to verify that the time of the record is greater than the time of the
record immediately preceding it. The last record in the file will be checked to verify that the time
of the record is the same as the time specified as the stop time in the file header. The Ephemeris
File Checker will issue appropriate error messages if it finds anomalies in the contents of the file
that it is checking.

6.2.6.3 Spacecraft Tags Definition File

As of Toolkit 5.2, spacecraft tags are no longer “hard-coded”. Spacecraft tags are defined in an
ASCII data file and looked up at runtime. This allows the Toolkit geolocation tools to effectively
support any spacecraft that has had it’s ephemeris and attitude data formatted for the Toolkit (see
Appendix L. Ephemeris And Attitude File Formats). The spacecraft tags definition file is
referenced via the Process Control File with the logical ID of 10801. The file contains a series of
records (one per line) of the form:

<sc_tag>,<sc_name>,<eao>

Where:

<sc_tag> is the numerical (integer) value of the spacecraft tag (passed to Toolkit functions).
<sc_name> is the actual name of the spacecraft as contained in the ephemeris/attitude file
 header.
<eao> is a string consisting of three digits describing the order of the Euler angles (e.g.:
 321, 312, 212) as contained in the attitude file.

As delivered the Tookit is configured to support the TRMM, EOS-AM1, EOS-PM and EOS-
AURA platforms. These entries in the spacecraft tags file should not be altered. Additional
entries may be added below these entries. Each entry should have a unique <sc_name> and
<sc_tag>. To ensure backward compatibility, the previous implementation of spacecraft tags has
been retained in the Toolkit software. That is, if the tag is TRMM, EOS-AM1, EOS_PM or
EOS_AURA and the Spacecraft Tags Definition File is not found, the Toolkit will execute the
old “hard coded’ method.

 6-211 EED2-333-001

Get Ephemeris and Attitude

NAME: PGS_EPH_EphemAttit()

SYNOPSIS:

C: #include <PGS_EPH.h>

 PGSt_SMF_status
PGS_EPH_EphemAttit(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_boolean orbFlag,
 PGSt_boolean attFlag,
 PGSt_integer qualityFlags[][2],
 PGSt_double positionECI[][3],
 PGSt_double velocityECI[][3],
 PGSt_double eulerAngles[][3],
 PGSt_double xyzRotRates[][3],
 PGSt_double attitQuat[][4])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_EPH_5.f’

 integer function pgs_eph_ephemattit(spacecrafttag,numvalues,asciiutc,
 offsets,orbflag,attflag,qualityflags,
 positioneci,velocityeci,eulerangles,
 xyzrotrates,attitquat)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer orbflag
 integer attflag
 integer qualityflags(2,*)
 double precision positioneci(3,*)
 double precision velocityeci(3,*)
 double precision eulerAngles(3,*)
 double precision xyzrotrates(3,*)
 double precision attitquat(4,*)

 6-212 EED2-333-001

DESCRIPTION: This tool gets ephemeris and/or attitude data for the specified spacecraft at
the specified times.

INPUTS:
Table 6-75. PGS_EPH_EphemAttit Inputs

Name Description Units Min Max
spacecraftTag spacecraft identifier N/A
numValues num. Of values requested N/A
asciiUTC UTC time reference start time in

CCSDS ASCII time code A format
ASCII 1961-01-01 see NOTES

offsets array of time offsets in seconds
relative to asciiUTC

seconds depends on asciiUTC

orbFlag set to true to get ephemeris data T/F
attFlag set to true to get attitude data T/F

OUTPUTS:
Table 6-76. PGS_EPH_EphemAttit Outputs

Name Description Units
qualityFlags quality flags for position and attitude data see NOTES
positionECI ECI position meters
velocityECI ECI velocity meters/sec
eulerAngles s/c attitude as a set of Euler angles radians
xyzRotRates angular rates about body x, y and z axes radians/sec
attitQuat spacecraft to ECI rotation quaternion N/A

RETURNS:
Table 6-77. PGS_EPH_EphemAttit Returns

Return Description

PGS_S_SUCCESS Successful return
PGSEPH_W_BAD_EPHEM_VALUE One or more values could not be determined
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephemeris/attitude files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephemeris/attitude files could be found for input times
PGSEPH_E_NO_DATA_REQUESTED Both orbit and attitude flags are set to false
PGSTD_E_SC_TAG_UNKNOWN Unrecognized/unsupported spacecraft tag
PGSEPH_E_BAD_ARRAY_SIZE Array size specified is less than 0
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for initial time (asciiUTC)
PGS_E_TOOLKIT An unexpected error occurred

 6-213 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 10

 PGSt_double offsets[ARRAY_SIZE];
PGSt_double positionECI[ARRAY_SIZE][3];
PGSt_double velocityECI[ARRAY_SIZE][3];
PGSt_double eulerAngles[ARRAY_SIZE][3];
PGSt_double xyzRotRates[ARRAY_SIZE][3];
PGSt_double attitQuat[ARRAY_SIZE][4];

 char asciiUTC[28];

 PGSt_integer qualityFlags[ARRAY_SIZE][2];

 int I;

 PGSt_SMF_status returnStatus;

** initialize asciiUTC and offsets array **

 strcpy(asciiUTC,”1998-02-03T19:23:45.123”);
for (I=0;I<ARRAY_SIZE;I++)
 offsets[I] = (PGSt_double) I;

 returnStatus = PGS_EPH_EphemAttit(PGSd_EOS_AM, numValues,
 asciiUTC, offsets, PGS_TRUE, PGS_TRUE,
 qualityFlags, positionECI, velocityECI,
 eulerAngles, xyzRoteRates, attitQuat);

 if (returnStatus != PGS_S_SUCCESS)
{
 :
** do some error handling **
 :
}

FORTRAN: integer numvalues/10/
integer I
integer returnstatus
integer qualityflags(2,numvalues)

 character*27 asciiutc

 double precision offsets(numvalues)
double precision positioneci(3,numvalues)
double precision velocityeci(3,numvalues)
double precision eulerangles(3,numvalues)

 6-214 EED2-333-001

double precision xyzrotrates(3,numvalues)
double precision attitquat(4,numvalues)

C initialize asciiutc and offsets array

 asciiutc = ‘1998-02-03T19:23:45.123’
do 100 I = 1,numvalues

offsets(I) = I-1

 returnstatus = pgs_eph_ephemattit(pgsd_eos_am,numvalues,
> asciiutc,offsets,pgs_true,
> pgs_true,attflag,
> qualityflags,positioneci,
> velocityeci,eulerangles,
> xyzroterates,attitquat)

 if (returnstatus .ne. pgs_s_success) then
 :
*** do some error handling ***
 :
endif

NOTES: The Euler angles are always relative to the geocentrically based
orbital reference frame The attitude rates for TRMM are relative to
geodetic orbital reference. The attitude rates for AM1 and later
spacecraft are relative to inertial (J2000) reference. In all cases, the
attitude rates are the spacecraft angular velocity vector projected on
the body axes.

QUALITY FLAGS:

 The quality flags are returned as integer quantities but should be
interpreted as bit fields. Only the first 32 bits of each quality flag is
meaningfully defined, any additional bits should be ignored (currently
integer quantities are 32 bits on most UNIX platforms, but this is not
guaranteed to be the case—e.g. an integer is 64 bits on a Cray).

Generally the quality flags are platform specific and are not defined by the
Toolkit. Two bits of these flags have, however, been reserved for SDP
Toolkit usage. Bit 12 will be set by the Toolkit if no data is available at a
requested time, bit 14 will be set by the Toolkit if the data at the requested
time has been interpolated (the least significant bit is “bit 0”). Any other
bits are platform specific and are the responsibility of the user to interpret.
See also Section L.3 (Quality Flags).

 See Section 6.2.7.1 (Time Acronyms)

 See Section 6.2.7.2 (ASCII Time Formats)

 6-215 EED2-333-001

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)

 TIME OFFSETS:

 This function accepts an ASCII UTC time, an array of time offsets and the
number of offsets as input. Each element in the offset array is an offset in
seconds relative to the initial input ASCII UTC time.

 An error will be returned if the number of offsets specified is less than
zero. If the number of offsets specified is actually zero, the offsets array
will be ignored. In this case the input ASCII UTC time will be converted
to Toolkit internal time (TAI) and this time will be used to process the
data. If the number of offsets specified is one (1) or greater, the input
ASCII UTC time will be converted to TAI and each element ‘I’ of the
input data will be processed at the time: (initial time) + (offset[I]).

 Examples:

if numValues is 0 and asciiUTC is “1993-001T12:00:00” (TAI: 432000.0),
then input[0] will be processed at time 432000.0 and return
output[0]

if numValues is 1 and asciiUTC is “1993-001T12:00:00” (TAI: 432000.0),
then input[0] will be processed at time 432000.0 + offsets[0] and
return output[0]

if numValues is N and asciiUTC is “1993-001T12:00:00” (TAI:
432000.0), then each input[I] will be processed at time 432000.0 +
offsets[I] and the result will be output[I], where I is on the interval
[0,N) ([1,N] in the case of FORTRAN)

ERROR HANDLING:

This function processes data over an array of times (specified by an input
ASCII UTC time and an array of time offsets relative to that time).

If processing at each input time is successful the return status of this
function will be PGS_S_SUCCESS (status level of ‘S’).

If processing at ALL input times was unsuccessful the status level of the
return status of this function will be ‘E’.

If processing at some (but not all) input times was unsuccessful the status
level (see SMF) of the return status of this function will be ‘W’ AND all
high precision real number (C: PGSt_double, FORTRAN: DOUBLE
PRECISION) output variables that correspond to the times for which
processing was NOT successful will be set to the value:
PGSd_GEO_ERROR_VALUE. In this case users may (should) loop

 6-216 EED2-333-001

through the output testing any one of the aforementioned output variables
against the value PGSd_GEO_ERROR_VALUE. This indicates that there
was an error in processing at the corresponding input time and no useful
output data was produced for that time.

Note: A return status with a status of level of ‘W’ does not necessarily
mean that some of the data could not be processed. The ‘W’ level may
indicate a general condition that the user may need to be aware of but that
did not prohibit processing. For example, if an Earth ellipsoid model is
required, but the user supplied value is undefined, the WGS84 model will
be used, and processing will continue normally, except that the return
status will be have a status level of ‘W’ to alert the user that the default
earth model was used and not the one specified by the user. The reporting
of such general warnings takes precedence over the generic warning (see
RETURNS above) that processing was not successful at some of the
requested times. Therefore in the case of any return status of level ‘W,’ the
returned value of a high precision real variable generally should be
examined for errors at each time offset, as specified above.

Special Note: for this tool, the associated quality flags will also indicate
that no data is available for those points that could not be successfully
processed (see QUALITY FLAGS above).

REQUIREMENTS: PGSTK-0720, PGSTK-0141

 6-217 EED2-333-001

Get Ephemeris and Attitude Records Without interpolation

NAME: PGS_EPH_EphAtt_unInterpolate()

PGS_EPH_UnInterpEphAtt()

SYNOPSIS:

C: #include <PGS_EPH.h>
 PGSt_SMF_status

PGS_EPH_UnInterpEphAtt(
 PGSt_tag spacecraftTag,
 char *asciiUTC_start,
 char *asciiUTC_stop,
 PGSt_boolean orbFlag,
 PGSt_boolean attFlag,
 PGSt_integer qualityFlag[][2],
 PGSt_integer numValuesEph,

PGSt_integer numValuesAtt,
 char asciiUTC_Eph[][28],

char asciiUTC_Att[][28],
 PGSt_double positionECI[][3],
 PGSt_double velocityECI[][3],
 PGSt_double eulerAngles[][3],
 PGSt_double xyzRotRates[][3],
 PGSt_double attitQuat[][4])

PGSt_SMF_status
PGS_EPH_EphAtt_unInterpolate(
 PGSt_tag spacecraftTag,
 char *asciiUTC_start,
 char *asciiUTC_stop,
 PGSt_boolean orbFlag,
 PGSt_boolean attFlag,
 PGSt_integer qualityFlag[][2],
 PGSt_integer numValues,
 char asciiUTC_UnAtt[][28],
 PGSt_double positionECI[][3],
 PGSt_double velocityECI[][3],
 PGSt_double eulerAngles[][3],
 PGSt_double xyzRotRates[][3],
 PGSt_double attitQuat[][4])

 6-218 EED2-333-001

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_EPH_5.f’

integer function pgs_eph_uninterpephatt(spacecrafttag, asciitcstart,
asciiutcstop, orbflag, attflag, qualityflags, numvalueseph,
numvaluesatt,asciiutceph, asciiutcatt, positioneci, velocityeci,
eulerangles, xyzrotrates, attitquat)
integer spacecrafttag

 character*27 asciiutcstart
 character*27 asciiutcstop
 integer orbflag
 integer attflag
 character asciiutceph(28,*)

character asciiutcatt(28,*)
 integer numvalueseph

integer numvaluesatt
 integer qualityflags(2,*)
 double precision positioneci(3,*)
 double precision velocityeci(3,*)
 double precision eulerAngles(3,*)
 double precision xyzrotrates(3,*)
 double precision attitquat(4,*)

integer function pgs_eph_ephatt_uninterpolate(spacecrafttag,
asciitcstart, asciiutcstop, orbflag, attflag, qualityflags, numvalues,
asciiutcephatt, positioneci, velocityeci, eulerangles, xyzrotrates,
attitquat)
integer spacecrafttag

 character*27 asciiutcstart
 character*27 asciiutcstop
 integer orbflag
 integer attflag
 character asciiutcephatt(28,*)
 integer numvalues
 integer qualityflags(2,*)
 double precision positioneci(3,*)
 double precision velocityeci(3,*)
 double precision eulerAngles(3,*)
 double precision xyzrotrates(3,*)
 double precision attitquat(4,*)

DESCRIPTION: These tools get actual (without interpolation) ephemeris and/or attitude
data records for the specified spacecraft between two specified times. The
tool PGS_EPH_EphAtt_unInterpolate() cannot extract both ephemeris and

 6-219 EED2-333-001

attitude data records if their numbers are different in the specified time
period. Howerver, the tool PGS_EPH_UnInterpEphAtt() which wrapes
around PGS_EPH_EphAtt_unInterpolate() can return both records
regardless of the difference in number of ephemeris and attitude data
records. This tool only will not be able to calculate and return attitude
quaternion when the number of ephemeris and attitude data records differ.

INPUTS:
Table 6-78. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Inputs

Name Description Units Min Max
spacecraftTag spacecraft identifier N/A
asciiUTC_start UTC time reference start time in CCSDS

ASCII time code A format
ASCII 1961-01-01 See Notes

asciiUTC_stop UTC time reference stop time in CCSDS
ASCII time code A format

ASCII 1961-01-01 See Notes

OrbFlag set to true to get ephemeris data T/F
AttFlag set to true to get attitude data T/F
numValues Max number of expected eph/att records
numValuesEph Max number of expected eph records
numValuesAtt Max number of expected att records

OUTPUTS:
Table 6-79. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Outputs

Name Description Units Min Max
numValues Number of eph/att values between start

and stop times

NumValuesEph Number of eph values between start and
stop times

numValuesAtt Number of att values between start and
stop times

asciiUTC_EphAtt UTC time reference for eph/att records
in CCSDS ASCII time code A format

ASCII 1961-01-01 See Notes

asciiUTC_Eph UTC time reference for eph records in
CCSDS ASCII time code A format

ASCII 1961-01-01 See Notes

asciiUTC_Att UTC time reference for att records in
CCSDS ASCII time code A format

ASCII 1961-01-01 See Notes

qualityFlags quality flags for position and attitude data See Notes
positionECI ECI position meters
velocityECI ECI velocity meters/sec
eulerAngles s/c attitude as a set of Euler angles radians
xyzRotRates angular rates about body x, y and z axes radian/sec
AttitQuat spacecraft to ECI rotation quaternion N/A

 6-220 EED2-333-001

RETURNS:
Table 6-80. PGS_EPH_EphAtt_unInterpolate/PGS_EPH_UnInterpEphAtt Returns

Return Description

PGS_S_SUCCESS Successful return
PGSEPH_W_BAD_EPHEM_VALUE One or more values could not be determined
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephemeris/attitude files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephemeris/attitude files could be found for input

times
PGSEPH_E_NO_DATA_REQUESTED Both orbit and attitude flags are set to false
PGSTD_E_SC_TAG_UNKNOWN Unrecognized/unsupported spacecraft tag
PGSEPH_E_BAD_ARRAY_SIZE Array size specified is less than 0
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for initial time

(asciiUTC)
PGS_E_TOOLKIT An unexpected error occurred

EXAMPLES:
C: #define ARRAY_SIZE 10

PGSt_integer numValueseph=ARRAY_SIZE;
PGSt_integer numValuesatt=ARRAY_SIZE;

PGSt_double positionECI[ARRAY_SIZE][3];
PGSt_double velocityECI[ARRAY_SIZE][3];
PGSt_double eulerAngles[ARRAY_SIZE][3];
PGSt_double xyzRotRates[ARRAY_SIZE][3];
PGSt_double attitQuat[ARRAY_SIZE][4];
char asciiUTC_start[28];
char asciiUTC_stop[28];
char asciiUTC_Eph[ARRAY_SIZE][28];
char asciiUTC_Att[ARRAY_SIZE][28];
PGSt_integer qualityFlags[ARRAY_SIZE][2];
PGSt_SMF_status returnStatus;
/*initialize asciiUTC start and stop times */
strcpy(asciiUTC_start,”1998-0203T19:23:45.123”);
strcpy(asciiUTC_start,”1998-02-03T20:23:45.123”);
returnStatus = PGS_EPH_UnInterpEphAtt(PGSd_EOS_AM,
asciiUTC_start, asciiUTC_stop, PGS_TRUE, PGS_TRUE,
qualityFlags, numValueseph, numValuesatt, asciiUTC_Eph,
asciiUTC_Att, positionECI, velocityECI, eulerAngles,
xyzRoteRates, attitQuat);
if (returnStatus != PGS_S_SUCCESS)
{

 6-221 EED2-333-001

** do some error handling **
}

FORTRAN: integer numvalueseph/10/
integer numvaluesatt/10/
integer returnstatus
integer qualityflags(2,numvalues)
character*27 asciiutcstart

 character*27 asciiutcstop
 character asciiutceph(28, numvalues)

character asciiutcatt(28, numvalues)
 double precision positioneci(3,numvalues)

double precision velocityeci(3,numvalues)
double precision eulerangles(3,numvalues)
double precision xyzrotrates(3,numvalues)
double precision attitquat(4,numvalues)

C initialize asciiutc start/stop times
 asciiutcstart = ‘1998-02-03T19:23:45.123’

asciiutcstart = ‘1998-02-03T20:23:45.123’
 returnstatus = pgs_eph_uniterpephatt(pgsd_eos_am,

asciiutcstart, asciiutcstop, pgs_true, pgs_true,
qualityFlags, numvalueseph, numvaluesatt,
asciiutceph,asciiutcatt, positioneci, velocityeci,
eulerangles, xyzroterates, attitquat)

 if (returnstatus .ne. pgs_s_success) then
 :
*** do some error handling ***
 :
endif

NOTES: The Euler angles are always relative to the geocentrically based
orbital reference frame The attitude rates for TRMM are relative to
geodetic orbital reference. The attitude rates for AM1 and later
spacecraft are relative to inertial (J2000) reference. In all cases, the
attitude rates are the spacecraft angular velocity vector projected on
the body axes.

QUALITY FLAGS:

 The quality flags are returned as integer quantities but should be
interpreted as bit fields. Only the first 32 bits of each quality flag is
meaningfully defined, any additional bits should be ignored (currently
integer quantities are 32 bits on most UNIX platforms, but this is not
guaranteed to be the case—e.g. an integer is 64 bits on a Cray).

 6-222 EED2-333-001

Generally the quality flags are platform specific and are not defined by the
Toolkit. Two bits of these flags have, however, been reserved for SDP
Toolkit usage. Bit 12 will be set by the Toolkit if no data is available at a
requested time, bit 14 will be set by the Toolkit if the data at the requested
time has been interpolated (the least significant bit is “bit 0”). Any other
bits are platform specific and are the responsibility of the user to interpret.
See also Section L.3 (Quality Flags).

 See Section 6.2.7.1 (Time Acronyms)

 See Section 6.2.7.2 (ASCII Time Formats)

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)

ERROR HANDLING: See notes for PGS_EPH_EphemAttit().

REQUIREMENTS: PGSTK-0720, PGSTK-0141

 6-223 EED2-333-001

Get Ephemeris and Attitude Metadata

NAME: PGS_EPH_GetEphMet()

SYNOPSIS:

C: #include <PGS_EPH.h>

 PGSt_SMF_status
PGS_EPH_EphMet(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_integer* numOrbits,
 PGSt_integer orbitNumber[],
 char orbitAscendTime[][28],
 char orbitDescendTime[][28],
 PGSt_double orbitDownLongitude[])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_EPH_5.f’

 integer function pgs_eph_getephmat(spacecrafttag,numvalues,asciiutc,
 offsets,numorbits,orbitnumber,orbitascendtime,
 orbitdescendtime,orbitdownlongitude)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer numorbits
 integer orbitnumber(*)
 character*27 orbitascendtime(*)
 character*27 orbitdescendtime(*)
 double precision orbitdownlongitude(*)

DESCRIPTION: This tool returns the metadata associated with toolkit spacecraft
ephemeris/attitude files.

 6-224 EED2-333-001

INPUTS:
Table 6-81. PGS_EPH_GetEphMet Inputs

Name Description Units Min Max
spacecraftTag spacecraft identifier N/A
numValues num. Of values requested N/A
asciiUTC UTC time reference start time in

CCSDS ASCII time code A format
ASCII 1961-01-01 See Notes

offsets array of time offsets in seconds
relative to asciiUTC

seconds depends on asciiUTC

OUTPUTS:
Table 6-82. PGS_EPH_GetEphMet Outputs

Name Description Units
numOrbits number of orbits spanned by data set N/A
orbitNumber array of orbit numbers spanned by data set N/A
orbitAscendTime array of times of spacecraft northward equator crossings ASCII
orbitDescedTime array of times of spacecraft southward equator crossings ASCII
orbitDownLongitude array of longitudes of spacecraft southward equator crossings radians

RETURNS:
Table 6-83. PGS_EPH_GetEphMet Returns

Return Description

PGS_S_SUCCESS Successful return
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephemeris/attitude files could be found for input

times
PGSEPH_E_EPH_BAD_ARRAY_VALUE Array size specified is less than 0
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_SC_TAG_UNKNOWN Unrecognized/unsupported spacecraft tag
PGSEPH_W_CORRUPT_METADATA Same detadata values are believed to be corrupt
PGS_E_TOOLKIT An unexpected error occured

EXAMPLES:

C: #include <PGS_EPH.h>

#define ORBIT_ARRAY_SIZE 5 /* maximum number of orbits
 expected */

#define EPHEM_ARRAY_SIZE 100 /* number of ephemeris data
 points */

 6-225 EED2-333-001

PGSt_double offsets[EPHEM_ARRAY_SIZE];
PGSt_double orbitdownlongitude[ORBIT_ARRAY_SIZE][3];

PGSt_integer numOrbits;

PGSt_integer orbitnumber[ORBIT_ARRAY_SIZE];

char asciiUTC[28];
char orbitAscendTime[ORBIT_ARRAY_SIZE][28];
char orbitDescendTime[ORBIT_ARRAY_SIZE][28];

/* initialize asciiUTC and offsets array with the times for
 actual ephemeris records that will be processed (i.e. by
 some other tool) */

strcpy(asciiUTC,”1998-02-03T19:23:45.123”);

for (i=0;i<EPHEM_ARRAY_SIZE;i++)
{
 offsets[i] = (PGSt_double) i*60.0;
}

/* get the ephemeris metadata associated with these times */

returnStatus = PGS_EPH_GetEphMet(PGSd_EOS_AM,
 EPHEM_ARRAY_SIZE,
 asciiUTC,
 offsets,&numOrbits,
 orbitnumber,
 orbitAscendTime,
 orbitDescendTime,
 orbitDownLongitude);

if (returnStatus != PGS_S_SUCCESS)
{
 :
** do some error handling **
 :
}

/* numOrbits will now contain the number of orbits spanned
 by the data set (as defined by asciiUTC and
 EPHEM_ARRAY_SIZE offsets). orbitAscendTime will contain
 numOrbits ASCII UTC times representing the time of
 northward equator crossing of the spacecraft for each
 respective orbit. orbitDescendTime will similarly
 contain the southward equator crossing times and

 6-226 EED2-333-001

 orbitDownLongitude will contain the southward equator
 crossing longitudes */

FORTRAN: implicit none

include ‘PGS_EPH_5.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’
include ‘PGS_SMF.f’

integer orbit_array_size/1/ ! max. num. orbits expected
integer ephem_array_size/100/ ! num. of ephem. data points

double precision offsets(ephem_array_size, 3)
double precision orbitdownlongitude(orbit_array_size, 3)

integer numorbits
integer orbitnumber(orbit_array_size)

character*27 asciiutc
character*27 orbitascendtime(orbit_array_size)
character*27 orbitdescendtime(orbit_array_size)

! initialize asciiutc and offsets array with the times for actual

! ephemeris records that will be processed (i.e. by some other tool)

asciiutc = ‘1998-02-03t19:23:45.123’

do 100 i=1,ephem_array_size

offsets(i) = i*60.D0

100 continue

! get the ephemeris metadata associated with these times

returnStatus = pgs_eph_getephmet(pgsd_eos_am,
> ephem_array_size, asciiutc,
> offsets,numorbits,
> orbitnumber
> orbitascendtime,
> orbitdescendtime,
> orbitdownlongitude)

if (returnStatus .ne. pgs_s_success) then

 6-227 EED2-333-001

 :
** do some error handling **
 :

endif

! numOrbits will now contain the number of orbits spanned by the data set

! (as defined by asciiUTC and EPHEM_ARRAY_SIZE offsets). orbitAscendTime

! will contain numOrbits ASCII UTC times representing the time of northward

! equator crossing of the spacecraft for each respective orbit.

! orbitDescendTime will similarly contain the southward equator crossing

! times and orbitDownLongitude will contain the southward equator crossing

! longitudes

NOTES: The tool checks for certain kinds of inconsistant or impossible metadata,
such as out-of-sequence orbit numbers, orbit start and stop times etc., also
see NOTES section of PGS_EPH_EphemAttit()

REQUIREMENTS: PGSTK-0720, PGSTK-0141

 6-228 EED2-333-001

Manage Masks

NAME: PGS_EPH_ManageMasks()

SYNOPSIS:

C: #include <PGS_EPH.h>

 PGSt_SMF_status

 PGS_EPH_ManageMasks(

 PGSt_integer command,

 PGSt_integer qualityFlagsMasks[2])

FORTRAN: include 'PGS_SMF.f'

 include 'PGS_TD.f'

 include 'PGS_EPH_5.f'

 integer function

 pgs_eph_managemasks(command,qualityflagsmasks)

 integer command

 integer qualityflagsmasks(2)

DESCRIPTION: This function is used to get and/or set the values of the ephemeris and
attitude quality flags masks. Any bit set in the mask makes the
corresponding bit, when encountered in the quality flag from a data packet,
fatal.

INPUTS:
Table 6-84. PGS_EPH_ManageMasks Inputs

Name Description Units Min Max
command specifies action (get or set) to be

taken by this function. Possible
value: PGSd_SET and PGSd_GET

N/A N/A N/A

qualityFlagsM
asks

ephemeris and attitude quality flags
masks, in that order

N/A N/A N/A

 6-229 EED2-333-001

OUTPUTS:
Table 6-85. PGS_EPH_ManageMasks Outputs

Name Description Units
qualityFlagsMasks ephemeris and attitude quality flags masks, in that order. N/A

RETURNS:
Table 6-86. PGS_EPH_ManageMasks Returns

Return Description

PGS_S_SUCCESS Successful return
PGSPC_E_DATA_ACCESS_ERROR Error accessing Process Control File
PGS_E_TOOLKIT An unexpected error occured

EXAMPLES: The following code would be imbedded in overlying code calling this
function. The examples show how to set the flag masks for ephemeris and
for attitude data. The other option would be used to get the flag masks
from the static buffer in the function itself. To set the masks for an entire
run, the PCF can be used. The unit number for the ephemeris mask,
PGSd_EPH_QFLAG_MASK is 10507, while that for attitude,
PGSd_ATT_QFLAG_MASK is 10508. These equivalences are defined in
PGS_EPH.h.

C:

PGSt_integer qualFlagM[2]; /* quality flags as integers */

qualFlagM[0]=0x400; /* rejects “repaired” ephemeris data */

qualFlagM[1]=0x20; /* rejects attitude data failing red limit */

 returnStatus = PGS_EPH_ManageMasks(PGSd_SET,qualFlagM);

FORTRAN:

integer pgs_eph_managemasks

integer*4 flag_value(2) ! quality flags as integers

integer setter ! to get or set (boolean)

DATA flag_value /1024, 32/ ! rejects repaired ephem. data

 6-230 EED2-333-001

* and attitude data failing

* red limit

setter = PGSd_SET

returnStatus = pgs_eph_managemasks(setter,flag_value)

NOTES: This function allows for user defined "masks" for the two data quality
flags (ephemeris and attitude) associated with spacecraft ephemeris and
attitude data. The quality flags are four byte entities (they may be 8 bytes
on the Cray but only the first four bytes will be considered) that are
interpreted bit by bit for meaning. The least significant bit is bit 0.
Currently, the only "fatal" bit (i.e. indicating meaningless data) that will be
set prior to access by the toolkit is bit 16. Additionally the toolkit will set
bit 12 of the quality flag returned for a given user input time if NO data are
found for that input time. Note that this usage is different from most of
the other bits, which indicate the state of some existing data point. By
default this function will set the mask for each of the quality flags to
include bit 16 (fatally flawed data) and bit 12 (no data). This means that
any data points returned from the tool PGS_EPH_EphemAttit() with an
associated quality flag that has either bit 12 or bit 16 set will be rejected by
any TOOLKIT function that makes a call to PGS_EPH_EphemAttit()
(note that masking is not applied in the tool PGS_EPH_EphemAttit() itself
since users calling this tool directly can examine the quality flags
themselves and make their own determination as to which data points to
use or reject). The functions affected by using PGS_EPH_ManageMasks()
are:

PGS_CBP_Sat_CB_Vector()

PGS_CBP_body_inFOV()

PGS_CSC_ECItoORB()

PGS_CSC_ECItoSC()

PGS_CSC_Earthpt_FOV()

PGS_CSC_Earthpt_FixedFOV()

PGS_CSC_GetFOV_Pixel()

PGS_CSC_ORBtoECI()

PGS_CSC_ORBtoSC()

PGS_CSC_SCtoECI()

PGS_CSC_SCtoORB()

PGS_CSC_SubSatPoint()

 6-231 EED2-333-001

For identification of the different bits, please refer to Appendix L of this
User Guide.

Users can use this tool or the Process Control File (PCF) to define their
own masks which the toolkit will then use instead of the defaults
mentioned above. The user defined mask should contain set any bit which
the user considers fatal for her/his purpose (e.g. red limit exceeded).
WARNING: if the user defined mask does not have bit 16 set, the toolkit
will pass through data the associated quality flag of which has bit 16 set.
The toolkit will not, however, process any data points if the associated
quality flag has bit 12 set (i.e. no data exist) whether or not the user mask
has bit 12 explicitly set.

DETAILS: This function will attempt (on its first invocation) to initialize the values of
the ephemeris data quality flag masks and the attitude data quality flag
masks from values specified in the Process Control File (PCF). If the first
call to this function is a "set" (PGSd_SET) operation, the quality flags
masks will immediately be set to the input values (i.e. ignoring the values
found in the PCF or any errors in attempting to determine the values from
the PCF). Once initialized the values of the quality flags masks can then
be accessed via the "get" (PGSd_GET) command or altered via the "set"
command. The values are retained internally in the function
PGS_EPH_ManageMasks().

REQUIREMENTS: PGSTK - 0141, 0720, 0740

 6-232 EED2-333-001

6.2.6.3 EPH Functions

PGS_EPH_EphemAttit

See description in 6.2.6.3 Spacecraft Ephemeris and Attitude Tool.

PGS_EPH_GetEphMet

See description in 6.2.6.3 Get Ephemeris and Attitude Metadata.

PGS_EPH_interpolateAttitude

Given a pair of spacecraft attitudes (as Euler angles), attitude rates and their corresponding times
this function interpolates the spacecraft attitude and attitude rates to a requested time between the
two input times.

PGS_EPH_EphAtt_unInterpolate

Given a pair of spacecraft attitudes (as Euler angles), attitude rates and their corresponding times
this function provides the actual data upon requested.

PGS_EPH_interpolatePosVel

Given a pair of spacecraft position vectors, velocity vectors and their corresponding times this
function interpolates the spacecraft position and veloctiy to a requested time between the two
input times.

6.2.7 Time and Date Conversion Tools
The ability to convert easily and accurately between different representations of time is crucial to
EOS science data processing. The time and date conversion routines in the SDP Toolkit will
convert between spacecraft time, UTC, International Atomic Time (TAI) and Julian date, as well
as converting double precision values to and from CCSDS ASCII formats. Time values are
converted for use in science software and as parameters when performing geo-coordinate
transformations. In addition, converting time parameters to ASCII or to other more easily read
formats facilitates the time values being added to metadata and to various processing logs in a
human-readable form.

The spacecraft, UTC, Julian Date, and other times used as input and output for the time and date
conversion routines will be in accord with the Consultative Committee for Space Data Systems
(CCSDS) standard time code formats where applicable. The formats are described in CCSDS
Blue Book, Issue 2, Time Code Formats, (CCSDS 301.0-B-2) issued by the Consultative
Committee for Space Data Systems (NASA Code- OS, NASA, Washington DC 20546), April
1990. Various EOS supported spacecraft will deliver time data in various CCSDS binary codes.
The Toolkit will translate times from these codes to more user friendly formats. Therefore, binary
formats will not be described in the present manual. The reader is referred to the Blue Book and
to interface documents for the particular spacecraft of interest. The ASCII codes will be
described herein both for the convenience of users, and because we have exercised discretion in
permitting or forbidding certain truncations.

 6-233 EED2-333-001

Because UTC as a real variable is discontinuous at leap seconds boundaries (approximately every
one to two years) it has been decided to carry it only in ASCII formats. TAI time runs at the same
(Standard International compatible) rate and will be carried as a double precision number, in two
ways: Julian Date and seconds from Jan. 1, 1993 UTC midnight.

Toolkit times are either character strings (CCSDS ASCII format), an array of two high precision
real values (Toolkit Julian Dates) or a single high precision real value (all other values).

6.2.7.1 Time Acronyms
GAST Greenwich Apparent Sidereal Time
GMST Greenwich Mean Sidereal Time
GPS Global Positioning System
MJD Modified Julian Date
TAI International Atomic Time
TDB Barycentric Dynamical Time
TDT Terrestrial Dynamical Time
TJD Truncated Julian Date
UT1 Universal Time
UTC Coordinated Universal Time

6.2.7.2 ASCII Time Formats
The CCSDS ASCII Time Codes (A and B formats) are defined in the CCSDS Blue Book, pages
2-6 to 2-8. The full format requires all the subfields be present, but certain subsets of the
complete time codes are allowed (pages 2-7 to 2-8 of the Blue Book). The Toolkit will handle
input and output with slightly different restrictions.

CCSDS ASCII Time Code A as implemented by the Toolkit:

YYYY-MM-DDThh:mm:ss.d->dZ

[Example 2002-02-23T11:04:57.987654Z]

where

YYYY = a four character subfield for year, with value in range 0001-9999

MM = a two character subfield for month with values 01-12, leading zeros required

DD = a two character subfield for day with values in the range 01-eom, where eom is 28,
29, 30, or 31 according to the month (and, for February, the year)

The “T”, a separator, must follow the DD subfield; if and only if there are more
characters after the DD subfield; the string will be accepted and parsed such that mm, ss,
and d are treated as 0. In that case, a “Z” will still be accepted, but not required, at the
end.

hh = a two character subfield for hours, with values 00-23

mm = a two character subfield for minutes, with values 00-59

 6-234 EED2-333-001

ss = a two character subfield for seconds, with values 00-59 (00-60 in a positive leap
second interval, 00-58 in the case of a negative leap second)

d->d an n-character subfield, (n < 7 for input n = 6 for output), for decimal fraction of a
second, with each digit in the range 0-9. If the decimal point appears on input, digits must
follow it.

Z - terminator, optional on input

The CCSDS ASCII Time Code B format, described on p. 2-7 of the Blue Book, is:

YYYY-DDDThh:mm:ss.d->dZ

[Example 2002-054T11:04:57.987654Z]

The format is identical to the Code A except that the month, day combination MM-DD is
replaced by day of year, i.e.,

DDD = Day of Year as a 3 character subfield with values 001-365 in non leap years and
001-366 in leap years.

NOTE: The CCSDS Formats require all leading zeros be present.

ASCII Time Input

ASCII time input strings may be in either CCSDS ASCII Time Code A format or CCSDS ASCII
Time Code B format. All Toolkit functions requiring input ASCII time strings will correctly
identify either format.

The Toolkit requires input ASCII time strings to include at least full dates (in format A or B) and
will accept ASCII time strings that include times with up to six digits after the decimal point, or
subsets truncated from the right (i.e., fractions of a second, whole seconds, minutes, or hours can
be omitted by the user and the values will be set to zero. If a subfield is omitted the whole
subfield should be omitted; e.g., “ss” cannot be replaced by “s” for seconds.) The time string may
also not end with a field delimiter: “T”,”:” or “.”. Users are warned that no error status or
message will issue if any of these subfields is missing, so long as truncation is from the right;
users should be careful to pass a string of sufficient length to accommodate their data! The
Toolkit will not accept truncations from the left; i.e., the year, month and day must be present as
four, two, and two digits respectively, or the year as four digits and the day of year as three.
Truncation from the left would be too dangerous in view of the coming century change.

Finally, the Toolkit will provide an error message, which will include passing one or more of the
offending characters, if the format is violated by input data. In this context, day numbers in
excess of the allowable value for the month (and year, for February) are considered errors in
format (e.g., a fatal message will issue if DDD = 366 (format B) or MM = 02 and DD = 29
(format A) in a non leap year). A fatal message will issue if the integer part of the seconds
subfield runs over 58 in the presence of a negative leap second or over 59 in the absence of a
positive leap second. There is no protection against missing data in the presence of a positive
leap second if the integer seconds subfield fails to read 60; in that case Toolkit routines cannot
populate the leap second interval.

 6-235 EED2-333-001

ASCII Time Output

All ASCII time output strings will be in CCSDS ASCII Time Code A format (except for the
output of PGS_TD_ASCIItime_AtoB(), which will be in CCSDS ASCII Time Code B format).

The Toolkit will output the full format (date and time), to six digits in the fractional seconds,
even though the accuracy may be poorer than one microsecond. There are two reasons why the
Toolkit will output microseconds, even though most users will not want numbers more accurate
than one millisecond: (i) At least one platform (AM1) plans to provide microseconds; we do not
wish to degrade their resolution. (ii) We wish to provide for upgradeability.

The Toolkit will issue a terminal “Z” on the output string to facilitate identification of the end of
string and to signify Universal time.

The output strings will be 27 characters in Code A, including the “Z”, and 25 in Code B,
including the “Z” (Note: this does NOT include the terminating NULL character required
in C strings).

6.2.7.3 Toolkit Internal Time (TAI)
Toolkit internal time is the real number of continuous SI seconds since the epoch of UTC 12 AM
1-1-1993. Toolkit internal time is also referred to in the Toolkit as TAI (upon which it is based).
Values are maintained as single high precision real numbers (C: PGSt_double, FORTRAN:
DOUBLE PRECISION). The numbers will be negative until midnight, UTC Jan. 1, 1993 and
positive after that. The whole number part carries whole seconds and the fractional part carries
fractions of a second.

Occasionally, users may wish to relate Toolkit internal time to seconds since Jan. 1, 1958,
midnight. The exact numbers’ of TAI seconds from 1958-01-01T00:00:00 to 1993-01-
01T00:00:00 is 1104537627.0

6.2.7.4 Toolkit Julian Dates

6.2.7.4.1 Format

Toolkit Julian dates are kept as an array of two real high precision numbers (C: PGSt_double,
FORTRAN: DOUBLE PRECISION). The first element of the array should be the half integer
Julian day (e.g., N.5 where N is a Julian day number). The second element of the array should be
a real number greater than or equal to zero AND less than one (1.0) representing the time of the
current day (as a fraction of that (86400 second) day. This format allows relatively simple
translation to calendar days (since the Julian days begin at noon of the corresponding calendar
day). Users of the Toolkit are encouraged to adhere to this format to maintain high accuracy (one
number to track significant digits to the left of the decimal and one number to track significant
digits to the right of the decimal). Toolkit functions that do NOT require a Julian type date as an
input and that do return a Julian date will return it in the above mentioned format. Toolkit
functions that require a Julian date as an input and do NOT return a Julian date will first convert
(internally) the input date to the above format if necessary. Toolkit functions that have a Julian
date as both an input and an output will assume the input is in the above described format but

 6-236 EED2-333-001

will not check and the format of the output may not be what is expected if any other format is
used for the input.

6.2.7.4.2 Meaning

Toolkit “Julian dates” are all derived from UTC Julian Dates. A Julian date in any other time
stream (e.g., TAI, TDT, UT1, etc.) is the UTC Julian date plus the known difference of the other
stream from UTC (differences range in magnitude from 0 seconds to about a minute). Note that
although UTC days having leap seconds actually contain 86401 seconds, this is not true for
Julian Days of any kind as implemented in the Toolkit. TAI, UT1, TDT and TDB Julian Days are
all 86400 seconds, while the UTC Julian Day with the leap second contains duplicate values for
one second; only in ASCII form does it have 86401 distinct seconds.

6.2.7.4.3 Examples

In the following examples, all Julian Dates are expressed in Toolkit standard form as two double
precision numbers. For display here, the two members of the array are enclosed in braces {} and
separated by a comma.

a. UTC to TAI Julian dates conversion

The Toolkit UTC Julian date for 1994-02-01T12:00:00 is: {2449384.50, 0.5}. TAI-UTC
at 1994-02-01T12:00:00 is 28 seconds (.00032407407407 days). The Toolkit TAI Julian
date for 1994-02-01T12:00:00 is:

{2449384.50, 0.5 + .00032407407407} = {2449384.50, 0.50032407407407}

Note that the Julian day numbers in UTC and the target time stream may be different by +
or - 1 for times near midnight.

b. UTC to UT1 Julian dates conversion

The Toolkit UTC Julian date for 1994-04-10T00:00:00 is: {2449452.50, 0.0}. UT1-UTC
at 1994-04-10T00:00:00 is -.04296 seconds (-0.00000049722221 days). The Toolkit UT1
Julian date for 1994-04-10T00:00:00 is:

 {2449452.50, 0.0 - 0.0000004972222}
= {2449452.50, -0.0000004972222}
= {2449451.50, 0.9999995027778}

6.2.7.5 Time Boundaries

Many of the Toolkit functions that require time as an input or output keep track of time in the
SDP Toolkit internal time format (see above). Most of these functions depend on the file
leapsec.dat that contains the values of TAI-UTC (leap seconds).

Some Toolkit functions also (or instead) rely on the file utcpole.dat that contains the values of
UT1-UTC.

 6-237 EED2-333-001

The times that can be processed by a function may depend on the values maintained in one or
both of these files which are updated periodically with new values.

6.2.7.5.1 TAI-UTC Boundaries

The minimum and maximum times that can successfully be processed by functions requiring the
value TAI-UTC depend on the file leapsec.dat that relates leap second (TAI-UTC) values to UTC
Julian dates. The file leapsec.dat contains dates of new leap seconds and the total leap seconds
times on and after Jan 1, 1972. For times between Jan 1, 1961 and Jan 1, 1972 it contains
coefficients for an approximation supplied by the International Earth Rotation Service (IERS)
and the United States Naval Observatory (USNO). These approximations are the same as
adopted by the Jet Propulsion Laboratory (JPL) ephemeris group that produces the DE series of
solar system ephemerides, such as DE200, and are used consistently with IERS/USNO/JPL
usage. For times after Jan 1, 1961, but before the last date in the file, the Toolkit sets TAI-UTC
equal to the total number of leap seconds to date, (or to the USNO/IERS approximation, for dates
before Jan 1, 1972). If an input date is before Jan 1, 1961 the Toolkit sets the leap seconds value
to 0.0. This is consistent with the fact that, for civil timekeeping since 1972, UTC replaces
Greenwich Mean Solar Time (GMT), which had no leap seconds. Thus for times before
Jan 1 1961, the user can, for most Toolkit-related purposes, encode Greenwich Mean Solar Time
as if it were UTC. If an input date is after the last date in the file, or after Jan 1, 1961, but the file
cannot be read, the function will use a calculated value of TAI-UTC based on a linear fit of the
data known to be in the table as of early 1997. This value is a crude estimate and may be off by
as much as 1.0 or more seconds. If the data file, leapsec.dat, cannot be opened, or the time is
outside the range from Jan 1, 1961 to the last date in the file, the return status level will be 'E'.
Even when the status level is 'E', processing will continue, using the default value of TAI-UTC
(0.0 for times before Jan 1, 1961, or the linear fit for later times). Thus, the user should always
carefully check the return status. For times between 1961 and 1972, the leap seconds file
contains data used in approximations designed to correct Greenwhich Mean Time to as close an
equivalent of UT1 as possible; the Toolkit thus determines Earth rotation from GMT in that
period.

6.2.7.5.2 UT1-UTC Boundaries

UT1 is the standard measure of axial Earth rotation and is used by all Toolkit functions for
geolocation that locate the spacecraft relative to Earth, or Earth relative to sky (inertial space).
UT1 can be reversibly transformed to "Greenwich Hour Angle". It is therefore important to
maintain accurate values of UT1. The minimum and maximum times that can successfully be
processed by functions requiring the value UT1-UTC depend on the file utcpole.dat that relates
UT1-UTC values to UTC dates. The file utcpole.dat starts at June 30, 1972.

The file utcpole.dat, which is maintained periodically, contains final (definitive) and predicted
values for UT1 - UTC and related variables that describe polar motion, a small correction (~< 15
meters) to geographic positions due to polar wander and wobble. When the file is updated, the
definitive data will reach to within a week in the past of the update time, and the predicted data
will extend about one year into the future. A success status message will be returned if all input
times correspond to final values. A warning status message will be returned if predicted values

 6-238 EED2-333-001

are encountered. An error message will be returned if the time requested is beyond the end of the
predictions, or the file cannot be read. The "predicted" values are expected to be satisfactory for
most users for several weeks, even if the file is not updated weekly as it should be, because the
predictions are rather good for many weeks. Users who desire to reprocess for better accuracy (<
1 m Earth position) will notice their results changing. Because the U.S. Naval Observatory
(USNO) gradually refines its older solutions for Earth rotation, which are captured in our file
"utcpole.dat", changes at the millimeter to centimeter level may be noticed weeks later even for
data processed with "final" values for UT1. (Please note that with Toolkit 5.2 and later,
predictions are carried only 83 days ahead, because a leap second could be announced, changing
subsequent predictions by one second. Thus the values for 90 days and beyond are no longer
relevant; and the error will not exceed about 3.5 m. See section 6.2.7.6.) The following Table,
based on error estimates in the USNO data table “finals.data” as of April 23, 1996, indicates the
one-sigma errors to be expected in using the file “utcpole.dat” . The days in the left column
should be interpreted as days since the last update of the file. The error is due to the inability to
predict Earth rotation precisely. The error for times in the recent past (not shown) is only of
order < 10 cm. The "interim" data quality supported in TK5 is no longer carried. The first few
weeks of predictions are as good as the old "interim" values. Note that the rather small error
values in Table 6-84 are a tiny part of the overall difference, UT1 - UTC, which is typically in the
range ~ -0.9 to 0.9 seconds, or ~ -420 to +420 m. Please see Appendix N for an example of a
utcpole.dat file.

Table 6-87. Estimated Errors in UT1 Predictions
(Milliseconds of Time and Equivalent Meters of Geolocation Error)

Prediction Period

(Days)

Error
(milliseconds)

(1 std deviation)

Error
(meters at the equator)

(1 std deviation)
1 0.3 0.14

30 3.9 1.7
60 6.5 3.0
90 8.8 4.0

120 10.9 4.9
150 12.9 5.8
180 14.8 6.7
225 17.5 7.9
270 20.1 9.0
315 22.5 10.1
360 24.9 11.0
365 25.7 11.5

Because of the reduced accuracy with predicted UT1, and the maximum extension of one year to
the predictions, when a relevant function is used, this should carefully check the return status. A
success (‘S’) level status message will be returned if all input times correspond to final values. A
warning (‘W’) level status message will be returned if any input times correspond to predicted
values, even though the error may not be large enough to concern most users. An error (‘E’) level

 6-239 EED2-333-001

status message will be returned if the file utcpole.dat cannot be found or if an input time is
outside the range of values in the file.

These error messages due to end-of-data could cause problems for users who wish to run
simulations one year or more in advance. Users needing to run simulations in the far future can
follow procedures shown on the Toolkit Home Page under “Upgrading to Toolkit 5.2” at their
own risk. These procedures are risky in an SCF environment or other non-DAAC environment,
because of the possibility of pointing at the edited (and hence, false) data files when processing
real data. There could also be risk at a DAAC environment if anyone found a way to point at
these files with an altered PCF, e.g. if a command-line run were possible in processing science
data

6.2.7.6 Updating the Leap Seconds File

The file $PGSDAT/TD/leapsec.dat contains leap seconds data, used by many tools. Since new
leap seconds must be appended when they are announced, the file must be periodically updated.
The SDP Toolkit contains utilities to perform this update function. If the leap seconds file is
more than 83 days old, and the last leap second in the file is also more than 83 days in the past of
the time which is being translated by the time tools, an error return will result, because the time
cannot be reliably translated. So long as the updates are performed periodically as explained
below, users will encounter no problem in processing current or past data, or simulations for the
near term future. Users needing to process far future simulations should consult the Toolkit web
site or the Toolkit maintenance and operations staff.

The shell script update_leapsec.sh, which is found in $PGSBIN, will update the leapsec.dat file
to the current date. The Clear Case version, update_leapsec_CC.sh, will do the same job within
a Clear Case (CM) view. To maintain a current leapsec.dat, the appropriate script must be run at
least every month; running once a week offers more protection against an error condition, in case
of problems with ftp. The leap seconds are declared by International Earth Rotation Service
(IERS) in France, on the basis of their estimates of variations in Earth rotation. Leap seconds are
usually added at the start of January or July, and announced nearly six months ahead. The IERS
can, however, announce leap seconds on as little as 90 days notice, after which the U.S. Naval
Observatory may need up to a week to post them. For that reason, the 83 day file life is enforced,
and weekly running of the scripts is advised. Update_leapsec.sh calls PGS_TD_NewLeap, a C
program that performs most of the actual update work.

The update is done by collecting the latest information via ftp from the U. S. Naval Observatory.
At the DAACs, the process is done automatically by the scheduler. . At Science Computing
Facilities, for Toolkits through version 5.2.1, drop 4, users will need to have a ".netrc" file in
their home directories, as explained in the comments within the scripts. Later releases will not
need such a file.

 6-240 EED2-333-001

6.2.7.7 Time and Date Conversion Tools

Convert UTC to TAI Time

NAME: PGS_TD_UTCtoTAI()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoTAI(
 char asciiUTC[28],
 PGSt_double *secTAI93);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctotai(asciiutc, sectai93)
 character*27 asciiutc
 double precision sectai93

DESCRIPTION: This tool converts UTC time in CCSDS ASCII Time Code (A or B
format) to Toolkit internal time (real continuous seconds since 12AM
UTC 1-1-93).

INPUTS:
Table 6-88. PGS_TD_UTCtoTAI Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII Time
Code A format or ASCII Time
Code B format

time 1961-01-01T00:00:00Z see NOTES

OUTPUTS:
Table 6-89. PGS_TD_UTCtoTAI Outputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM UTC
Jan. 1, 1993

seconds -1009843225.5 see NOTES

 6-241 EED2-333-001

RETURNS:
Table 6-90. PGS_TD_UTCtoTAI Returns

Return Description

PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGS_E_TOOKIT Something unexpected happened, execution aborted

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char asciiUTC[28];
PGSt_double secTAI93;

 strcpy(asciiUTC,”1993-01-02T00:00:00.000000Z”);
returnStatus = PGS_TD_UTCtoTAI(asciiUTC,&secTAI93);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

printf(“TAI: %f\n”,secTAI93);

FORTRAN: implicit none

 integer pgs_td_utctotai
integer returnstatus
character*27 asciiutc
double precision sectai93

 asciiutc = ‘1993-01-02T00:00:00.000000Z’
returnstatus = pgs_td_utctotai(asciiutc,sectai93)
if (returnstatus .ne. pgs_s_success) goto 999
write(6,*) ‘TAI: ‘, sectai93

NOTES: TIME ACRONYMS:

 TAI is: International Atomic Time
UTC is: Universal Coordinated Time

TIME BOUNDARIES:

See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 6-242 EED2-333-001

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the
epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to in
the toolkit as TAI (upon which it is based).

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210, PGSTK-1220

 6-243 EED2-333-001

Convert TAI to UTC Time

NAME: PGS_TD_TAItoUTC()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_TAItoUTC(
 PGSt_double secTAI93,
 char asciiUTC[28]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_taitoutc(sectai93, asciiutc)
 character*27 asciiutc
 double precision sectai93

DESCRIPTION: This tool converts Toolkit internal time (real continuous seconds since
12AM UTC 1-1-93) to UTC time in CCSDS ASCII Time Code A format.

INPUTS:
Table 6-91. PGS_TD_TAItoUTC Inputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM
UTC Jan. 1, 1993

seconds -1009843225.577182 see NOTES

OUTPUTS:
Table 6-92. PGS_TD_TAItoUTC Outputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII Time
Code A format

time 1961-01-01T00:00:00 see NOTES

RETURNS:
Table 6-93. PGS_TD_TAItoUTC Returns

Return Description

PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGS_E_TOOLKIT Something radically wrong occurred

 6-244 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double secTAI93;
char asciiUTC[28];

 secTAI93 = 86400.;
returnStatus = PGS_TD_TAItoUTC(secTAI93,asciiUTC);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

printf(“UTC: %s\n”,asciiUTC);

FORTRAN: implicit none

 integer pgs_td_taitoutc
integer returnstatus
double precision sectai93
character*27 asciiutc

 sectai93 = 86400.D0
returnstatus = pgs_td_taitoutc(sectai93,asciiutc)
if (returnstatus .ne. pgs_s_success) goto 999
write(6,*) ‘UTC: ‘, asciiutc

NOTES: TIME ACRONYMS:

 TAI is: International Atomic Time
UTC is: Universal Coordinated Time

TIME BOUNDARIES:

See Section 6.2.7.5.1 (TAI-UTC Boundaries)

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the
epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to in
the toolkit as TAI (upon which it is based).

REFERENCES FOR TIME:

CCSDS 2301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210, PGSTK-1220

 6-245 EED2-333-001

Convert Toolkit Internal Time to TAI Julian Date

NAME: PGS_TD_TAItoTAIjd()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_double *

 PGS_TD_TAItoTAIjd(

 PGSt_double secTAI93,

 PGSt_double jdTAI[2])

FORTRAN include “PGS_SMF.f”

include “PGS_TD_3.f”

double precision function pgs_td_taitotaijd(sectai93, jdtai)

 double precision sectai93

 double precision jdtai(2)

DESCRIPTION: This function converts time in TAI seconds since 12 AM UTC 1-1-1993 to
TAI Julian date.

INPUTS:
Table 6-94. PGS_TD_TAItoTAIjd.c Inputs

Name Description Units Min Max
secTAI93 Toolkit internal time (seconds since 12 AM seconds 1958-01-01 none

OUTPUTS:
Table 6-95. PGS_TD_TAItoTAIjd Outputs

Name Description Units Min Max
jdTAI TAI Julian date days 2437300.5 see NOTES

RETURNS: TAI Julian date (address of jdTAI).

EXAMPLES:

C: PGSt_double secTAI93;

 PGSt_double jdTAI[2];

secTAI93 = 86400.;

 6-246 EED2-333-001

PGS_TD_TAItoTAIjd(secTAI93,jdTAI);

 ** jdTAI[0] should now have the value: 2448989.5 **
** jdTAI[1] should now have the value: 0.0003125 **

FORTRAN: double precision sectai93

double precision jdtai

sectai93 = 86400.D0

call pgs_td_taitotaijd(sectai93, taijd)

! jdtai[0] should now have the value: 2448989.5

! jdtai[1] should now have the value: 0.0003125

NOTES: TAI is: Toolkit International Atomic Time measured from 1993-01-01

 The translation to and from UTC begins Jan 1, 1961. It is valid until about
6 months after the last leap second, in $PGSDAT/TD/leapsec.dat. When
the script $PGSBIN/TD/update_leapsec.sh is run regularly the leap
seconds file will be kept current and will be valid six months ahead.

 Since TAI was not defined before 1958-01-01 this is the formal lower
limit, but practically, the tool will work for any time after 4713 BC, if
TAI93 is interpreted as seconds before Jan 1, 1993 UTC midnight.

REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

 Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

REQUIREMENTS: PGSTK - 1220, 1160, 1170

 6-247 EED2-333-001

Convert TAI Julian Date to Toolkit Internal Time

NAME: PGS_TD_TAIjdtoTAI()

SYNOPSIS:
 C: #include <PGS_TD.h>
 PGSt_double
 PGS_TD_TAIjdtoTAI(

PGSt_double jdTAI[2])
FORTRAN: double precision function pgs_td_taijdtotai(jdtai)

double precision jdtai(2)
DESCRIPTION: This function converts TAI Julian date to time in TAI seconds since 12

AM UTC 1-1-1993.

INPUTS:
Table 6-96. PGS_TD_TAIjdtoTAI Inputs

Name Description Units Min Max
 jdTAI TAI Julian date days 2437300.5 ANY

OUTPUTS: None

RETURNS: Toolkit internal time (seconds since 12 AM UTC 1-1-1993).

EXAMPLES:
C PGSt_double secTAI93;

 PGSt_double jdTAI[2];

jdTAI[0] = 2448989.5;

jdTAI[1] = 0.0003125;

secTAI93 = PGS_TD_TAIjdtoTAI(jdTAI);

/* secTAI93 should now have the value: 86400.*/

NOTES: TAI is: International Atomic Time

 6-248 EED2-333-001

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

REQUIREMENTS: PGSTK - 1220, 1160, 1170

 6-249 EED2-333-001

Convert TAI to GAST

NAME: PGS_TD_TAItoGAST()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_TAItoGAST(
 PGSt_double secTAI93,
 PGSt_double *gast)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_CSC_4.f
include ‘PGS_TD_3.f’

 integer function pgs_td_taitogast(sectai93,gast)
 double precision sectai93
 double precision gast

DESCRIPTION: This function converts TAI (toolkit internal time) to Greenwich Apparent
Sidereal Time (GAST) expressed as the hour angle of the true vernal
equinox of date at the Greenwich meridian (in radians).

INPUTS:
Table 6-97. PGS_TD_TAItoGAST Inputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM UTC Jan. 1, 1993 seconds -426297609.0 see NOTES

OUTPUTS:
Table 6-98. PGS_TD_TAItoGAST Outputs

Name Description Units Min Max

gast Greenwich Apparent Sidereal Time radians 0 2PI

RETURNS:
Table 6-99. PGS_TD_TAItoGAST Returns

Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_PREDICTED_UT1 Status of UT1-UTC correction is predicted
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSTD_E_NO_UT1_VALUE No UT1-UTC correction available
PGS_E_TOOLKIT Something radically wrong occured

 6-250 EED2-333-001

EXAMPLES: None

NOTES: TIME ACRONYMS:

 GAST is: Greenwich Apparent Sidereal Time
TAI is: International Atomic Time

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time is the real number of continuous SI seconds since the
epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to in
the toolkit as TAI (upon which it is based).See Section 6.2.7.4 Time and
Date Conversion Tool Notes

TIME BOUNDARIES:

See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:CCSDS 2301.0-B-2 (CCSDS =>
Consultative Committee for Space Data Systems) Astronomical Almanac,
Explanatory Supplement to the Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-251 EED2-333-001

Convert UTC Time to Spacecraft Clock Time

NAME: PGS_TD_UTC_to_SCtime()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTC_to_SCtime(
 PGSt_tag spacecraftTag,
 char asciiUTC[28],
 PGSt_scTime scTime[8]);

FORTRAN:
include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utc_to_sctime(spacecrafttag, asciiutc, sctime)
 integer spacecrafttag
 character*27 asciiutc
 character*8 sctime

DESCRIPTION: This tool converts UTC in CCSDS Time Code A or B to spacecraft clock
time in platform dependent format.

INPUTS: spacecraftTag-Spacecraft identifier; must be one of: PGSd_TRMM,
PGSd_EOS_AM, PGSd_EOS_AURA, PGSd_EOS_PM_GIIS,
PGSd_EOS_PM_GIRD

 asciiUTC-UTC time in CCSDS ASCII Time Code A or CCSDS ASCII
Time Code B format. The values of MAX, and MIN depend on the
spacecraft, see the files containing the specific conversions for more
information

OUTPUTS: scTime-Spacecraft clock time in platform dependent CCSDS format.
UNITS, MAX, and MIN depend on the spacecraft, see the files containing
the specific conversions for more information.

 6-252 EED2-333-001

RETURNS:
Table 6-100. PGS_TD_UTCtoSCtime Returns

Return Description

PGS_S_SUCCESS Successful execution
PGSTD_E_SC_TAG_UNKNOWN Unknown spacecraft tag
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_DATE_OUT_OF_RANGE Input date is out of range of s/c clock
PGSTD_E_NO_LEAP_SECS Leap seconds correction unavailable at requested time
PGS_E_TOOLKIT An unexpected error occurred

EXAMPLES:

C: char asciiUTC[28];
PGSt_scTime scTime[8];
PGSt_SMF_status returnStatus;

 strcpy(asciiUTC,”1995-02-04T12:23:44.125438Z”);

 returnStatus = PGS_TD_UTC_to_SCtime(PGSd_EOS_AM,asciiUTC,
 scTime);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

FORTRAN: implicit none

 integer pgs_td_utc_to_sctime
character*27 asciiutc
character*8 sctime
integer returnstatus

 asciiutc = ‘1995-02-04t12:23:44.125438Z’

 returnstatus = pgs_td_utc_to_sctime(pgsd_eos_am,asciiutc,
 sctime)
if (returnstatus .ne. pgs_s_success) then
 :

c *** do some error handling ***

 :

endif

 6-253 EED2-333-001

NOTE: WARNING: To properly convert times to or from TRMM s/c clock time
the value of the TRMM Universal Time Correlation Factor (UTCF) must
be known. This value must be supplied by the user in the Process Control
File (PCF). The following line MUST be contained in the PCF for any
process that is converting to or from TRMM s/c clock time:

 10123|TRMM UTCF value|<UTC VALUE>

 Where the proper value of the UTCF should be substituted for
<UTC VALUE>.

 There is no corresponding problem for AM1 clock time, which is specified
to have an accuracy of 100 microseconds.

UTC is: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)

The output spacecraft times vary in format. The supported spacecraft times
are in the following formats:

 TRMM CUC (platform specific variant of CCSDS
 Unsegmented time code(CUC) used)
EOS AM CDS (platform specific variant of CCSDS day
 segmented time code (CDS) used)
EOS AURA CUC

EOS PM GIIS CDS

 EOS PM GIRD CUC

 REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK- 1170

 6-254 EED2-333-001

Convert Spacecraft Clock Time to UTC Time

NAME: PGS_TD_SCtime_to_UTC()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_SCtime_to_UTC(
 PGSt_tag spacecraftTag,
 PGSt_scTime scTime[][8],
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_sctime_to_utc(spacecrafttag,
 sctime,numvalues,asciiutc,
 offsets)
 integer spacecrafttag
 character*8 sctime(*)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)

DESCRIPTION: This tool converts spacecraft clock time in platform dependent CCSDS
format to UTC in CCSDS ASCII Time Code A format.

INPUTS: spacecraftTag-Spacecraft identifier, must be one of: PGSd_TRMM,
PGSd_EOS_AM, PGSd_EOS_PM_GIIS, PGSd_EOS_PM_GIRD,
PGSd_EOS_AURA

 scTime-Array of spacecraft clock times in platform dependent CCSDS
format. UNITS, MAX, and MIN depend on the spacecraft, see the files
containing the specific conversions for more information.

 numValues-number of elements in the input scTime array (and therefore
the output offsets array)

 6-255 EED2-333-001

OUTPUTS:
Table 6-101. PGS_TD_SCtime_to_UTC Outputs

Name Description Units
asciiUTC UTC time of first s/c clock time in input array (in CCSDS ASCII Time Code A format).

The values of MAX, and MIN depend on the spacecraft, add values from prologs!
ASCII

offsets Array of offsets of each input s/c clock time in input array scTime relative to the first
time in the array. This includes the first time as well (i.e., the first offset will be 0.0).
The values of MAX, and MIN depend on the first time as well the spacecraft. Add
values from prologs!

seconds

RETURNS:
Table 6-102. PGS_TD_SCtime_to_UTC Returns

Return Description
PGS_S_SUCCESS successful execution
PGSTD_W_BAD_SC_TIME one or more input s/c times could not be deciphered
PGSTD_E_BAD_INITIAL_TIME the initial input s/c time (first time in input array) could not be deciphered
PGSTD_E_SC_TAG_UNKNOWN unknown/unsupported spacecraft ID tag
PGS_E_TOOLKIT an unexpected error occurred

EXAMPLES:
C: #define ARRAY_SIZE 1000

 PGSt_scTime scTime[ARRAY_SIZE][8];
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE];
PGSt_SMF_status returnStatus;

 *** Initialize scTime array ***
 :
 :

 returnStatus = PGS_TD_SCtime_to_UTC(PGSd_EOS_AM,scTime,
 ARRAY_SIZE,asciiUTC,
 offsets);
if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

FORTRAN: implicit none

 integer pgs_td_sctime_to_utc
integer array_size
character*8 sctime(array_size)
character*27 asciiutc
double precision offsets(array_size)
integer returnstatus

 6-256 EED2-333-001

 *** Initialize sctime array ***
 :
 :
returnstatus = pgs_td_sctime_to_utc(pgsd_eos_am,sctime,
 array_size,asciiutc,
 offsets)
if (returnstatus .ne. pgs_s_success) then
 :
*** do some error handling ***
 :
endif

NOTES: WARNING: To properly convert times to or from TRMM s/c clock time
the value of the TRMM Universal Time Correlation Factor (UTCF) must
be known. This value must be supplied by the user in the Process Control
File (PCF). The following line MUST be contained in the PCF for any
process that is converting to or from TRMM s/c clock time:

 10123|TRMM UTCF value|<UTC VALUE>
 Where the proper value of the UTCF should be substituted for

<UTC VALUE>.
 There is no corresponding problem for AM1 clock time, which is specified

to have an accuracy of 100 microseconds.
This function converts an array of input s/c times to an initial time and an
array of offsets relative to this initial time. If the first time in the input
array cannot be deciphered, this function returns an error. If any other time
in the input array cannot be deciphered, the corresponding offset is set to
PGSd_GEO_ERROR_VALUE and this function continues after setting
the return value to a warning.
See Section 6.2.7.2 (ASCII Time Formats)

 The input spacecraft times vary in format. The supported spacecraft times
are in the following formats:

TRMM CUC (platform specific variant of CUC used)
EOS AM CDS (platform specific variant of CDS used)
EOS AURA CUC
EOS PM GIIS CDS
EOS PM GIRD CUC

 UTC: Coordinated Universal Time
TAI: International Atomic Time
CUC: CCSDS Unsegmented Time Code
CDS CCSDS Day Segmented Time Code

REQUIREMENTS: PGSTK-1170

 6-257 EED2-333-001

Convert CCSDS ASCII Time Format A to Format B

NAME: PGS_TD_ASCIItime_AtoB()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_ASCIItime_AtoB(
 char asciiUTC_A[28],
 char asciiUTC_B[27]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_asciitime_atob(asciiutc_a,asciiutc_b);
 character*27 asciiutc_a
 character*26 asciiutc_b

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code A to CCSDS
ASCII Time Code B.

INPUTS:
Table 6-103. PGS_TD_ASCIItime_AtoB Inputs

Name Description Units Min Max

asciiUTC_A UTC Time in CCSDS ASCII Time Code A N/A N/A N/A

OUTPUTS:
Table 6-104. PGS_TD_ASCIItime_AtoB Outputs

Name Description Units Min Max

asciiUTC_B UTC Time in CCSDS ASCII Time Code B N/A N/A N/A

RETURNS:
Table 6-105. PGS_TD_ASCIItime_AtoB Returns

Return Description

PGS_S_SUCCESS Successful return
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

 6-258 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnValue;
char asciiUTC_A[28];
char asciiUTC_B[27];

 strcpy(asciiUTC_A,”1998-06-30T10:51:28.320000Z”);
returnValue = PGS_TD_ASCIItime_AtoB(asciiUTC_A,asciiUTC_B);
if (returnValue != PGS_S_SUCCESS)
{
** test errors, take appropriate action **
 :
 :
}
printf(“%s\n”,asciiUTC_B);

FORTRAN: implicit none

 integer pgs_td_asciitime_atob
integer returnvalue
character*27 asciiutc_a
character*26 asciiutc_b

 asciiutc_a = ‘1998-06-30T10:51:28.320000’
returnvalue = pgs_td_asciitime_atob(asciiutc_a,asciiutc_b)
if (returnvalue .ne. pgs_s_success) goto 999
write(6,*) asciiutc_b

NOTES: The output of this tool is in CCSDS ASCII Time Code B format.

 See Section 6.2.7.2 (ASCII Time Formats)

REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

 6-259 EED2-333-001

Convert CCSDS ASCII Time Format B to Format A

NAME: PGS_TD_ASCIItime_BtoA()

SYNOPSIS:

C:
#include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_ASCIItime_BtoA(
 char asciiUTC_B[27],
 char asciiUTC_A[28]);

FORTRAN:
include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_asciitime_btoa(asciiutc_b,asciiutc_a);
 character*26 asciiutc_b
 character*27 asciiutc_a

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code B to CCSDS
ASCII Time Code A.

INPUTS:
Table 6-106. PGS_TD_ASCIItime_BtoA Inputs

Name Description Units Min Max

asciiUTC_B UTC Time in CCSDS ASCII Time Code B N/A N/A N/A

OUTPUTS:
Table 6-107. PGS_TD_ASCIItime_BtoA Outputs

Name Description Units Min Max

asciiUTC_A UTC Time in CCSDS ASCII Time Code A N/A N/A N/A

RETURNS:
Table 6-108. PGS_TD_ASCIItime_BtoA Returns

Return Description

PGS_S_SUCCESS Successful return
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGS_E_TOOLKIT Something unexpected happened, execution of function

terminated prematurely

 6-260 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnValue;
char asciiUTC_B[27];
char asciiUTC_A[28];

 strcpy(asciiUTC_B,”1998-181T10:51:28.320000Z”);
returnValue = PGS_TD_ASCIItime_BtoA(asciiUTC_B,asciiUTC_A);
if (returnValue != PGS_S_SUCCESS)
{
** test errors, take appropriate action **
 :
 :
}
printf(“%s\n”,asciiUTC_A);

FORTRAN: implicit none

 integer pgs_td_asciitime_btoa
integer returnvalue
character*26 asciiutc_b
character*27 asciiutc_a

 asciiutc_b = ‘1998-181T10:51:28.320000’
returnvalue = pgs_td_asciitime_btoa(asciiutc_b,asciiutc_a)
if (returnvalue .ne. pgs_s_success) goto 999
write(6,*) asciiutc_a

NOTES: The output of this tool is in CCSDS ASCII Time Code A format.

 See Section 6.2.7.2 (ASCII Time Formats)

REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

 6-261 EED2-333-001

Convert UTC to GPS Time

NAME: PGS_TD_UTCtoGPS()

SYNOPSIS:

C:
#include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoGPS(
 char asciiUTC[28],
 PGSt_double *secGPS);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctogps(asciiUTC,secgps)
 character*27 asciiutc
 double precision secgps

DESCRIPTION: This tool converts from UTC time to GPS time.

INPUTS:
Table 6-109. PGS_TD_UTCtoGPS Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII Time

Code A or B format
time 1961-01-01 T00:00:00 2008-03-30

T23:59:59.999999

OUTPUTS:
Table 6-110. PGS_TD_UTCtoGPS Outputs

Name Description Units Min Max
secGPS Continuous real seconds since 0

hrs UTC on Jan. 6, 1980
seconds -599961636.577182 890956802.999999

RETURNS:
Table 6-111. PGS_TD_UTCtoGPS Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction available input time
PGSTD_E_TIME_FMT_ERROR Error in format of ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of the ASCII UTC time
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-262 EED2-333-001

EXAMPLES:

C: char asciiUTC[28];
PGSt_double secGPS;
PGSt_SMF_status returnStatus;
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus = PGS_TD_UTCtoGPS(asciiUTC,&secGPS);
if(returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf(“\n ERROR: %s”, msg);
}

FORTRAN: implicit none

 integer pgs_td_utctogps
character*27 asciiutc
double precision secgps
integer returnstatus
integer anerror
character*35 errname
character*150 errmsg

 returnstatus = pgs_td_utctogps(asciiutc,secgps)
if(returnstatus .ne. PGS_S_SUCCESS) then
 returnstatus = pgs_smf_getmsg(anerror,errorname,errmsg)
 write(*,*) errname,errmsg
endif

NOTES: See Section 6.2.3.2 (ASCII Time Formats)

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 GPS: Global Positioning System
TAI: International Atomic Time
UTC: Coordinated Universal Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-263 EED2-333-001

Convert GPS to UTC Time

NAME: PGS_TD_GPStoUTC()

SYNOPSIS:

C:
#include <PGS_TD.h>

 PGSt_SMF_Status
PGS_TD_GPStoUTC(
 PGSt_double secGPS,
 char asciiUTC[28]);

FORTRAN:
include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_gpstoutc(secgps, asciiutc)
 double precision secgps
 character*27 asciiutc

DESCRIPTION: This tool converts from GPS time to UTC time.

INPUTS:
Table 6-112. PGS_TD_GPStoUTC Inputs

Name Description Units Min Max

secGPS Continuous real seconds since 0 hrs
UTC on Jan. 6, 1980

seconds -599961636.577182 see NOTES

OUTPUTS:
Table 6-113. PGS_TD_GPStoUTC Outputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII Time Code A time 1961-01-01 see NOTES

RETURNS:
Table 6-114. PGS_TD_GPStoUTC Returns

Return Description

PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction for input time
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-264 EED2-333-001

EXAMPLES:

C: char asciiUTC[28];
PGSt_double secGPS;
PGSt_SMF_status returnStatus;
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus = PGS_TD_GPStoUTC(secGPS,asciiUTC);
if(returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf(“\n ERROR: %s”, msg);
}

FORTRAN: implicit none

 integer pgs_td_gpstoutc
character*27 asciiutc
double precision secgps
integer returnstatus
integer anerror
character*35 errname
character*150 errmsg

 returnstatus = pgs_td_gpstoutc(secgps,asciiUTC)
if(returnstatus .ne. PGS_S_SUCCESS) then
 returnstatus = pgs_smf_getmsg(anerror,errorname,errmsg)
 write(*,*) errname,errmsg
endif

NOTES: See Section 6.2.3.2 (ASCII Time Formats)

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 GPS: Global Positioning System
TAI: International Atomic Time
UTC: Coordinated Universal Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-265 EED2-333-001

Convert UTC Time to TDT Time

NAME: PGS_TD_UTCtoTDTjed()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoTDTjed(
 char asciiUTC[28],
 PGSt_double jedTDT[2]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctotdtjed(asciiutc, jedtdt)
 character*27 asciiutc
 double precision jedtdt(2)

DESCRIPTION: This tool converts UTC in CCSDS ASCII time format A or B to TDT as a
Julian date (TDT = Terrestrial Dynamical Time)

INPUTS:
Table 6-115. PGS_TD_UTCtoTDTjed Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII time Code A or B format time 1961-01-01 see NOTES

OUTPUTS:

Table 6-116. PGS_TD_UTCtoTDTjed Outputs
Name Description Units Min Max

jedTDT TDT as a Julian date days see NOTES see NOTES

RETURNS:
Table 6-117. PGS_TD_UTCtoTDTjed Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGSTD_E_NO_LEAP_SECS Leap second errors
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-266 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char asciiUTC[28] =
 “2002-06-30T11:04:57.987654Z”;
PGSt_double jedTDT[2];
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoTDTjed(asciiUTC,jedTDT);
if (returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf(“\nERROR: %s”,msg)
 }

FORTRAN: implicit none

 integer pgs_td_utctotdtjed
integer returnstatus
character*27 asciiutc
double precision jedtdt(2)
character*33 err
character*241 msg

 asciiutc = ‘1998-06-30T10:51:28.320000Z’
returnstatus = pgs_td_utctotdtjed(asciiutc,jedtdt)
if (returnstatus .ne. pgs_s_success)
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 TDT is: Terrestrial Dynamical Time
UTC is: Coordinated Universal Time

Prior to 1984, there is no distinction between TDT and TDB; either one is
denoted “ephemeris time” (ET). Also, the values before 1972 are based on
U.S. Naval Observatory estimates, which are the same as adopted by the
JPL Ephemeris group that produces the DE series of solar system
ephemerides, such as DE200.

Section 6.2.7.4 (Toolkit Julian Dates)

See Section 6.2.7.2 (ASCII Time Formats)

See See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 6-267 EED2-333-001

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-268 EED2-333-001

Convert UTC Time to TDB Time

NAME: PGS_TD_UTCtoTDBjed()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoTDBjed(
 char asciiUTC[28],
 PGSt_double jedTDB[2]);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctotdbjed(asciiutc, jedtdb)
 character*27 asciiutc
 double precision jedtdb(2)

DESCRIPTION: This tool converts UTC in CCSDS ASCII time format A or B to TDB as a
Julian date (TDB = Barycentric Dynamical Time)

INPUTS:
Table 6-118. PGS_TD_UTCtoTDBjed Inputs

Name Description Units Min Max
asciiUTC UTC time in CCSDS ASCII time Code A or B format time 1961-01-01 see NOTES

OUTPUTS:
Table 6-119. PGS_TD_UTCtoTDBjed Outputs

Name Description Units Min Max
jedTDB TDB as a Julian date days see NOTES see NOTES

RETURNS:
Table 6-120. PGS_TD_UTCtoTDBjed Returns

Return Description
PGS_S_SUCCESS Successful return
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGSTD_E_NO_LEAP_SECS Leap second errors
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated

prematurely

 6-269 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnStatus;
char asciiUTC[28] =
 “2002-02-23T11:04:57.987654Z”;
PGSt_double jedTDB[2];
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoTDBjed(asciiUTC,jedTDB);
if (returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf(“\nERROR: %s”,msg)
 }

FORTRAN: implicit none

 integer pgs_td_utctotdbjed
integer returnstatus
character*27 asciiutc
double precision jedtdb(2)
character*33 err
character*241 msg

 asciiutc = ‘1998-06-30T10:51:28.320000Z’
returnstatus = pgs_td_utctotdbjed(asciiutc,jedtdb)
if (returnstatus .ne. pgs_td_utctotdbjed(asciiutc,jedtdb)
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 TDB is: Barycentric Dynamical Time
UTC is: Coordinated Universal Time

 Prior to 1984, there is no distinction between TDT and TDB; either one is
denoted “ephemeris time” (ET). Also, the values before 1972 are based on
U.S. Naval Observatory estimates, which are the same as adopted by the
JPL Ephemeris group that produces the DE series of solar system
ephemerides, such as DE200.

 See Section 6.2.7.2 (ASCII Time Formats)

 See Section 6.2.7.4 (Toolkit Julian Dates)

See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 6-270 EED2-333-001

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-271 EED2-333-001

Compute Elapsed TAI Time

NAME: PGS_TD_TimeInterval()

SYNOPSIS:

C: #include <PGS_TD.h>

 pgs_status
PGS_TD_TimeInterval(
 PGSt_double startTAI,
 PGSt_double stopTAI,
 PGSt_double *interval)

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_timeinterval(starttai, stoptai, interval)
 double precision starttai
 double precision stoptai
 double precision interval

DESCRIPTION: This function computes the elapsed TAI time in seconds between any two
time intervals

INPUTS:
Table 6-121. PGS_TD_TimeInterval Inputs

Name Description Units Min Max

startTAI start time in TAI seconds none none
stopTAI stop time in TAI seconds none none

OUTPUTS:
Table 6-122. PGS_TD_TimeInterval Outputs

Name Description Units Min Max

interval Elapsed time interval seconds none none

RETURNS:
Table 6-123. PGS_TD_TimeInterval Returns

Return Description

PGS_S_SUCCESS Successful return

 6-272 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double startTAI;
PGSt_double stopTAI;
PGSt_double interval;

 startTAI = 34523.5;
stopTAI = 67543.2;
returnStatus = PGS_TD_TimeInterval(startTAI,stopTAI,
 &interval);

FORTRAN: implicit none

 integer pgs_td_timeinterval
integer returnstatus
double precision starttai
double precision stoptai
double precision interval

 returnstatus = pgs_td_timeinterval(starttai,stoptai,
 interval)

NOTES: This interval is the same as elapsed internal time and is the true interval in
System International (SI) seconds.

REQUIREMENTS: PGSTK-1190

 6-273 EED2-333-001

Convert UTC in CCSDS ASCII Format to Julian Date Format

NAME: PGS_TD_UTCtoUTCjd()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoUTCjd(
 char asciiUTC[28],
 PGSt_double jdUTC[2])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctoutcjd(asciiutc, jdutc)
character*27 asciiutc
double precision jdutc(2)

DESCRIPTION: Converts ASCII UTC times to UTC Julian Dates

INPUTS:
Table 6-124. PGS_TD_UTCtoUTCjd Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS
ASCII time Code A or B
format

time 1961-01-01 see NOTES

OUTPUTS:
Table 6-125. PGS_TD_UTCtoUTCjd Outputs

Name Description Units Min Max

jdUTC[2] UTC Julian date days none none

RETURNS:
Table 6-126. PGS_TD_UTCtoUTCjd Returns

Return Description

PGS_S_SUCCESS successful return
PGSTD_M_LEAP_SEC_IGNORED leap second portion of input time discarded
PGSTD_E_TIME_FMT_ERROR error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR error in format of input ASCII UTC time
PGS_E_TOOLKIT something unexpected happened, execution aborted

 6-274 EED2-333-001

NOTES: Caution should be used because UTC Julian Date jumps backwards each
time a leap second is introduced. Therefore, in a leap second interval the
output times will repeat those in the previous second (provided that the
UTC ASCII seconds field ran from 60.0 to 60.9999999 etc. as it should
during that one second). Therefore, the only known uses for this function
are:
(a) to get UT1, (after conversion to modified Julian Date by subtracting
2400000.5) by accessing an appropriate table of differences
(b) to determine the correct Julian Day at which to access any table based
on UTC and listed in Julian date, such as leap seconds, UT1, and polar
motion tables.

UTC is: Coordinated Universal Time

See section 6.2.7.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1170, 1220

 6-275 EED2-333-001

Convert UTC Julian Date to CCSDS ASCII Time Code A Format

NAME: PGS_TD_UTCjdtoUTC()

SYNOPSIS:
C: #include <PGS_TD.h>

 PGSt_SMF_status
 PGS_TD_UTCjdtoUTC(

 PGSt_double jdUTC[2],
 PGSt_boolean onLeap,
 char asciiUTC[28])

FORTRAN: include ‘PGS_SMF.f’
 include ‘PGS_TD_3.f’

 integer function pgs_td_utcjdtoutc(jdutc,onleap,asciiutc)

double precision jdutc(2)
integer onleap
character*27 asciiutc

DESCRIPTION: This tool converts UTC as a Julian date to UTC in CCSDS ASCII Time
Code A format.

INPUTS:
Table 6-127. PGS_TD_UTCjdtoUTC Inputs

Name Description Units
 jdUTC UTC time as a Julian date days
onLeap Indicates if input time is occurring during a leap second T/F

OUTPUTS:
Table 6-128. PGS_TD_UTCjdtoUTC Outputs

Name Description Units
 asciiUTC UTC time in CCSDS ASCII Time Code A format time

RETURNS:
Table 6-129. PGS_TD_UTCjdtoUTC Returns

Return Description
PGS_S_SUCCESS successful return
PGSTD_E_TIME_FMT_ERROR a leap second was indicated at an inappropriate time
 PGS_E_TOOLKIT something unexpected happened

 6-276 EED2-333-001

EXAMPLES:
C: PGSt_SMF_status returnStatus;

 PGSt_double jdUTC[2]={2449534.5,0.5};

 char asciiUTC[28];

returnStatus = PGS_TD_UTCjdtoUTC(jdUTC,PGS_FALSE,asciiUTC);

 if (returnStatus != PGS_S_SUCCESS)
{
*** do some error handling ***
 :
 :
}

/* asciiUTC now contains the value:
 “1994-07-01T12:00:00.000000Z” */

printf(“UTC: %s\n”,asciiUTC);

FORTRAN: integer pgs_td_utcjdtoutc

 integer returnstatus

double precision jdutc(2)

character*27 asciiutc

jdutc(1) = 2449534.5D0

jdutc(1) = 0.5D0

returnstatus = pgs_td_utcjdtoutc(jdutc,pgs_false,asciiutc)

if (returnstatus .ne. pgs_s_success) goto 999

! asciiutc now contains the value:
! ‘1994-07-01T12:00:00.000000Z’

write(6,*) ‘UTC: ‘, asciiutc

NOTES: UTC is: Coordinated Universal Time

REFERENCES FOR TIME:
CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

See section 6.2.7.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1210, 1220, 1160, 1170

 6-277 EED2-333-001

Convert UTC to UT1

NAME: PGS_TD_UTCtoUT1()

SYNOPSIS:

C: #include <PGS_CSC.h>
#include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoUT1(
 char asciiUTC[28],
 PGSt_double *secUT1);

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_TD_3.f’
include ‘PGS_CSC_4.f’

 integer function pgs_td_utctout1(asciiutc, secut1)
 character*27 asciiutc
 double precision secut1

DESCRIPTION: This tool converts a time from CCSDS ASCII Time (Format A or B) to
UT1

INPUTS:
Table 6-130. PGS_TD_UTCtoUT1 Inputs

Name Description Units Min Max

asciiUTC UTC time in CCSDS ASCII
Time Code A or B format

time 1971-01-01T00:00:00 also see notes Date

OUTPUTS:
Table 6-131. PGS_TD_UTCtoUT1 Outputs

Name Description Units Min Max

secUT1 UT1 in seconds from midnight sec 0.0 86400.999999

RETURNS: PGS_S_SUCCESS
PGSTD_E_TIME_FMT_ERROR
PGSTD_E_TIME_VALUE_ERROR
PGSCSC_W_PREDICTED_UT1
PGSTD_E_NO_UT1_VALUE
PGS_E_TOOLKIT

 6-278 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnStatus
char asciiUTC[28] = “2002-07-27T11:04:57.987654Z
PGSt_double secUT1
char err[PGS_SMF_MAX_MNEMONIC SIZE]
char msg[PGS_SMF_MAX_MSG_SIZE]

 returnStatus=PGS_TD_UTCtoUT1(asciiUTC,&secUT1);
if (returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf(“\nERROR: %s”,msg)
}

FORTRAN: implicit none

 integer pgs_td_utctout1
integer returnstatus
character*27 asciiutc
double precision secut1
character*33 err
character*241 msg

 asciiutc = ‘2002-07-27T11:04:57.987654Z’
returnstatus = pgs_td_utctout1(asciiutc,secut1)
if (returnstatus .ne. pgs_s_success) then
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: Although UT1 was used for civil timekeeping before Jan. 1, 1972, today
UT1 is a measure of Earth rotation only; it is a measure of the angle of the
Greenwich Meridian from the equinox of date such that 24 hours of
System International (SI) seconds (86400 seconds) of TAI or TDT
constitute one full revolution. As such, it can be directly reduced to
Greenwich Apparent Sidereal Time (GAST). This function should be used
with caution near midnight. For example, if UTC is 0.5 seconds before
midnight, and UT1 - UTC = 0.6 s, then this function returns 0.1 s, but the
day has changed.

 Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called UT2
that accounts for some of the periodic nonuniformities of Earth rotation,
were used for time keeping.

 6-279 EED2-333-001

TIME ACRONYMS:

 UT1 is: Universal Time
UTC is: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)

See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems), Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1215

 6-280 EED2-333-001

Convert UTC to UT1 Julian Date

NAME: PGS_TD_UTCtoUT1jd()

SYNOPSIS:

C: #include <PGS_TD.h>

 PGSt_SMF_status
PGS_TD_UTCtoUT1jd(
 char asciiUTC[28],
 PGSt_double jdUT1[2])

FORTRAN: include ‘PGS_SMF.f’
include ‘PGS_CSC_4.f’
include ‘PGS_TD_3.f’

 integer function pgs_td_utctout1jd(asciiutc, jdut1)
 character*27 asciiutc
 double precision jdut1(2)

DESCRIPTION: This tool converts a time from CCSDS ASCII Time (Format A or B) to
UT1 Julian date.

INPUTS:
Table 6-132. PGS_TD_UTCtoUT1jd Inputs

Name Description Units Min

asciiUTC UTC time in CCSDS ASCII Time Code A format or ASCII Time Code B format ASCII 1961-01-01

OUTPUTS:
Table 6-133. PGS_TD_UTCtoUT1jd Outputs

Name Description Units

jdUT1 UT1 Julian date as two real numbers, the first a half integer number of days and the second the
fraction of a day between this half integer number of days and the next half integer day number.

days

RETURNS:
Table 6-134. PGS_TD_UTCtoUT1jd Returns

Return Description

PGS_S_SUCCESS Successful execution
PGSTD_M_LEAP_SEC_IGNORED Leap second portion of input time discarded
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGS_E_TOOLKIT Something unexpected happened, execution aborted

EXAMPLES: None

 6-281 EED2-333-001

NOTES: Although UT1 was used for civil timekeeping before Jan. 1, 1972, today
UT1 is a measure of Earth rotation only; it is a measure of the angle of the
Greenwich Meridian from the equinox of date such that 24 hours of
System International (SI) seconds (86400 seconds) of TAI or TDT
constitute one full revolution. As such, it can be directly reduced to
Greenwich Apparent Sidereal Time (GAST).

 Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called UT2
that accounts for some of the periodic nonuniformities of Earth rotation,
were used for time keeping.

 TIME ACRONYMS:

 UT1 is: Universal Time
UTC is: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)

See Section 6.2.7.4 (Toolkit Julian Dates)

See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REFERENCES FOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK-1170, PGSTK-1210

 6-282 EED2-333-001

Get Leap Second

NAME: PGS_TD_LeapSec()

SYNOPSIS:
C: #include <PGS_TD.h>

PGSt_SMF_status
PGS_TD_LeapSec(

PGSt_double jdUTC[2],
PGSt_double *leapSec,
PGSt_double *lastChangeJD,
PGSt_double *nextChangeJD,
char *leapStatus)

FORTRAN include ‘PGS_SMF.f’
 include ‘PGS_TD_3.f’

integer funtion pgs_td_leapsec(jdutc,leapsec,lastchangejd,nextchangejd,
leapstatus

 double precision jdutc(2)
double precision leapsec
double precision lastchangejd
double precision nextchangejd
character*10 leapstatus

DESCRIPTION: This tool accesses the file ‘leapsec.dat’, extracts the leap second value for
an input Julian Day number, and returns an error status.

INPUTS:
Table 6-135. Get Leap Second Inputs

Name Description Units Min Max
jdUTC UTC Julian Day number days (see NOTES) N/A N/A

OUTPUTS:
Table 6-136. Get Leap Second Outputs

Name Description Units Min Max

leapSec leap second value for day
jdUTC, read from table

seconds 0 N/A

lastChangeJD Julian Day number upon which that leap second value was effective days (see NOTES) N/A N/A
nextChangeJD Julian Day number of the next ACTUALor PREDICTED leap second days (see NOTES) N/A N/A
leapStatus indicates whether the leap second value is ACTUAL, PREDICTED,

a LINEARFIT, or ZEROLEAPS (leap second value is set to zero if
the input time is before the start of the table)

 N/A N/A N/A

 6-283 EED2-333-001

RETURNS:
Table 6-137. Get Leap Seconds Returns

Return Description

PGS_S_SUCCESS successful execution
PGSTD_W_JD_OUT_OF_RANGE invalid input Julian Day number
PGSTD_W_DATA_FILE_MISSING leap second file not found

EXAMPLES:
 PGSt_double jdUTC[2];

PGSt_double leapsecond;

PGSt_double lastChangeJD;

PGSt_double nextChangeJD;

PGSt_SMF_status returnStatus;

char leapStatus[10];

jdUTC[0] = 2439999.5;

jdUTC[1] = 0.5;

returnStatus = PGS_TD_LeapSec(jdUTC,&leapsecond,
 &lastChangeJD,
 &nextChangeJD,leapStatus);

if (returnStatus != PGS_S_SUCCESS)

{

/* handle errors */

}

NOTES:

With Toolkit 5.2, the functions that call PGS_TD_LeapSec() will return an error
and write a diagnostic message to the Log Status File indicating that an
obsoleteformat was encountered in the Leap Seconds file, if they encounter the
“PREDICTED” status. “PREDICTED” is no longer supported.

UTC: Coordinated Universal Time

 TAI: International Atomic Time

REQUIREMENTS: PGSTK - 1050, 0930

 6-284 EED2-333-001

6.2.7.8 TD Functions

PGS_TD_ADEOSIItoTAI

This tool converts ADEOS-II s/c clock time (instrument time + pulse time) to TAI (prototype
code).

PGS_TD_ADEOSIItoUTC

This tool converts converts ADEOS-II s/c clock time (instrument time + pulse time) to a UTC
string in CCSDS ASCII Time Code A format (prototype code).

PGS_TD_ASCIItime_AtoB

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_ASCIItime_BtoA

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_EOSAMtoTAI

This function converts EOS AM spacecraft clock time in CCSDS day segmented Time Code
(CDS) (with implicit P-field) format to TAI (as real continuous seconds since 12AM UTC 1-1-
1993).

PGS_TD_EOSAMtoUTC

This function converts EOS AM spacecraft clock time in platform-dependent format to UTC in
CCSDS ASCII time code A format.

PGS_TD_EOSAURAGIIStoTAI

This function converts EOS AURA spacecraft GIIS clock time in CCSDS day segmented Time
Code (CDS) (with implicit P-field format) to TAI (as real continuous seconds since 12 AM UTC
1-1-1993).

PGS_TD_EOSAURAGIRDtoTAI

This function converts EOS AURA spacecraft GIRD clock time in CCSDS Unsegmented Time
Code (CUC) (with explicit P-field) format to TAI (as real continuous seconds since 12AM UTC
1-1-1993).

PGS_TD_EOSAURAtoUTC

This function converts EOS AURA spacecraft GIRD clock time in CCSDS unsegmented Time
Code (CUC) (with explicit P-field) format to UTC in CCSDS ASCII time code A format.

 6-285 EED2-333-001

PGS_TD_EOSPMGIIStoTAI

This function converts EOS PM spacecraft GIIS clock time in CCSDS day segmented Time
Code (CDS) (with implicit P-field format) to TAI (as real continuous seconds since 12 AM UTC
1-1-1993).

PGS_TD_EOSPMGIIStoUTC

This function converts EOS PM spacecraft GIIS clock time in platform-dependent format to
UTC in CCSDS ASCII time code A format.

PGS_TD_EOSPMGIRDtoTAI

This function converts EOS PM spacecraft GIRD clock time in CCSDS Unsegmented Time
Code (CUC) (with explicit P-field) format to TAI (as real continuous seconds since 12AM UTC
1-1-1993).

PGS_TD_EOSPMGIRDtoUTC

This function converts EOS PM spacecraft GIRD clock time in CCSDS unsegmented Time Code
(CUC) (with explicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS_TD_FGDCtoUTC

This function converts an FGDC ASCII date string and time string to CCSDS ASCII Time Code
(format A). The input FGDC time string may be in “Universal Time” or “local time” format.

PGS_TD_GPStoUTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_ISOinttoTAI

This function converts an integer number that represents an ISO time (YYMMDDhh) to TAI.

PGS_TD_ISOinttoUTCjd

This function converts an integer number that represents an ISO time (YYMMDDhh) to a UTC
time in toolkit Julian date format.

PGS_TD_JDtoMJD

This function converts a Julian date to a modified Julian date.

PGS_TD_JDtoTJD

This function converts a Julian date to a truncated Julian date.

PGS_TD_JulianDateSplit

This function converts a Julian date to Toolkit Julian date format

 6-286 EED2-333-001

PGS_TD_LeapSec

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_MJDtoJD

This function converts a modified Julian date to a Julian date.

PGS_TD_PB5CtoUTCjd

This function converts a time in PB5C time format to TAI (Toolkit internal time).

PGS_TD_PB5toTAI

This function converts a time in PB5 time format to TAI (Toolkit internal time).

PGS_TD_PB5toUTCjd

This function converts a time in PB5 time format to UTC time in toolkit Julian date format.

PGS_TD_SCtime_to_UTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAIjdtoTAI

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAIjdtoTDTjed

This function converts TAI Julian date to TDT Julian ephemeris date.

PGS_TD_TAIjdtoUTCjd

This function converts TAI Julian date to UTC Julian date.

PGS_TD_TAItoGAST

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAItoISOint

This function converts TAI to an integer number that represents an ISO time (YYMMDDhh).

PGS_TD_TAItoTAIjd

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAItoUDTF

This tool converts TAI to a UDTF integer array.

PGS_TD_TAItoUT1jd

This tool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date.

 6-287 EED2-333-001

PGS_TD_TAItoUT1pole

This tool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date and
returns x and y polar wander values and UT1-UTC as well.

PGS_TD_TAItoUTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_TAItoUTCjd

This tool converts continuous seconds since 12AM UTC 1-1-93 to UTC time as a Julian date.

PGS_TD_TDBjedtoTDTjed

This function converts TDB (Barycentric Dynamical Time) as a Julian ephemeris date to TDT
(Terrestrial Dynamical Time) as a Julian ephemeris date.

PGS_TD_TDTjedtoTAIjd

This function converts TDT Julian ephemeris date to TAI Julian date.

PGS_TD_TDTjedtoTDBjed

This function converts TDT (Terrestrial Dynamical Time) as a Julian ephemeris date to TDB
(Barycentric Dynamical Time) as a Julian ephemeris date.

PGS_TD_TJDtoJD

This function converts a truncated Julian date to a Julian date.

PGS_TD_TRMMtoTAI

This function converts TRMM spacecraft clock time in CCSDS Unsegmented Time Code (CUC)
(with implicit P-field) format to TAI (Toolkit internal time).

PGS_TD_TRMMtoUTC

This function converts TRMM spacecraft clock time in CCSDS unsegmented Time Code (CUC)
(with implicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS_TD_TimeInterval

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UDTFtoTAI

This function converts a UDTF integer array to TAI.

PGS_TD_UDTFtoUTCjd

This function converts a UDTF integer array to a UTC Julian date.

 6-288 EED2-333-001

PGS_TD_UT1jdtoUTCjd

This tool converts UT1 time as a Julian date to UTC time as a Julian date.

PGS_TD_UTC_to_SCtime

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCjdtoISOint

This function converts a UTC time in toolkit Julian date format to an integer number that
represents an ISO time (YYMMDDhh).

PGS_TD_UTCjdtoPB5

This function converts a UTC time in toolkit Julian date format to PB5 time format.

PGS_TD_UTCjdtoPB5C

This function converts a UTC time in toolkit Julian date format to PB5C time format.

PGS_TD_UTCjdtoTAIjd

This tool converts UTC as a Julian date to TAI as a Julian date.

PGS_TD_UTCjdtoUT1jd

This tool converts UTC time as a Julian date to UT1 time as a Julian date.

PGS_TD_UTCjdtoUTC()

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoADEOSII

This function converts UTC in CCSDS ASCII time code A (or B) format to ADEOS s/c clock
format (this is a prototype only).

PGS_TD_UTCtoEOSAM

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS AM spacecraft
(s/c) clock time in CCSDS Day Segmented (CDS) Time Code (with implicit P-field) format.

PGS_TD_UTCtoEOSAURAGIIS

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS AURA
spacecraft GIIS (s/c) clock time in CCSDS Day Segmented (CDS) time code (with implicit P-
field) format.

PGS_TD_UTCtoEOSAURAGIRD

This function converts UTC in CCSDS ASCII Time Code A or CCSDS ASCII Time Code B
format to EOS AURA spacecraft GIRD clock time in CCSDS Unsegmented Time Code (CUC)
(with explicit P-field) format.

 6-289 EED2-333-001

PGS_TD_UTCtoEOSPMGIIS

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS PM spacecraft
GIIS (s/c) clock time in CCSDS Day Segmented (CDS) time code (with implicit P-field) format.

PGS_TD_UTCtoEOSPMGIRD

This function converts UTC in CCSDS ASCII Time Code A or CCSDS ASCII Time Code B
format to EOS PM spacecraft GIRD clock time in CCSDS Unsegmented Time Code (CUC)
(with explicit P-field) format.

PGS_TD_UTCtoFGDC

This function converts UTC Time in CCSDS ASCII Time Code (format A or B) to the
equivalent FGDC ASCII date string and time string. The time string will be in “Universal Time”
or “local time” format depending on the value of the input variable tdf.

PGS_TD_UTCtoGPS

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTAI

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTAIjd

This tool converts UTC in CCSDS ASCII time format A or B to TAI as a Julian date.

PGS_TD_UTCtoTDBjed

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTDTjed

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoTRMM()

This function converts UTC in CCSDS ASCII time code A (or B) format to TRMM spacecraft
(s/c) clock time in CCSDS Unsegmented Time Code (CUC) (with implicit P-field) format.

PGS_TD_UTCtoUT1

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoUT1jd

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS_TD_UTCtoUTCjd

See description in 6.2.7.7 Time and Date Conversion Tools.

 6-290 EED2-333-001

PGS_TD_calday

This function converts Julian day to calendar day (year, month, day).

PGS_TD_gast

This function converts GMST, nutation in longitude and TDB Julian date to Greenwich Apparent
Sidereal Time expressed as the hour angle of the true vernal equinox of date at the Greenwich
meridian (in radians).

PGS_TD_gmst

The function converts UT1 expressed as a Julian day to Greenwich Mean Sidereal Time, i.e. the
hour angle of the vernal equinox at the Greenwich meridian (in radians).

PGS_TD_julday

This function converts calendar day (year, month, dat) to Julian day.

PGS_TD_sortArrayIndices

This function sorts an array of PGSt_double (double precision) numbers in ascending order.

PGS_TD_timeCheck

This function accepts a character array (string) as an input and returns a value indicating if the
string is in a valid CCSDS ASCII format.

 6-291 EED2-333-001

6.3 SDP Toolkit Tools—Optional

6.3.1 Digital Elevation Model Tools

6.3.1.1 DEM Access Tools (HDF-based tools)

The Digital Elevation Model (DEM) access tools described in this section were introduced for
the first time in TK 5.2 of the SDP Toolkit. They have been implemented in response to EOS
Science Working Group - AM Platform (SWAMP) and ESDIS requests. These tools are meant to
replace the access tools described in Section 6.3.1.2 for DEM access. The older access tools and
associated ancillary data will continue to be distributed with the Toolkit, as long as there is an
identifiable user requirement for them. Please note that the primary ECS production DEMs will
supplied in HDF-EOS format and will be accessible through the tools in this section. The older
ETOP05 data sets will be accessible in the production system through tools described in Section
6.3.2.

The DEM Toolkit tools in Section 6.3.1.1 are intended for accessing a hierarchy of DEM data
sets. In order to utilize these functions, a user must install the SDP Toolkit on their machine.
This hierarchy of data sets will include data from multiple resolutions. The DEM tools accesses
this information based on resolution; a user indicates from which resolutions they are interested
in query data. Each of these resolutions consists of multiple files. For example, the 3 arc second
resolution data set (~100 m postings) is divided into 648 (10 degree by 10 degree) files. The
number and extent of these files are transparent to the user. The user indicates interest in a
particular resolution with a resolution tag. This resolution tag is initialized by the tool
PGS_DEM_Open. The resolution tags MUST be initialized, either individually or as an array of
the resolution tags, BEFORE any of the other DEM tools may access the data set at that
resolution. These initialized resolution tags allow access of the underlying files (in the case of
the 3 arc second resolution, the 10 degree by 10 degree files), without having to actually specify
the particular physical file.

As mentioned above, the DEM tools may be used with a hierarchy of DEM data sets. Most of
the DEM tools not only are able to accept a single resolution tag, but they may even accept a list,
an array, of resolution tags. The first element of the array is the tag for the preferred resolution of
the data (generally this will be the highest resolution data set). Each successive entry in the array
will be in descending interest of use: in general, lower spatial resolution. If one inputs an array
of resolution tags to a DEM tool, then one may be able to gain information across resolutions.
For example, one may enter an array of resolution tags into the tool PGS_DEM_GetRegion.
This tool will go to the data set files of the first resolution tag and extract the region of interest.
If any of the points in the region of interest is a fill value, then the tool will access the next data
set in the input array (for that particular point). It will continue to step through progressively
lower resolution data sets (depending on the order of the elements in the inputted array) until it
finds "valid", actual, non fill value, data.

The data sets supported by SDP Toolkit 5.2.20 are the 3 arc second (~100 m postings), 15 arc
second (approximately 500m postings), 30 arc second (approximately 1km postings) and 90 arc

 6-292 EED2-333-001

second (approximately 3 km postings) resolution data sets. The layer available in all resolutions
is elevation (PGSd_DEM_ELEV) and water/land (PGSd_DEM_WATER_LAND). The 15 arc
second also includes standard deviation elevation (PGSd_DEM_STDEV_ELEV). Other layers
available in both 3 arc second and 30 arc second resolutions are slope (PGSd_DEM_SLOPE),
aspect (PGSd_DEM_ASPECT), standard deviation elevation (PGSd_DEM_STDEV_ELEV),
and standard deviation slope (PGSd_DEM_STDEV_SLOPE). Also all resolutions include geoid
(PGSd_DEM_GEOID). In addition, the 30 arc second data files include quality data such as data
source (PGSd_DEM_SOURCE) and quality metric
(PGSd_DEM_HORIZONTAL_ACCURACY) and PGSd_DEM_VERTICAL_ACCURACY).
All data sets are in HDF-EOS GRID format. The 3 arc second resolution data set is divided into
648 (10 degree by 10 degree) tiles. For each tile there are 2 files, one that includes data for
elevation, land/sea mask, slope, aspect, and geoid, and another file that includes data for the
standard deviations. Only a few tiles are provided at the 3 arc second resolution, as test data. Full
3 arc data set resides at EDC DAAC. The 15 arc second resolution data set divides the Earth's
surface into 24 tiles (2 files per tile as the 3 arc second data set). The 30 arc second resolution
data set divides the Earth's surface into 6 tiles (2 files per tile as the 3 arc second data set). The 90
arc second resolution data covers the entire globe in one tile and includes all the ice shelfs for the
Antarctica that is in the latest Antarctica version from the Radarsat Antarctica Mapping Program
(RAMP). These are delivered with the Toolkit as a provisional data set; updates are possible, for
example to replace regions of fill value with actual data. All resolutions are in a Geographic
Projection. By geographic, we mean that degrees of latitude and longitude are linearly mapped to
row and column pixels, respectively. Please also note that in 15 arc second data real data is not
provided for Elevation and Standard Deviation of Elevation for Greenland and Antarctica. The
values for these regions are fillvalues. For these regions, we will make new 30 arc second data
available with the release 5.2.20 or later of TOOLKIT.

To access these data sets, they must be included in the PCF. The files which make up the 30 arc
second resolution should each have a logical ID equal to 10650 for the first file and 10651 for the
second file. The logical ID of the 3 arc second resolution files should be 10653 for the first file
and 10654 for the second file. The logical ID for the 90 arc second resolution file is 10656. The
logical ID of the 15 arc second resolution files should be 10659 for the first file and 10660 for the
second file. For more information on setting up a PCF for DEM access, see both the DEM data
set README file and the PCF template which accompanies Toolkit 5.2.20.

The DEM access tools described in Section 6.3.1.1 are:

PGS_DEM_Open(): Open the DEM

PGS_DEM_Close(): Close the DEM

PGS_DEM_DataPresent(): Check for Valid DEM Data Point

PGS_DEM_SortModels(): Check for Data in a Specified Region of the DEM

PGS_DEM_GetPoint(): Return Data at Specified DEM Points

PGS_DEM_GetRegion(): Return Data from a Specified Region of the DEM

 6-293 EED2-333-001

PGS_DEM_GetMetadata(): Extract Metadata from the DEM

PGS_DEM_GetQualityData(): Access DEM Quality Data

PGS_DEM_GetSize(): Return Size of Specified DEM Region

 6-294 EED2-333-001

Open the DEM

NAME: PGS_DEM_Open()

SYNOPSIS:

C: #include <PGS_DEM.h>

 PGSt_SMF_status

 PGS_DEM_Open(

PGSt_DEM_Tag resolutionList[],

PGSt_integer numResolutions,

PGSt_integer layerList[],

PGSt_integer numLayers)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_open(resolutionList, numResolutions

 layerList, numLayers)

integer resolutionList(*)

integer numResolutions

integer layerList(*)

integer numLayers

DESCRIPTION: This tool initializes a list of resolutions tags which correspond to a series
of DEM data sets. These initialized resolution tags are used by the DEM
tools. A DEM data set includes all the files of a particular resolution.
Presently, only four data sets are available: 3 arc second, 15 arc second, 30
arc second, and 90 arc second resolutions which correspond to the tags
PGSd_DEM_3ARC, PGSd_DEM_15ARC, PGSd_DEM_30ARC, and
PGSd_DEM_90ARC, respectively. A resolution tag MUST be initialized
before it may be used in any of the other PGS_DEM tools. Each layer
indicated in the layerList will automatically be initialized across all
resolutions in the resolutionList. Note that for 90 arc second resolution the
only available layers are elevation and Land/Water. For 15 arc second

 6-295 EED2-333-001

resolution the only available layers are elevation, Land/Water, and
Standard Deviation of Elevation.

INPUTS:

 resolutionList[] -- an array of resolution tags, data sets. See Notes.

 numResolutions -- the number of resolution tags in the array resolutionList

 layerList[] -- the DEM layers to initialize. See Notes.

 numLayers -- the number of DEM Layers in the list.

OUTPUTS: N/A

RETURNS: PGS_S_SUCCESS -- success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_integer numLayers;

 PGSt_integer layerList[2];

 PGSt_integer numResolutions;

 PGSt_DEM_Tag resolutionList[2];

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 resolutionList[1]= PGSd_DEM_30ARC;

 numResolutions = 2;

 layerList[0] = PGSd_DEM_ELEV;

 layerList[1] = PGSd_DEM_WATER_LAND;

 numLayers = 2;

/* Open the resolutions and data layer*/

 status = PGS_DEM_Open(resolutionList, numResolutions,
layerList, numLayers);

 if (status != PGS_S_SUCCESS)

 {

/* Do some error handling ... */

 6-296 EED2-333-001

FORTRAN:
 integer numLayers

 integer numResolutions

 integer layerList(2)

 integer resolutionList(2)

 integer status

C INITIALIZE

 resolutionList(1) = PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layerList(1) = PGSd_DEM_ELEV

 layerList(2) = PGSd_DEM_WATER_LAND

numResolutions = 2

 numLayers = 2

 status = pgs_dem_open(resolutionList, numResolutions,

 1 layerList, numLayers)

NOTES: resolutionList:

 For earlier ECS Deliveries and SCF Toolkits 5.2.2-5.2.7, the data sets that
may be inputted are 3 arc second, 30 arc second sets which correspond to
the tags PGSd_DEM_3ARC, PGSd_DEM_30ARC, respectively. The 15
arc sec data can be handeled with SCF Toolkits 5.2.18 and higher.

 layerList:

For ECS Deliveries Drop 4 and later, the only layer that may be inputted
for the 3 arc and 30 arc second resolution are elevation,
(PGSd_DEM_ELEV), water/land (PGSd_DEM_WATER_LAND),
standard deviation elevation (PGSd_DEM_STDEV_ELEV), slope
(PGSd_DEM_SLOPE), standard deviation slope
(PGSd_DEM_STDEV_SLOPE), and aspect (PGSd_DEM_ASPECT). The
other layers that will be available are topographical obscuration
(PGSd_DEM_TOP_OBSC). and topographical shadow
(PGSd_TOP_SHAD). For 90 arc second resolution the only available
layers are elevation, and water/land. For 15 arc second resolution the only
available layers are elevation, water/land, and Standard deviation of
Elevation..

REQUIREMENTS: PGSTK–0940

 6-297 EED2-333-001

Close the DEM

NAME: PGS_DEM_Close()

SYNOPSIS:

C: #include <PGS_DEM.h>

PGSt_SMF_status

PGS_DEM_Close(

PGSt_DEM_Tag resolutionList[],

PGSt_integer numResolutions,

PGSt_integer layerList[],

PGSt_integer numLayers)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_close(resolutionList, numResolutions

 1 layerList, numLayers)

integer resolutionList(*)

integer numResolutions

integer layerList(*)

integer numLayers

DESCRIPTION: This tool closes the session begun by the tool PGS_DEM_Open. One can
close multiple data set sessions simultaneously or independently. If one
wants to only close one DEM data set, the array resolutionList should only
contain an individual resolution tag. Presently, only four data sets are
available: 3 arc second (small test data set), 15 arc second, 30 arc second
(provisional global data), and 90 arc second resolutions which correspond
to the tags PGSd_DEM_3ARC, PGSd_DEM_15ARC ,
PGSd_DEM_30ARC, and PGS_DEM_90ARC respectively. Each layer in
the layerList will automatically be closed across all the resolutions
indicated in the resolutionList.

 6-298 EED2-333-001

INPUTS: resolutionList[] - an array of resolution tags, data sets. See Notes to
PGS_DEM_Open().

 numResolutions - the number of resolution tags in the array resolutionList.

 layerList[] - the number of DEM Layers to initialize. See Notes to
PGS_DEM_Open().

 numLayers - the number of DEM Layers in the list.

OUTPUTS: N/A

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_integer numLayers;

 PGSt_integer layerList[2];

 PGSt_integer numResolutions;

 PGSt_DEM_Tag resolutionList[2];

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 resolutionList[1]= PGSd_DEM_30ARC;

 numResolutions = 2;

 layerList[0] = PGSd_DEM_ELEV;

 numLayers = 1;

/* Close the resolutions and data layer*/

 status = PGS_DEM_Close(resolutionList, numResolutions,
layerList, numLayers);

 6-299 EED2-333-001

FORTRAN:

 integer numLayers

 integer numResolutions

 integer layerList(2)

 integer resolutionList(2)

 integer status

C INITIALIZE

 resolutionList(1) = PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layerList(1) = PGSd_DEM_ELEV

 numResolutions = 2

 numLayers = 1

 status = pgs_dem_close(resolutionList, numResolutions,

 1 layerList, numLayers)

REQUIREMENTS: PGSTK–0948

 6-300 EED2-333-001

Check for Valid DEM Data Point

NAME: PGS_DEM_DataPresent()

SYNOPSIS:

C: PGSt_SMF_status

 PGS_DEM_DataPresent(

 PGSt_DEM_Tag resolution,

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_double pntLatitude[],

 PGSt_double pntLongitude[],

 PGSt_integer numPoints,

 PGSt_boolean *dataPresent)

FORTRAN: include <PGS_SMF.f>

 include <PGS_DEM.f>

 include <PGS_DEM_14.f>

 include <PGS_MEM_7.f>

 integer function pgs_dem_datapresent(resolution, layer,

 1 positionCode, pntLatitude, pntLongitude, numPoints, dataPresent)

 integer resolution

 integer layer

 integer positionCode

 double precision pntLatitude(*)

 double precision pntLongitude(*)

 integer numPoints

 integer dataPresent

 6-301 EED2-333-001

DESCRIPTION: This tool checks whether pixel(s), at specified latitude(s) and longitude(s),
are data or fill values. In dataPresent, either PGS_TRUE or PGS_FALSE
will be returned, corresponding to valid data or fill value, respectively.

INPUTS: resolution - the resolution tag for a particular data set. An element of the
array resolutionList which is initialized by PGS_DEM_Open. See Notes
to PGS_DEM_Open().

 layer - indicates which data mask or layers one is accessing. See Notes.

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes.

 pntLatitude[] and pntLongitude[] - the latitude and longitude of the
point(s) of interest. See Notes.

 numPoints - the number of points to be queried.

OUTPUTS: dataPresent - either PGS_TRUE or PGS_FALSE. PGS_TRUE indicates
that a “valid” data value is at the specific location(s). PGS_FALSE
indicates that there is a fill value in the extracted data.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;
PGSt_integer layer;
PGSt_DEM_Tag resolution;
PGSt_integer numDataPoints;
PGSt_boolean dataPresent;
PGSt_double pntLatitude[3];
PGSt_double pntLongitude[3];

/* initialize input parameters, both resolutions and layer */

 resolution= PGSd_DEM_3ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the number of data points and pick position of points one
interested in. In this case, positions are in signed
decimal degrees */

 6-302 EED2-333-001

 numDataPoints = 3;

 pntLatitude[0] = 40.05;

 pntLongitude[0] = -105.3

/*see if selected points have real data*/

 status = PGS_DEM_DataPresent(resolution, layer,
PGSd_DEM_DEGREE, pntLatitude, pntLongitude, numDataPoints,
&dataPresent);

FORTRAN:

 integer layer

 integer resolution

 integer status

 integer numDataPoints

 integer dataPresent

 double precision pntLatitude(3)

 double precision pntLongitude(3)

C INITIALIZE resolution and layers

 resolution = PGSd_DEM_3ARC

 layer = PGSd_DEM_ELEV

C INITIALIZE points of interest. in this case, in signed decimal degrees

 numDataPoints = 3

 pntLatitude(1) = 40.04

 pntLongitude(1) = -105.3

 status = pgs_dem_datapresent(resolution, layer,

 1 PGSd_DEM_DEGREE, pntLatitude, pntLongitude,

 1 numDataPoints, dataPresent)

 6-303 EED2-333-001

NOTES: layer:

 See NOTES for layerList of PGS_DEM_OPEN.

positionCode:

The position inputs may be either in signed, decimal degree format or in
global pixel format, which correspond to the flags PGSd_DEM_DEGREE
and PGSd_DEM_PIXEL, respectively. NOTE: global pixel format is the
pixel coordinates of a point in the coordinate system for the whole world.
This is NOT the same as pixels inside a single HDF-EOS GRID. The
pixel coordinate system is unique for each resolution. The origin of all the
pixel coordinate systems is the North, West corner of the globe (180W,
90N). The coordinate system is zero based. The 15 arc second resolution
has 86400 pixels spanning from 180 West to 180 East, and 43200 pixels
spanning from North Pole to South Pole. The 30 arc second resolution has
43200 pixels spanning from 180 West to 180 East and 21600 pixels
spanning from North Pole to South Pole. The 3 arc second resolution has
432000 pixels spanning from 180 West to 180 East and 216000 pixels
spanning from North Pole to South Pole. The 90 arc second resolution has
14400 pixels spanning from 180 West to 180 East and 7200 pixels
spanning from North Pole to South Pole.

 pntLatitude and pntLongitude:

Each longitude point MUST have a corresponding latitude point. The
latitude(s) and longitude(s) will be in either signed, decimal degree format
or global pixel format, corresponding to the flag indicated by
positionCode. If the user is using the flag PGSd_DEM_PIXEL, they
should be aware that the values for pntLatitude and pntLongitude will be
truncated. In other words, if the user passed in a pixel position which had
any decimal information, that information would NOT be used in
accessing the data. For example, if the user passed in 1267.34 as a pixel
position, it would be truncated to 1267.

REQUIREMENTS: PGSTK–0941

 6-304 EED2-333-001

Check for Data in a Specified Region of the DEM

NAME: PGS_DEM_SortModels()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_SortModels(

 PGSt_DEM_Tag resolutionList[],

 PGSt_integer numResolutions,

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 PGSt_DEM_Tag *completeDataSet)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

#include <PGS_DEM_14.f>

#include <PGS_MEM_7.f>

integer function pgs_dem_sortmodels(resolutionList,numResolutions,

 1 layer, positionCode, latitude, longitude, completeDataSet)

 integer resolutionList(*)

 integer numResolutions

 integer layer

 integer positionCode

 double precision latitude(2)

 double precision longitude(2)

 integer completeDataSet

DESCRIPTION: This tool will check the DEM data sets for complete data in a rectangular
region defined by the latitude/longitude pair specified (i.e., upper left hand

 6-305 EED2-333-001

corner, lower right hand corner). If there are fill values at any of the points
in the defined region, then the tool will query the next resolution tag in the
array for that region. The first DEM data set to have complete data in the
region of interest will have its corresponding resolution tag returned in
completeDataSet. If none of the data sets in the input array is "complete",
then the PGSd_DEM_NO_COMPLETE_DATA will be returned.

INPUTS: resolutionList[] - an array of resolution tags, data sets. See Notes to
PGS_DEM_Open().

 numResolutions - the number of resolution tags in the array resolutionList

 layer - indicates which data mask one is accessing. See Notes to
PGS_DEM_DataPresent().

 positionCode - flag indicating the format of the position inputs, latitude
and longitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the bounding latitudes and longitudes of the
region of interest. See Notes.

OUTPUTS: completeDataSet - pointer to a resolution tag, data set identifier. The first
DEM data set to have complete data in the region of interest will be
returned. If none of the resolution tags in the inputted array is "complete",
then the PGSd_DEM_NO_COMPLETE_DATA will be returned.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolutionList;

 PGSt_integer numResolutions;

 PGSt_integer completeData;

 PGSt_double latitude[2];

 PGSt_double longitude[2];

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 6-306 EED2-333-001

 resolutionList[1] = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the upper left and lower right corners of the data region.. In
this case, positions are in signed decimal degrees */

/*upper left corner*/

 latitude[0] = 44.0;

 longitude[0] = -80.0;

/*lower right corner*/

 latitude[1] = 43.0;

 longitude[1] = -79.0;

/* see if region has real data */

 status = PGS_DEM_SortModels(resolutionList, numResolutions,
layer, PGSd_DEM_DEGREE, latitude, longitude, &completeData);

 if (status!= PGS_S_SUCCESS)

/* Do some error handling ...*/

 else

/* compare complete data set to the three possibilities to find resolution
which has complete data across this region.

*/

 if (completeData == PGSd_DEM_3ARC)

/* complete region found in 3 arc second resolution */

 }

 else if (completeData == PGSd_DEM_30ARC)

 {

/* complete region in 30 arc second resolution */

...

 }

 else if (completeData == PGSd_DEM_NO_COMPLETE_DATA)

 6-307 EED2-333-001

 {

/* all resolutions contained fill values within this region */

...

 }

FORTRAN:

 integer status

 integer layer

 integer resolutionList

 double precision latitude(2)

 double precision longitude(2)

C initialize input parameters, both resolutions and layer

 resolutionList(1)= PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C initialize the upper left and lower right corners of the data

C region.. In this case, positions are in signed decimal degrees

C upper left corner

 latitude(1) = 44.0

 longitude(1) = -80.0

C lower right corner

 latitude(2) = 43.0

 longitude(2) = -79.0

C see if region has complete data

 status = pgs_dem_sortmodels(resolutionList,

 1 numResolutions, layer, PGSd_DEM_DEGREE, latitude, longitude,
completeData)

 if (status.NE.PGS_S_SUCCESS) then

 6-308 EED2-333-001

C Do some error handling

 else

C compare completeData to determine the resolution with complete data

C in the specified region

 if (completeData.EQ.PGSd_DEM_3ARC) then

C complete data in 3 arc second resolution

....

 elseif (completeData.EQ.PGSd_DEM_30ARC) then

C complete data found in 30 arc second resolution

...

 elseif (completeData.EQ.PGSd_DEM_NO_COMPLETE_DATA) then

C all resolutions contained fill values within this

C region

NOTES: latitude and longitude:

 The first point corresponds to the upper left corner of the rectangular
region, and the second point correspond to the lower right corner of the
rectangular region. The latitude(s) and longitude(s) will be in either
signed, decimal degree format or global pixel format, corresponding to the
flag indicated by positionCode. If the user is using the flag
PGSd_DEM_PIXEL, she or he should be aware that the values for latitude
and longitude will be truncated. In other words, if the user passed in a
pixel position which had any decimal information, that information would
NOT be used in accessing the data. For example, if the user passed in
1267.34 as a pixel position, it would be truncated to 1267.

REQUIREMENTS: PGSTK–0942

 6-309 EED2-333-001

Return Data at Specified DEM Points

NAME: PGS_DEM_GetPoint()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetPoint(

 PGSt_DEM_Tag resolutionList[],

 PGSt_integer numResolutions

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_double pntLatitude[],

 PGSt_double pntLongitude[],

 PGSt_integer numPoints

 PGSt_integer interpolation,

 void *interpValues)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

integer function pgs_dem_getpoint(resolutionList, numResolutions, layer,
positionCode, pntLatitude, pntLongitude, numPoints, interpolation,
interpValue)

integer resolutionList(*)

integer numResolutions

integer layer

 integer positionCode

 double precision pntLatitude(*)

 double precision pntLongitude(*)

 6-310 EED2-333-001

 integer numPoints

 integer interpolation

 ‘user defined’ interpValue(*)

DESCRIPTION: This tool attempts to return the data value(s) of the point(s) defined by
latitude and longitude. If the latitude and longitude do not exactly
correspond to the center (or corner, depending on the manner in which the
DEM map has been constructed) of a pixel, the value will be interpolated.
Presently, there are only two interpolation methods supported: nearest
neighbor and bilinear interpolation. If at this point there is a "hole", a fill
value, in the data set, then the tool will access the next resolution tag in the
input array. It will continue to step through progressively lower resolution
data sets (depending on the order of the elements in the inputted array)
until it finds actual data for that point. If all of the DEM data sets have a
"hole" at this particular location, then the
PGSDEM_M_FILLVALUE_INCLUDED will be returned. Even if some
of the queried points are not able to be interpolated (i.e. at the lowest
resolution that region is fill value), the value, interpolated value or fill
value of the point(s) will be returned in interpValues.

INPUTS: resolutionList - an array of resolution tags, data sets. See Notes to
PGS_DEM_SortModels().

 numResolutions - the number of resolution tags in the array resolutionList

 layer - indicates which data mask one is accessing. See Notes to
PGS_DEM_DataPresent().

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes to PGS_DEM_DataPresent().

 pntLatitude[] and pntLongitude[] - the latitude and longitude of the point
of interest. See Notes to PGS_DEM_DataPresent().

 numPoints - the number of points to be queried.

 interpolation - type of interpolation. see Notes.

OUTPUTS: interpValues - the data value(s) at the designated latitude(s) and
longitude(s). See Notes.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

 PGSDEM_M_FILLVALUE_INCLUDED - fill values in the returned data

 6-311 EED2-333-001

 PGSDEM_M_MULTIPLE_RESOLUTIONS - data accessed from
multiple resolutions

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolutionList[2];

 PGSt_integer numResolutions;

 PGSt_integer numDataPoints;

 PGSt_double pntLatitude[10];

 PGSt_double pntLongitude[10];

 short dataPoints[10)];

/* NOTE: The type of data buffer should correspond to the type of data that
one is extracting. Presently, the only available data are
PGSd_DEM_ELEV, PGSd_DEM_SLOPE, PGSd_DEM_ASPECT,
PGSd_DEM_STDEV_ELEV, PGSd_DEM_STDEV_SLOPE, and
PGSd_DEM_WATER_LAND which are of type 2 byte, 1 byte, 2
byte, 2 byte, 2 byte, and 2 byte integers, respectively. In
the future, there will be data layers added which are NOT 2
byte or 1 byte integers. If one does not know the data type
of the particular layer, then one should use the tool
PGS_DEM_GetSize.*/

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 resolutionList[1] = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the location of the points of interest. In this case, positions
are in signed decimal degrees*/

 pntLatitude[0] = 40.05;

 pntLongitude[0] = -105.3;...

 6-312 EED2-333-001

 status = PGS_DEM_GetPoint(resolutionList, numResolutions,
layer, PGSd_DEM_DEGREE, pntLatitude, pntLongitude,
numDataPoints, PGSd_DEM_NEAREST_NEIGHBOR, (void
*)dataPoints);

/*Possible status returns*/

 if (status == PGS_S_SUCCESS)

 {

 /*no fill points*/

 ...

 }

 else if (status == PGSDEM_M_FILLVALUE_INCLUDED)

 {

/*fill points included in the extracted data*/

 ...

 }

 else if (status == PGSDEM_M_MULTIPLE_RESOLUTIONS)

 {

/*no fill points in data buffer, fill points interpolated from multiple
resolutions*/

 ...

 }

 else

 {

/*Error in extracting the data */

/* Do some error handling*/

FORTRAN:

 integer status

 integer layer

 6-313 EED2-333-001

 integer resolutionList(2)

 integer numResolutions

 integer numDataPoints

 double precision pntLatitude(10)

 double precision pntLongitude(10)

 integer*2 dataPoints(10)

C *** NOTE: The type of data buffer should correspond to the type of

C data one is extracting. Presently, the only available data are

C PGSd_DEM_ELEV, PGSd_DEM_WATER_LAND, PGSd_DEM_SLOPE, PGSd_DEM_ASPECT,

C PGSd_DEM_STD_DEV_ELEV, and PGS_DEM_STDEV_SLOPE which are of type

C 2 byte integers (except for PGSd_DEM_WATER_LAND which is 1 byte

C integer).

C In the future, there will be data layers added which are NOT 2 byte

C or 1 byte integers. If one does not know the data

C type of the particular

C layer, then one should use the tool PGS_DEM_GetSize.

C initialize input parameters, both resolutions and layer

 resolutionList(1)= PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C initialize points of intereset. In this case, location is in signed

C decimal degrees.

 PntLatitude(0) = 40.05

 pntLongitude(0) = -105.3

 status = pgs_dem_getpoint(resolutionList,

 1 numResolutions, layer, PGSd_DEM_DEGREE, pntLatitude,

 6-314 EED2-333-001

 1 pntLongitude, numDataPoints,

 1 PGSd_DEM_NEAREST_NEIGHBOR, dataPoints)

C Possible status returns

 if (status .EQ. PGS_S_SUCCESS) then

C no fill values in this region, in the first resolution

 ...

 elseif (status .EQ. PGSDEM_M_FILLVALUE_INCLUDED) then

C fill values included in extracted data

 ...

 elseif (status .EQ. PGSDEM_M_MULTIPLE_RESOLUTIONS) then

C no fill values included in extracted data. All fill values

C interpolated from other resolutions in resolutionList

 else

C Error extracting data

C Do some error handling ...

NOTES: All the 15 arc second, 30 arc second, 3 arc second, and 90 arc second
DEM data are referenced vertically to mean sea level, which is
approximated by the geoid. Thus, the elevation data retrieved by
PGS_DEM_GetPoint tool will be with respect to the mean sea level. To
get height relative to the WGS84 ellipsoid see note for the function
PGS_DEM_GetQualityData.

interpolation:

 Presently there is only one type of interpolation, nearest neighbor,
PGSd_DEM_NEAREST_NEIGHBOR, and bilinear interpolation,
PGSd_DEM_BILINEAR.

 6-315 EED2-333-001

 interpValues:

 If the function locates fill values in the extracted data from the first
resolution in the resolutionList, it will attempt to interpolate from the other
resolutions. If the point of interest corresponds to a fill value at the lowest
resolution (the last resolution tag of resolutionList), then this fill value(s)
will be returned.

 The land/water classes are described below:

0. Shallow Ocean (Ocean <5k from coast OR <50m deep; i.e., a buffer zone
around all coastal areas and islands, plus shallow areas up to 50m deep
that are further than 5km from the land). Includes the appropriate parts of
the Black Sea, Red Sea, Mediterranean Sea, Hudson Bay, and other ocean-
connected seas.

1. Land (not anything else).

2. Ocean Coastlines and Lake Shorelines (an actual boundary line).

3. Shallow Inland Water (Inland Water <5km from shore OR <50m deep;
i.e., a buffer zone around all lake shores and inland islands, plus shallow
areas up to 50m deep that are further than 5km from the land). Includes the
appropriate parts of the Caspian Sea, Aral Sea, Great Lakes, "2-line"
rivers, etc.

4. Ephemeral (intermittent) Water (from Digital Chart of the World).

5. Deep Inland Water (Inland water >5km from shoreline AND >50m deep;
i.e., Lake waters beyond 5km from their shore or islands, and greater than
50m eep). Includes the appropriate parts of the Caspian Sea, Aral Sea,
Great akes, etc.

6. Continental Shelf Ocean (Ocean >5km from coast AND between 50m and
500m deep); i.e., Oceans beyond 5km from coastal areas and islands, and
greater than 50m deep but less than 500m deep. Primarily represents the
Continental shelf areas.

7. Deep Ocean (Ocean >5km from coast AND >500m deep); i.e., The really
deep oceans.

 IMPORTANT!! It is the user's responsibility to allocate the appropriate
amount of space for interpValue. Note, that each mask has its own data
type, see PGS_DEM_GetSize.

 WARNING: Because of memory limitations it is not possible to extract
more than a certain number of points by a single call to this function. The
maximum number of points that can be extracted by one call to this
function depends on the machine configuration at the runtime.

REQUIREMENTS: PGSTK–0943

 6-316 EED2-333-001

Return Data from a Specified Region of the DEM

NAME: PGS_DEM_GetRegion()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetRegion(

 PGSt_DEM_Tag resolutionList[],

 PGSt_integer numResolutions,

 PGSt_integer layer,

 PGSt_integer positionCode,

 PGSt_integer interpolation,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 void *dataRegion,

 PGSt_double regionSize[2],

 PGSt_double firstElement[2],

 PGSt_double pixelSize[2])

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_getregion(resolutionList, numResolutions,
layer, positionCode, interpolation, latitude, longitude, dataRegion,
regionSize, firstElement, pixelSize)

integer resolutionList(*)

integer numResolutions

integer layer

integer positionCode

 6-317 EED2-333-001

integer interpolation

double precision latitude(2)

double precision longitude(2)

‘user defined’ dataRegion(*)

double precision regionSize(2)

double precision firstElement(2)

double precision pixelSize(2)

DESCRIPTION: This tool returns the data from a rectangular region of the DEM data set.
In addition to returning an array of data, this tool will return the dimension
of the region in terms of coordinate degrees, the coordinates of the first
element of the dataRegion, and the size of the pixel. If any of the points in
the region of interest is a "hole", a fill value, then the tool will access the
next DEM data set in the input array. It will continue to step through
progressively lower resolution data sets (depending on the order of the
resolution tags in the inputted array) until it finds "valid", actual data. If
all of the inputted resolutions have a "hole" at these specific locations,
then the PGSDEM_M_FILLVALUE_INCLUDED will be returned. Even
if some of the queried points are not able to be interpolated (i.e., at the
lowest resolution that region is fill value), the data region is still returned.
The only consequence is that dataRegion will not consist solely of "valid"
and interpolated data but will also contain fill values

INPUTS: resolutionList - an array of resolution tags, data sets. See Notes to
PGS_DEM_SortModels().

 numResolutions - the number of resolution tags in the array resolutionList

 layer - indicates which data mask or layer one is accessing. See Notes to
PGS_DEM_DataPresent().

 positionCode - flag indicating the format of the position inputs, latitude
and longitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the bounding latitudes and longitudes of the
region of interest. See Notes to PGS_DEM_SortModels().

 interpolation - type of interpolation. See Notes to PGS_DEM_GetPoint().

OUTPUTS: dataRegion - an array in which the DEM data will be returned. See Notes.

 regionSize[2] - an array indicating the size of the region in terms of the
degrees of latitude and longitude. The array elements correspond to
latitude and longitude respectively. The values will be in decimal format.

 6-318 EED2-333-001

 firstElement[2] - an array indicating the latitude and longitude, in decimal
degree format, of the first element. The elements of the array correspond
to latitude and longitude respectively.

 pixelSize[2] - an array indicating the size of a pixel in terms of the
degrees of latitude and longitude. The array elements correspond to
latitude and longitude respectively.

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

 PGSDEM_M_FILLVALUE_INCLUDED - fill values in the returned data

 PGSDEM_M_MULTIPLE_RESOLUTIONS - data accessed from
multiple resolutions

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolutionList[2];

 PGSt_integer numResolutions;

 PGSt_double latitude[2];

 PGSt_double longitude[2];

 PGSt_double regionSize[2];

 PGSt_double firstElement[2];

 PGSt_double pixelSize[2];

 short * dataRegion;

/* NOTE: The type of data buffer should correspond to the type of data one is
extracting. Presently, the only available data are
PGSd_DEM_ELEV, PGSd_DEM_WATER_LAND, PGSd_DEM_SLOPE,
PGSd_DEM_ASPECT, PGSd_DEM_STD_DEV_ELEV, and
PGS_DEM_STDEV_SLOPE which are of type 2 byte integers
(except for PGSd_DEM_WATER_LAND which is 1 byte integer).

/* initialize input parameters, both resolutions and layer */

 resolutionList[0]= PGSd_DEM_3ARC;

 6-319 EED2-333-001

 resolutionList[1] = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/* initialize the location of the region of interest. In this case, positions
are in signed decimal degrees*/

/* upper left corner of region */

 pntLatitude[0] = 44.05;

 pntLongitude[0] = -80.0;

/* lower right corner of region */

 latitude[1] = 43.0;

 longitude[1] = -78.8;

/*Allocate space for the buffers GetRegion. It is the USER’s RESPONSIBILITY
TO ALLOCATE SPACE. . If one does not know the data type or
the extent of one’s region in global pixels, then one should
use the tool PGS_DEM_GetSize. */

 status = PGS_DEM_GetRegion(resolutionList, numResolutions,
layer ,PGSd_DEM_DEGREE, PGSd_DEM_NEAREST_NEIGHBOR, latitude,
longitude, dataRegion, regionSize, firstElement, pixelSize);

/* possible status returns */

 if (status == PGS_S_SUCCESS)

 {

 /*no fill points*/

 ...

 }

 else if (status == PGSDEM_M_FILLVALUE_INCLUDED)

 {

/*fill points included in the extracted data*/

 ...

 6-320 EED2-333-001

 }

 else if (status == PGSDEM_M_MULTIPLE_RESOLUTIONS)

 {

/*no fill points in data buffer, fill points interpolated from multiple
resolutions*/

 ...

 }

 else

 {

/*Error in extracting the data */

/* Do some error handling*/

FORTRAN:

 integer status

 integer layer

 integer resolutionList(2)

 integer numResolutions

 double precision latitude(2)

 double precision longitude(2)

 double precision regionSize(2)

 double precision firstElement(2)

 double precision pixelSize(2)

 integer*2 dataRegion(*)

C *** NOTE: The type of data buffer should correspond to the type of data one
is extracting.

C Presently, the only available data are PGSd_DEM_ELEV, PGSd_DEM_WATER_LAND,

C PGSd_DEM_SLOPE, PGSd_DEM_ASPECT, PGSd_DEM_STD_DEV_ELEV,

C and PGS_DEM_STDEV_SLOPE which are of type 2 byte integers (except

C for PGSd_DEM_WATER_LAND which is 1 byte integer).

 6-321 EED2-333-001

C In C the future, there will be data layers added which are NOT 2 byte or 1
byte integers. It is

C the USER’s RESPONSIBILITY TO ALLOCATE SPACE. If one does not know the data
type C or C the extent of one’s region in global pixels, then one should use
the tool C PGS_DEM_GetSize. ***

C initialize input parameters, both resolutions and layer

 resolutionList(1)= PGSd_DEM_3ARC

 resolutionList(2) = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C initialize the region of interest. In this case, the position is in signed
decimal degrees.

C upper left corner of region

 pntLatitude(1) = 44.05

 pntLongitude(1) = -80.0

C lower right corner of region

 latitude(2) = 43.0

 longitude(2) = -78.8

 status = PGS_DEM_GetRegion(resolutionList,

 1 numResolutions, layer ,PGSd_DEM_DEGREE,

 1 PGSd_DEM_NEAREST_NEIGHBOR, latitude, longitude,

 1 dataRegion, regionSize, firstElement, pixelSize)

C possible status returns

 if (status == PGS_S_SUCCESS)

C **no fill points

 else if (status == PGSDEM_M_FILLVALUE_INCLUDED)

C **fill points included in extracted data

 6-322 EED2-333-001

 else if (status == PGSDEM_M_MULTIPLE_RESOLUTIONS)

C **no fill points in extracted data. All fill points

C interpolated from other resolutions in resolutionList **

 else

C **Error extracting data

C **Do some error handling ...

NOTES: dataRegion:

 If the function locates fill values in the extracted data from the first
resolution in the resolutionList, it will attempt to interpolate from the other
resolutions. If the point of interest corresponds to a fill value at the lowest
resolution (the last resolution tag of resolutionList), then this fill value(s)
will be returned.

 IMPORTANT!! It is the user's responsibility to allocate the appropriate
amount of space for dataRegion. Note, that each mask has its own data
type, see PGS_DEM_GetSize.

REQUIREMENTS: PGSTK–0944

 6-323 EED2-333-001

Extract Metadata from the DEM

NAME: PGS_DEM_GetMetadata()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetMetadata(

 PGSt_DEM_Tag resolution.

 PGSt_integer layer,

 PGSt_double pixLatInfo[2],

 PGSt_double pixLonInfo[2],

 char *positionUnits,

 PGSt_double *scaling,

 PGSt_double *offset,

 PGSt_double *fillValue,

 char *dataUnits,

 PGSt_integer *mapProjection,

 PGSt_boolean *qualityAssurLayer)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_getmetadata(resolution, layer, pixLatInfo,
pixLonInfo, positionUnits, scaling, offset, fillValue, dataUnits,
mapProjection, qualityAssurLayer)

integer resolution

integer layer

 double precision pixLatInfo(2)

 double precision pixLonInfo(2)

 character positionUnits(*)

 6-324 EED2-333-001

 double precision scaling

 double precision offset

 double precision fillValue

 character dataUnits(*)

 integer mapProjection

 integer qualityAssurLayer

DESCRIPTION: This tool accesses the general metadata that pertains to a single DEM data
set the metadata is for the whole data set, not for isolated geographic
sections of the data. Some of the metadata are valid for all the attributes,
but other metadata will be mask specific.

INPUTS: resolution - the resolution tag for a particular data set. See Notes to
PGS_DEM_DataPresent().

 layer - indicates which data mask or layer one is accessing. See Notes to
PGS_DEM_DataPresent().

OUTPUTS:

 pixLatInfo - an array of information on the global row pixels. See Notes.

 pixLonInfo - an array of information on the global column pixels. See
Notes.

 positionUnits - units of the position coordinates

 scaling - a pointer to the scaling factor to convert attribute data to its
appropriate units

 offset - a pointer to an offset to convert the attribute data (after scaling) to
a meaningful value

 resolution - a pointer to the resolution of the attribute data

 dataUnits - the units of the attribute data

 fillValue - a pointer to the fill value of the specified attribute data

 mapProjection - a pointer to the type of geographic projection applied to
the attribute data. Corresponds to different projection flags. See HDF-
EOS User's Guide for projection codes.

 qualityAssurLayer - flag indicating a quality assurance and source layer for
the attribute data. This will either have the value PGS_TRUE or
PGS_FALSE which corresponds to the existence and the absence,
respectively, of a quality assurance layer.

 6-325 EED2-333-001

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer layer;

 PGSt_DEM_Tag resolution;

 PGSt_double pixLatInfo[2];

 PGSt_double pixLonInfo[2];

 PGSt_double scaling;

 PGSt_double offset;

 PGSt_double fillValue;

 character *positionUnits;

 character *dataUnits;

 PGSt_integer mapProjection;

 PGSt_boolean qualityAssuranceLayer;

/* initialize resolution and layer*/

 resolution = PGSd_DEM_3ARC;

 layer = PGSd_DEM_ELEV;

/* allocate enough space for positionUnits and dataUnits string *

 positionUnits = calloc(30. sizeof(char));

 dataUnits = calloc(30. sizeof(char));

 status = PGS_DEM_GetMetadata(resolution, layer, pixLatInfo,
pixLonInfo, positionUnits, &scaling, &offset, &fillValue,
dataUnits, &mapProjection, &qualityAssuranceLayer);

 if (status != PGS_S_SUCCESS)

 {

/* Do some error handling */

 6-326 EED2-333-001

FORTRAN:

 integer status

 integer layer

 integer resolution

 double precision pixLatInfo(2)

 double precision pixLonInfo(2)

 double precision scaling

 double precision offset

 double precision fillValue

 integer mapProjection

 integer qualityAssuranceLayer

 character positionUnits(30)

 character dataUnits(30)

c **Note: character arrays should have enough space allocated to hold the
string. THIS IS THE USER’s RESPONSIBILITY ***

c initialize resolution and layer

 resolution = PGSd_DEM_3ARC

 layer = PGSd_DEM_ELEV

 status = PGS_DEM_GetMetadata(resolution, layer,

 1 pixLatInfo, pixLonInfo, positionUnits, &scaling,

 1 &offset, &fillValue, dataUnits, &mapProjection,

 1 &qualityAssuranceLayer)

 if (status .NE. PGS_S_SUCCESS) then

c ** Do some error handling

 6-327 EED2-333-001

NOTES: pixLatInfo and pixLonInfo:

 All of the values of this array are in degree decimal format. The first
element of the array indicates the spacing between pixels. The second
element is the location within the pixel that is used for requesting the
location of that pixel (i.e. the center or corner of the pixel). This second
element is the vertical (pixLatInfo) or horizontal (pixLonInfo) offset of
this location from the top left corner of a pixel.

REQUIREMENTS: PGSTK–0945

 6-328 EED2-333-001

ACCESS DEM Quality Data

NAME: PGS_DEM_GetQualityData()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetQualityData(

 PGSt_DEM_Tag resolution,

 PGSt_integer qualityField,

 PGSt_integer positionCode,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 void *qualityData)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

integer function pgs_dem_getqualitydata(resolution, qualityField,
positionCode, latitude, longitude, qualityData)

integer resolution

integer qualityField

 integer positionCode

 double precision latitude(2)

 double precision longitude(2)

 ‘user defined’ qualityRegion(*)

DESCRIPTION: This tool accesses the quality assurance layer of a particular DEM data set.
It takes a latitude and longitude of a point of interest and an attribute mask.
It returns information concerning the data source, the region over which
the quality assurance information is valid, the quality metric of the
aforesaid region, or information on the geoid.

 6-329 EED2-333-001

INPUTS: resolution - the resolution tag for a particular data set. See Notes to
PGS_DEM_DataPresent().

 qualityField - the type of quality information requested. See Notes.

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the latitude and longitude of the points of
interest in decimal format. See Notes to PGS_DEM_SortModels().

OUTPUTS: qualityData - an array containing the quality assurance layer information
for the region specified. The information returned is dependent on the flag
indicated in the qualityField. For example, one can obtain the data sources
for all the data in one's region.

RETURNS: PGS_S_SUCCESS -- success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C: PGSt_SMF_status status;

PGSt_integer numLayers;

PGSt_integer layerList[1];

PGSt_DEM_Tag resolutionList[1];

PGSt_integer numResolutions;

PGSt_double latitude[2];

PGSt_double longitude[2];

PGSt_integer numVertPix;

PGSt_integer numHorizPix;

PGSt_integer pixByte;

PGSt_integer totalNumPixels;

int16 *qualityData =NULL;

 /*Some initialization. Initializing resolutions and layers for PGS_DEM
functionality. */

resolutionList[0]= PGSd_DEM_30ARC;

numResolutions = 1;

 6-330 EED2-333-001

layerList[0] = PGSd_DEM_ELEV;

numLayers = 1;

latitude[0] = 40.;

longitude[0] = -100.;

latitude[1] = 38.;

longitude[1] = -97.;

 /*Open the resolution and data layer*/

status = PGS_DEM_Open(resolutionList, numResolutions, layerList,

 numLayers);

 if(status != PGS_S_SUCCESS)

 {

 /*ERROR intializing*/

 printf("PGS_DEM_Open: error initializing\n");

 }

 else

 {

 printf("PGS_DEM_Open: Successful Open\n");

 }

 status = PGS_DEM_GetSize(resolutionList[0], PGSd_DEM_GEOID,

 PGSd_DEM_DEGREE, latitude, longitude,

 &numVertPix, &numHorizPix, &pixByte);

 if(status != PGS_S_SUCCESS)

 {

 /*ERROR with GetSize*/

 printf("PGS_DEM_GetSize: error-- %d\n", status);

 }

 else

 {

 /*print the size of region*/

 printf("PGS_DEM_GetSize: PGSd_DEM_GEOID\n");

 6-331 EED2-333-001

 printf("number of bytes in one pixel is %d\n", pixByte);

printf("number of pixels vertically spanning region %d\n",
numVertPix);

printf("number of pixels horizontally spanning region %d\n",
numHorizPix);

 }

 /* allocate enough space for qualityData */

 totalNumPixels = numVertPix * numHorizPix;

 qualityData = calloc(totalNumPixels, pixByte);

 if (qualityData == NULL)

 {

 /*error callocing*/

 printf("error callocing\n");

 }

 /* Get Quality Data */

 status = PGS_DEM_GetQualityData(resolutionList[0],
PGSd_DEM_ GEOID, PGSd_DEM_DEGREE, latitude, longitude,

 (void *)qualityData);

 if (status != PGS_S_SUCCESS)

 {

 printf("error: PGS_DEM_GetQualityData\n");

 }

 else

 {

 printf("extracted quality data:using PGS_DEM_GetQualityData\n");

 }

 status = PGS_DEM_Close(resolutionList, numResolutions, layerList,
 numLayers);

 if (status != PGS_S_SUCCESS)

 {

 /*ERROR DE-INITIALIZING*/

 6-332 EED2-333-001

printf("Error closing DEM session.\n");

 }

FORTRAN: TBD

NOTES: All the 15 arc second, 30 arc second, 3 arc second, and 90 arc second
DEM data are referenced vertically to mean sea level, which is
approximated by the geoid. The numbers for geoid that one can extract
using PGS_DEM_GetQualityData, as shown in the example, are added to
the DEM value to make the height relative to the WGS84 ellipsoid. Thus
in order to get height relative to the WGS84 ellipsoid one calls first
PGS_DEM_GetPoint (see example for the function PGS_DEM_GetPoint)
to retrieve the elevation data with respect to the mean sea level. The
subsequent call to PGS_DEM_GetQualityData, as shown in the example,
will retrieve geoid data. Then these values are added together to give the
height relative to the WGS84 ellipsoid.

qualityField:

 For example, one could query the information on either the data source,
the quality metric, or the geoid which corresponds to the flags
PGSd_DEM_SOURCE, PGSd_DEM_HORIZONTAL_ACCURACY,
PGSd_DEM_VERTICAL_ACCURACY, and PGSd_DEM_GEOID
respectively.

qualityData - Followings are the data types and values for quality fields:

Source: Data type is 1 byte integer

code 0-8:

0 - no data (ocean)

1 - Digital Terrain Elevation Data (DTED)

2 - Digital Chart of the World (DCW)

3 - USGS 1-degree DEM's

4 - Army Map Service 1:1,000,000-scale maps

5 - International Map of the World 1:1,000,000-scale map

6 - Peru 1:1,000,000-scale map

7 - New Zealand DEM

8 - Antarctic Digital Database (ADD)

Geoid: Data type is 2 byte integer

 6-333 EED2-333-001

Data range is -101 to 75 Meters. Add numbers to Mean Sea Level to
achieve WGS84 Geoid.

Method: Data type is 1 byte integer.

accuracy calculation method - code 0-5:

0 - no data (ocean)

1 - accuracy from source DEM metadata

2 - vertical accuracy calculated by comparison with higher resolution
DEM; horizontal accuracy from source product specification

3 - accuracy from source DEM product specification

4 - vertical accuracy estimated from contour interval of source;

horizontal accuracy estimated from map scale of source

5 - not calculated

1 is used for DTED.

2 is used for DCW.

3 is used for USGS DEM's.

4 is used for cartographic sources (sources 4, 5, 6, and 7 in source data).

5 is used for Antarctica (where the wide range of contour intervals and
map scales in the ADD makes it unreasonable to give a reliable estimate).

Hoizontal Accuracy: Data type is 2 byte integer.

absolute horizontal accuracy: RMSE in meters

 -9999 = no data (ocean)

 9999 = unknown

Vertical Accuracy: Data type is 2 byte integer.

absolute vertical accuracy: RMSE in meters

 -9999 = no data (ocean)

 9999 = unknown

REQUIREMENTS: PGSTK–0946

 6-334 EED2-333-001

Return Size of Specified DEM Region

NAME: PGS_DEM_GetSize()

SYNOPSIS:

C:

 PGSt_SMF_status

 PGS_DEM_GetSize(

 PGSt_DEM_Tag resolution,

 PGSt_integer field,

 PGSt_integer positionCode,

 PGSt_double latitude[2],

 PGSt_double longitude[2],

 PGSt_integer *numPixVertical,

 PGSt_integer *numPixHorizontal,

 PGSt_integer *sizeDataType)

FORTRAN: #include <PGS_SMF.f>

 #include <PGS_DEM.f>

 #include <PGS_DEM_14.f>

 #include <PGS_MEM_7.f>

 integer function pgs_dem_getsize(resolution, field, positionCode, latitude,
longitude, numPixVertical, numPixHorizontal, sizeDataType)

integer resolution

integer field

 integer positionCode

 double precision latitude(2)

 double precision longitude(2)

 integer numPixVertical

 integer numPixHorizontal

 integer sizeDataType

 6-335 EED2-333-001

DESCRIPTION: This tool determines the size of a rectangular region defined by the
latitudes and longitudes of its upper left and lower right corners. This tool
is meant to facilitate the user's ability to allocate appropriate space for the
data returned by PGS_DEM_GetRegion and PGS_DEM_GetQualityData.
Use of this tool can prevent core dumps and other errors due to improper
allocation of memory.

INPUTS: resolution - the resolution tag for a particular data set. See Notes to
PGS_DEM_DataPresent().

 field - either a mask or a qualityField flag. See Notes.

 positionCode - flag indicating the format of the position inputs,
pntLatitude and pntLongitude. See Notes to PGS_DEM_DataPresent().

 latitude[2] and longitude [2] - the latitude and longitude of the points of
interest. See Notes to PGS_DEM_SortModels().

OUTPUTS: numPixVertical - a pointer to the number of pixels spanning the vertical
extent of the region

 numPixHorizontal - a pointer to the number of pixels spanning the
horizontal extent of the region

 sizeDataType - a pointer to the size of an individual pixel of data, in bytes

RETURNS: PGS_S_SUCCESS - success

 PGSDEM_E_IMPROPER_TAG - Error, improper resolution tag(s)

 PGSDEM_E_CANNOT_ACCESS_DATA - Error, cannot access the data
set

EXAMPLES:

C:

 PGSt_SMF_status status;

 PGSt_integer resolution;

 PGSt_integer layer;

 PGSt_double latitude[2];

 PGSt_double longitude[2];

 PGSt_integer numVertPix;

 PGSt_integer numHorizPix;

 PGSt_integer pixByte;

/* initialize resolution and layer */

 6-336 EED2-333-001

 resolution = PGSd_DEM_30ARC;

 layer = PGSd_DEM_ELEV;

/*initialize location of region. In this case, position is in signed decimal
degrees */

 latitude[0] = 4.0;

 longitude[0] = 112.0;

 latitude[1] = -3.0;

 longitude[1] = 115.5;

 status = PGS_DEM_GetSize(resolution, layer, PGSd_DEM_DEGREE,
latitude, longitude, &numVertPix, &numHorizPix, &pixByte);

 if(status != PGS_S_SUCCESS)

 {

/* Do some error handling ...*/

FORTRAN:

 integer resolution

 integer layer

 integer status

 double precision latitude(2)

 double precision longitude(2)

 integer numVertPix

 integer numHorizPix

 integer pixByte

C **initialize resolution and layer

 resolution = PGSd_DEM_30ARC

 layer = PGSd_DEM_ELEV

C **initialize location of region. In this case, position is in signed
decimal degrees

 latitude(1) = 4.0

 6-337 EED2-333-001

 longitude(1) = 112.0

 latitude(2) = -3.0

 longitude(2) = 115.5

 status = PGS_DEM_GetSize(resolution, layer,

 1 PGSd_DEM_DEGREE, latitude, longitude, numVertPix,

 1 numHorizPix, pixByte)

 if(status .NE. PGS_S_SUCCESS) then

C ** Do some error handling ...**

NOTES: field:

This indicates the layer attribute or field of the quality assurance layer over
which the region is "sized". For ECS Deliveries B.0, the layers that may
be inputted are elevation, standard deviation of elevation, water/land, slope
gradient, standard deviation of slope gradient, aspect , data source, quality
metric, and geoid which correspond to the flags PGSd_DEM_ELEV,
PGSd_DEM_STDEV_ELEV, PGSd_DEM_WATER_LAND,
PGSd_DEM_SLOPE, PGSd_DEM_STDEV_SLOPE,
PGSd_DEM_ASPECT, PGSd_DEM_SOURCE
PGSd_DEM__HORIZONTAL_ACCURACY,
PGSd_DEM_VERTICAL_ACCURACY, and PGSd_DEM_GEOID,
respectively. The layers that will be available in the future are:
topographical obscuration (PGSd_DEM_TOP_OBSC), and topographical
shadow (PGS_DEM_TOP_SHAD). Note that for 90 arc second data the
only available layer are elevation and land/water. And for 15 arc second
data the only available layer are elevation, land/water and standard
deviation of Elevation.

REQUIREMENTS: PGSTK–0947

 6-338 EED2-333-001

6.3.2 Ancillary Data Tools

6.3.2.1 Introduction

There will be a large number of ancillary data files used in ECS instrument processing. The tools
in this section address files already identified at this writing.

Users could utilize language standard input/output functions or the HDF tools to access the
ancillary data. However, a suite of higher level tools is required for the following reasons:

a. to enable data from locations specified by the user to be returned to the user thus avoiding
having to know the internal structure of the file.

b. to shield the user from having to know details of parameter source or source format or to
track changes in either, although source changes will be agreed upon with the user.

c. to provide for certain additional manipulations of extracted data.

For this final point (c), only those data sets that have been specifically identified as requiring
particular manipulations will be serviced; i.e., the ancillary tools do not intend to provide a
general manipulation service for all types of data. However, the tools that extract from location
(a) will be sufficiently generic to allow additional data sets of a similar type to be used.

 6-339 EED2-333-001

Access the Digital Chart of the World Database

NAME: PGS_AA_dcw()

SYNOPSIS:
C: #include <PGS_AA.h>
 PGSt_SMF_Status

PGS_AA_dcw (char iparms[][100], coverage name—PO
 PGSt_integer nParms, number of coverages
 PGSt_double longitude[], longitude of point(s)
 PGSt_double latitude[], latitude of point(s)
 PGSt_integer npoints, number of points
 void *results) result of search

FORTRAN: include 'PGS_AA_10.f'
 integer function

PGS_AA_dcw(parms, nParms, latitude, longitude, npoints, results)
 character*99 iparms(*),
 integer nParms,
 double latitude(*)

DESCRIPTION: This routine receives either a single point or an array of location points and
navigates the DCW database in order to find the coverage that the user
supplies as parm. Once the coverage is identified, the database path is
updated, with each file and table identified, until the table containing the
locational information is located. Once this table is found, the table is
opened and the result for a latitude/longitude is extracted and returned in
results.
 [start]

PERFORM PGS_AA_dcw_Parm
PERFORM PGS_AA_dcw_Intile
PERFORM PGS_AA_dcw_Inface
PERFORM PGS_AA_dcw_Feature
PERFORM return PGS_S_SUCCESS

 [end]

 6-340 EED2-333-001

INPUTS:

Table 6-138. PGS_AA_dcw Inputs
Name Description Units Min Max

parms parameter wanted N/A N/A N/A
nParms number of parameters N/A 1 1
latitude latitude location degrees -90.0 90.0
longitude longitude location degrees -180.0 180.0
npoints number of points N/A 0 Unlimited

OUTPUTS:

Table 6-139. PGS_AA_dcw Outputs
Name Description Units Min Max

results extracted parameter char N/A N/A

RETURNS:

Table 6-140. PGS_AA_dcw Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_DCW_ERROR Error in extracting value required
PGSAA_W_DCW_NODATA No data at that point in data base

 The following errors are reported to the error log

 PGSAA_E_CANT_FIND_PARM
PGSAA_E_CANT_GET_CONTINENT_PATH
PGSAA_E_CANT_GET_TILE_DIR
PGSAA_E_CANT_GET_POINT_IN_FACE
PGSAA_E_CANT_GET_POINT_INFO

EXAMPLES:

C: #include <PGS_AA.h>

 PGSt_double latitude[2] = {-9.29, -25.34};
PGSt_double longitude[2] = {110.3, 30.9};
PGSt_integer results[2];
char parm[PGSd_AA_MAXNOCACHES][100] = {"po"};

 ret_status = PGS_AA_dcw(parm, 1, longitude, latitude, 2,
 results);

 6-341 EED2-333-001

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer PGS_AA_dcw
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms(2)
double latitude(2)
double longitude(2)
integer npoints(2)
integer result(2)
parms(1)= "po"
nParms = 2
latitude = -9.29, -25.34
longitude = 110.3, 30.9
npoints = 2

 call pgs_aa_dcw(parms, nParms, longitude, latitude, npoints,
 results)

NOTES: For further details of the background to this tool see the Toolkit Primer
Ancillary Data section (info on how to access this document can be found
in the preface of the Users Guide).

 IMPORTANT: The PGS_AA_dcw code calls a number of library
modules, which carry out such actions as mallocing memory for files,
opening files, opening tables, reading tables, extracting information from
tables and closing tables. These library modules are detailed in the DCW
format specification and the associated vector product format (VPF)
library software.

 NOTE: Precision of latitude and longitude is machine specific, not data–
base specific.

REQUIREMENTS: PGSTK–0840, PGSTK–0870, PGSTK–1360, PGSTK–1362

 6-342 EED2-333-001

Access Available Data from a Set of Standard Digital Elevation
Models (DEMs)

NAME: PGS_AA_dem()

SYNOPSIS:

C: #include "PGS_AA.h"

 PGSt_SMF_status
PGS_AA_dem(char parms[][100],
 PGSt_integer nParms,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_integer versionFlag[],
 PGSt_integer nPoints,
 PGSt_PC_Logical fileId,
 PGSt_integer operation,
 void *results)

FORTRAN: include "PGS_AA_10.f"
include "PGS_AA.f"

 integer function
pgs_aa_dem (parms, nparms, latitude, longitude,
 versionflag, npoints, fileId, operation, results)
 character*99 parms(*)
 integer nParms
 double precision latitude(*)
 double precision longitude(*)
 integer versionflag(*)
 integer npoints
 integer fileId
 integer operation
 'user specified' results (see Notes)

DESCRIPTION: This routine provides the interface to retrieve DEM values from the
gridded data set.

 6-343 EED2-333-001

INPUTS:

Table 6-141. PGS_AA_dem Inputs
Name Description Units Min Max

parms parameter names requested see notes
nParms number of parms none 1 #defined
latitude latitude(s) of the requested point degrees -90.00 90.00
longitude longitude(s) of the requested point degrees -180.00 180.00
nPoints no. of points requested none 1 variable
fileId logical file number none variable variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-142. PGS_AA_dem Outputs
Name Description Units Min Max

versionFlag indicates tile location for a point (see notes) see notes 1 variable
results results see notes

RETURNS:

Table 6-143. PGS_AA_dem Returns
Returns Descriptions

PGS_S_SUCCESS Successful return
PGSAA_E_NPOINTSINVALID Number of points invalid
PGSAA_E_TILE_STATUS Could not establish tile status of the DEM file
PGSAA_E_2DGEO Error returned from PGS_AA_2Dgeo
PGSAA_E_SUPPORTID Could not establish support file id
PGSAA_E_MINMAX Could not establish min/max range for the DEM
PGSAA_E_DATATYPE Could not establish parameter datatype
PGSAA_E_UNKNOWN_DATATYPE DEM datafile datatype is unknown

 6-344 EED2-333-001

EXAMPLES:

C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 char parms[PGSd_AA_MAXNOCACHES][100] = { "USAelevation" };
long nParms = 1;
PGSt_double latitude[MAX_POINTS] = {51.5, 51.23666,
 50.973333} ;
PGSt_double longitude[MAX_POINTS] = {0.1666666,0.3832,
 0.5999};

 PGSt_integer versionFlag[MAX_POINTS];

 PGSt_integer nPoints = 3;
long fileId = 210;
long version = 0;
long operation = 1;
short results[3];
retStatus = PGS_AA_2Dgeo(parms, nParms, latitude, longitude,
 versionFlag, nPoints, fileId,
 operation, results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 parms(PGSd_AA_MAXNOCACHES)
integer pgs_aa_dem
integer versionFlag(300)
integer nParm
double precision latitude(300)
double precision longitude(300)
integer fileId
integer nPoints
integer version
integer operation
integer results(300)
integer retStatus
parms(1)= "USAelevation"
nParms = 1
fileId = 202
operation = 1
nPoints = 300
do 10 i = 1, 300
.

 6-345 EED2-333-001

.
latitude(i) = calculated_user_lat
longitude(i) = calculated_user_lon
.
.

 10 continue

 retStatus = pgs_aa_dem(parms, nparms, latitude,
2 longitude, versionFlag, npoints,
1 fileId, operation, results)

NOTES: The added facility that differentiates this tool from its sister tool
PGS_AA_2Dgeo is that this routine can handle tiled data sets by selecting
from geographically separated tiles. Some of the DEM datafiles can be
very large files and are necessarily tiled into smaller files to avoid memory
problems.

 Also this routine processes all input point data and returns a warning if
some of the input points were found to be out of range. In such an event
user can examine versionFlag[] to locate the offending points. For such
points the corresponding location in versionFlag would contain a value
PGSd_AA_OUT_OF_RANGE, e.g.,
 if latitude[3] and longitude[3] is the offending point then
 versionFlag[3] = PGSd_AA_OUT_OF_RANGE.

 For other points the versionFlag[] would actually contain the number of
the tile where the point was located.

 For the details of DEM datafiles the user is referred to appendix D.
 The FORTRAN result argument returned is not specified since it depends

on the data set used; e.g., it could be real or integer.
 The results buffer holds the final output sent back to the user. It can hold

data of 4 types (long, short, float, double).
 For more details the user is referred to information regarding

PGS_AA_2Dgeo.
 Users MUST be aware of the amount of disk space required by the number

of calls to the tool (where calls demand the ingestion of separate physical
files), and in doing so not exceed the capacity of the machine they are
working on.

 DEC—users
 DEC users should be aware that for some of the product files a DEC

version (e.g., etop05.dat_dec) is supplied. The user should use these
instead of the normal files. This is for backward compatibility with the
PGS_AA_2Dgeo tool. For the rest of the data files there is an inbuilt
facility to swap the bytes. For these files there is a flag 'swapBytes = yes' in
the support file. This flag is set to 'no' for the data files with 'dec' versions.

 6-346 EED2-333-001

Another issue that the user should be aware of is that DEC represents
'long' datatype as 8 bytes long. Therefore, if there is a datafile created on a
different platform (most other platforms represent 'long' as
4 bytes), then that file must be converted first to be used on the DEC.
Conversion should simply be reading the file as 'int' (4 bytes) and writing
it out as 'long' (8 bytes) on the DEC. To take care of byteswapping the
support file for such datafile should contain a flag 'swapBytes = yes'.

REQUIREMENTS: PGSTK–0840, PGSTK–0980

 6-347 EED2-333-001

Extract String Parameter from Parameter=Value Formatted File

NAME: PGS_AA_PeVA_string()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_PeVA_string(
 PGSt_uinteger pevLogical,
 char *parameter,
 char *value[])

FORTRAN: include "PGS_AA_10.f"
include "PGS_AA.f"

 integer function
pgs_aa_peva_string(pevLogical, parameter, value)
 integer pevLogical
 character*(*) parameter
 character*(*) value

DESCRIPTION: This routine returns the value associated with a string type parameter from
the given file.

INPUTS:

Table 6-144. PGS_AA_PeVA_string Inputs
Name Description Units Min Max

pevLogical file logical for file to be accessed see notes
parameter name of parameter to be

retrieved
see notes

OUTPUTS:

Table 6-145. PGS_AA_PeVA_string Outputs
Name Description Units Min Max

value value associated with retrieved parameter see notes

 6-348 EED2-333-001

RETURNS:

Table 6-146. PGS_AA_PeVA_string Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_PEV_ERROR Error in extracting the required value

 The following errors are reported to the error log

 PGSAA_E_CANT_GET_FILE_ID
PGSAA_E_CANT_OPEN_INPUT_FILE
PGSAA_E_AGG_CANT_BE_INSERTED
PGSAA_E_READLABEL_PARSE_ERROR
PGSAA_E_PARAMETER_INVALID
PGSAA_E_FIRST_NODE_NOT_FOUND

EXAMPLE:

C: #include <PGS_AA.h>

#define MAX_STRING 30

 PGSt_SMF_status retStatus;
char *myStringValue[MAX_STRING]= {" "

 " "

 "
"};

 ret_status = PGS_AA_PeVA_string(MY_PEV_FILE,
 "MY_STRING_PARAMETER",
 myStringValue);

 if (ret_status != PGS_S_SUCCESS)
{
 signal ERROR
}

FORTRAN: implicit none

 include 'PGS_AA.f'
include 'PGS_AA_10.f'

 integer pgs_aa_peva_string
integer pevLogical, return
character*30 parameter
character*20 value

 6-349 EED2-333-001

pevLogical = 876
parameter = "dataType"

 return = pgs_aa_peva_string(pevLogical, parameter, value)

NOTES: The logical is an integer whose value is supplied through the PC tools. The
parameter is a data set dependent character string and the value is also a
string as returned from the data file identified by the logical. For

REQUIREMENTS: PGSTK–1365

 6-350 EED2-333-001

Extract Real Parameter from Parameter = Value Formatted File

NAME: PGS_AA_PeVA_real()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_PeVA_real(
 PGSt_uinteger pevLogical,
 char *parameter,
 PGSt_double *value)

FORTRAN: include 'PGS_AA_10.f'
include 'PGS_AA.f'

 integer function
pgs_aa_peva_real(pevLogical, parameter, value)
 integer pevLogical
 character*(*) parameter
 double precision value

DESCRIPTION: This routine returns the value associated with a string type parameter from
the given file.

INPUTS:

Table 6-147. PGS_AA_PeVA_real Inputs
Name Description Units Min Max

pevLogical file logical for file to be accessed see notes
parameter name of parameter to be

retrieved
see notes

OUTPUTS:

Table 6-148. PGS_AA_PeVA_real Outputs
Name Description Units Min Max

value value associated with retrieved parameter see notes

 6-351 EED2-333-001

RETURNS:

Table 6-149. PGS_AA_PeVA_real Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_PEV_ERROR Error in extracting the required value

 The following errors are reported to the error log

 PGSCUC_E_CANT_GET_FILE_ID
PGSCUC_E_CANT_OPEN_INPUT_FILE
PGSCUC_E_AGG_CANT_BE_INSERTED
PGSCUC_E_READLABEL_PARSE_ERROR
PGSCUC_E_PARAMETER_INVALID
PGSCUC_E_FIRST_NODE_NOT_FOUND

EXAMPLE:

C: #include <PGS_AA.h>

 PGSt_SMF_status retStatus;
PGSt_double myRealValue[10];

 ret_status = PGS_AA_PeVA_real(MY_PEV_FILE,
 "MY_STRING_PARAMETER",
 &myRealValue);

 if (ret_status != PGS_S_SUCCESS)
{
 signal ERROR
}

FORTRAN: implicit none

 include 'PGS_AA.f'
include 'PGS_AA_10.f'

 integer pgs_aa_peva_real
integer pevLogical, return
character*30 parameter
double precision value
pevLogical = 876
parameter = "maxLat"

 return = pgs_aa_peva_real(pevLogical, parameter, value)

 6-352 EED2-333-001

NOTES: The logical is an integer whose value is supplied through the PC tools. The
parameter is a data set dependent character string and the value is a real as
returned from the data file identified by the logical.

REQUIREMENTS: PGSTK–1365

 6-353 EED2-333-001

Extract Integer Parameter from Parameter = Value Formatted File

NAME: PGS_AA_PeVA_integer()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_PeVA_integer(
 PGSt_uinteger pevLogical,
 char *parameter,
 PGSt)integer *value)

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 integer function
pgs_aa_peva_integer(pevLogical, parameter, value)
 integer pevLogical
 character*(*) parameter
 integer value

DESCRIPTION: This routine returns the value associated with a string type parameter from
the given file.

INPUTS:

Table 6-150. PGS_AA_PeVA_integer Inputs
Name Description Units Min Max

pevLogical file logical for file to be accessed see notes
parameter name of parameter to be

retrieved
see notes

OUTPUTS:

Table 6-151. PGS_AA_PeVA_integer Outputs
Name Description Units Min Max

value value associated with retrieved parameter see notes

RETURNS:

Table 6-152. PGS_AA_PeVA_integer Returns
Return Description

PGS_S_SUCCESS Successful return
PGSAA_E_PEV_ERROR Error in extracting the required value

 6-354 EED2-333-001

The following errors are reported to the error log

 PGSCUC_E_CANT_GET_FILE_ID
PGSCUC_E_CANT_OPEN_INPUT_FILE
PGSCUC_E_AGG_CANT_BE_INSERTED
PGSCUC_E_READLABEL_PARSE_ERROR
PGSCUC_E_PARAMETER_INVALID
PGSCUC_E_FIRST_NODE_NOT_FOUND

EXAMPLE:

C: #include <PGS_AA.h>

 PGSt_SMF_status retStatus;
PGSt_integer myIntValue;

 ret_status = PGS_AA_PeVA_integer(MY_PEV_FILE,
 "MY_STRING_PARAMETER",
 &myIntValue);

 if (ret_status != PGS_S_SUCCESS)
{
 signal ERROR
}

FORTRAN: implicit none

 include 'PGS_AA.f'
include 'PGS_AA_10.f'

 integer pgs_aa_peva_integer
integer pevLogical, return
character*30 parameter
integer*(*) value
pevLogical = 876
parameter = "size"

 return = pgs_aa_peva_real(pevLogical, parameter, value)

NOTES: The logical is an integer whose value is supplied through the PC tools. The
parameter is a data set dependent character string and the value is a real as
returned from the data file identified by the logical.

REQUIREMENTS: PGSTK–1365

 6-355 EED2-333-001

Extract Data from Gridded Data Sets by Geographic Location

NAME: PGS_AA_2Dgeo()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_2Dgeo (char iparms[][100],
 PGSt_integer nParms,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_integer nPoints,
 PGSt_integer fileId,
 PGSt_integer version,
 PGSt_integer operation,
 void *results);

FORTRAN: include 'PGS_AA_10.f'
include 'PGS_AA.f'

 integer function
pgs_aa_2dgeo(parms, nparms, latitude, longitude, fileId,
 version, operation, results)
 character*99 parms(*)
 integer nParms
 real*8 latitude(*)
 real*8 longitude(*)
 integer fileId
 integer version
 integer operation
 'user specified' results (see Notes)

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the geographic coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that extracts gridded data by
geographic location.

 [start]
PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data
DO allocate memory to parmBuffer using

 6-356 EED2-333-001

 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
DO set tool used to 2
PERFORM PGS_AA_GEOGrid
[end]

INPUTS:

Table 6-153. PGS_AA_2Dgeo Inputs
Name Description Units Min Max

parms parameter names see notes requested
nParms number of parms none 1 #defined
latitude latitude(s) of the requested point degrees -90.00 90.00
longitude longitude(s) of the requested point degrees -180.00 180.00
nPoints no. of points requested none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-154. PGS_AA_2Dgeo Outputs
Name Description Units Min Max

results results see notes

 6-357 EED2-333-001

RETURNS:

Table 6-155. PGS_AA_2Dgeo Returns
To

User/Log
File

Return Description

u PGSAA_E_GEOERRO Error in GEO extraction
l PGSAA_E_AUTOOPERATION Error in executing autoOperation
l PGSAA_E_AUTOOPERATIONUNSET No autoOperation found in support file
l PGSAA_E_OPERATION Error in executing operation
l PGSAA_E_OPERATIONUNSET Operation not set by user
ul PGSAA_E_GEOTOSTRUCT Failure in calculation of structure from lat/lon
ul PGSAA_E_UNIDENTIFIEDTYPE Type cannot be identified, results failure
u PGSAA_E_SUPPORTFILE Support or format files inaccessible
ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support

support file
l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file
ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one

physical file
ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function
ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeVA tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase

MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting

support data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the

requested values was miscalculated
u PGSAA_E_TWOD_READ_ERROR Function failure to read parameter values

from buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

 6-358 EED2-333-001

EXAMPLE:
C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 char parms[PGSd_AA_MAXNOCACHES][100] = {
 "etop05SeaLevelElevM" };
long nParms = 1;

 PGSt_double latitude[] = {51.5, 51.23666, 50.973333} ;
PGSt_double longitude[] = {0.1666666,0.3832, 0.5999};

 PGSt_integer nPoints = 3;

 PGSt_integer fileId = 10955;

 PGSt_integer version = 1;

 PGSt_integer operation = 1;

 short results[3];

 retStatus = PGS_AA_2Dgeo(parms, nParms, latitude, longitude,
 nPoints, fileId, version,
 operation, results);

FORTRAN: implicit none

 include "PGS_AA_10"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_2dgeo
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms
real*8 latitude(300)
real*8 longitude(300)
integer fileId
integer nPoints
integer version
integer operation
integer results(300)
parms(1)= "fnocMod"
nParms = 1
fileId = 10965
operation = 1
version = 1
nPoints = 300
do 10 i = 1, 300
.
.

 6-359 EED2-333-001

latitude(i) = calculated_user_lat
longitude(i) = calculated_user_lon
.
.

 10 continue

 call pgs_aa_2dgeo(parms, nparms, latitude, longitude,
 fileId, version, operation, results)

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
parmBuffer input is a memory buffer holding whatever data is extracted
form the data set requested by the user. The results buffer is similar
although holds the final output sent back to the user. It can hold data of 4
types (long, short, float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0840, PGSTK–0931, PGSTK–0980, PGSTK–1030,
PGSTK–1362

 6-360 EED2-333-001

Extract Data from Gridded Data Sets by Geographic Location

NAME: PGS_AA_3Dgeo()

SYNOPSIS:
C: #include <PGS_AA.h>
 PGSt_SMF_status

PGS_AA_3Dgeo (char iparms[][100],
 PGSt_integer nParms,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_integer height[],
 PGSt_integer nPoints,
 PGSt_integer fileId,
 PGSt_integer version,
 PGSt_integer operation,
 void *results);

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 character*99 iparms(PGSd_AA_MAXNOCACHES)
 integer nParms
 real*8 latitude(*)
 real*8 longitude(*)
 integer height(*)
 integer fileId
 integer version
 integer operation
 'user specified' results (see Notes)

 integer function
pgs_aa_3dread(parms, nparms, latitude, longitude,
 height, fileId, version, operation, results)

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the geographic coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that extract gridded data by
geographic location.
 [start]

PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data

 6-361 EED2-333-001

DO allocate memory to parmBuffer using
 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
DO set tool used to 3
PERFORM PGS_AA_GEOGrid
[end]

INPUTS:

Table 6-156. PGS_AA_3Dgeo Inputs
Name Description Units Min Max

iparms parameter names requested see notes
nParms number of parms none 1 4
latitude latitude(s) of the requested point degrees -90.00 90.00
longitude longitude(s) of the requested point degrees -180.00 180.00
height height of the requested point none 1 variable
nPoints no. of points requested none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-157. PGS_AA_3Dgeo Outputs
Name Description Units Min Max

results results see notes

RETURNS:

Table 6-158. PGS_AA_3Dgeo Returns (1 of 2)
To

User/Log
File

Return Description

u PGSAA_E_GEOERROR Error in GEO extraction
l PGSAA_E_AUTOOPERATION Error in executing autoOperation
l PGSAA_E_AUTOOPERATIONUNSET No autoOperation found in support file
l PGSAA_E_OPERATION Error in executing operation
l PGSAA_E_OPERATIONUNSET Operation not set by user

ul PGSAA_E_GEOTOSTRUCT Failure in calculation of structure from lat/lon
ul PGSAA_E_UNIDENTIFIEDTYPE Type cannot be identified, results failure
u PGSAA_E_SUPPORTFILE Support or format files inaccessible

 6-362 EED2-333-001

Table 6-158. PGS_AA_3Dgeo Returns (2 of 2)
To

User/Log
File

Return Description

ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support support
file

l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file
ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one

physical file
ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function

ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeVA tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting support

data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the requested

values was miscalculated
u PGSAA_E_THREED_READ_ERROR Function failure to read parameter values from

buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

EXAMPLE:

C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 char parms[PGSd_AA_MAXNOCACHES][100] =
 {"nmcRucSigPres","nmcRucSigPot"};
long nParms = 2;

 PGSt_double latitude[] = {51.5, 51.23666, 50.973333} ;
PGSt_double longitude[] = {0.1666666, 0.3832, 0.5999};
long height[] = {1,2,1};
PGSt_integer nPoints = 3;

 long fileId = 10972;

 long version = 1;

 6-363 EED2-333-001

 long operation = 2;

 short results[3][2];

 retStatus = PGS_AA_3Dgeo(parms, nParms, latitude, longitude,
 height, nPoints, fileId, version,
 operation, results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_3dgeo
character*99 iparms(PGSd_AA_MAXNOCACHES)
integer nParms
real*8 latitude(300)
real*8 longitude(300)
integer height(300)
integer fileId
integer nPoints
integer version
integer operation
integer results(2,300)
parms(1)= "nmcRucSigPres"

 parms(2)= "nmcRucSigPot"
nParms= 2
fileId = 10972
operation = 2
version = 1
nPoints = 300
do 10 i = 1, 300
.
.
latitude(i) = calculated_user_lat
longitude(i) = calculated_user_lon
height(i) = calculate_user_height
.
.

 10 continue

 call pgs_aa_3dgeo(iparms, nparms,latitude, longitude,
 height, fileId, version, operation,
 results)

 6-364 EED2-333-001

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 Height or the z dimension is a layer number in the file and is data set
dependent.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
results buffer is a memory buffer holding whatever data is extracted form
the data set requested by the user. It can hold data of 4 types (long, short,
float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0931, PGSTK–0840, PGSTK–1362

 6-365 EED2-333-001

Extract Data from Gridded Data Sets by File Structure

NAME: PGS_AA_2DRead()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_2DRead(
 char iparms[][100],
 PGSt_integer nParms,
 PGSt_integer xStart,
 PGSt_integer yStart,
 PGSt_integer xDim,
 PGSt_integer yDim,
 PGSt_integer fileId,
 PGSt_integer version,
 PGSt_integer operation,
 void *results)

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 integer function
pgs_aa_2dread(parms, nparms, xStart, yStart, xDim, yDim, fileId,
 version, operation, results)
 character*99 parms(*)
 integer nParms,
 integer xStart,
 integer yStart,
 integer xDim,
 integer yDim,
 integer fileId,
 integer version,
 integer operation,
 'user specified' results (see Notes)

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the data structure coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that accepts the arguments and calls
PGS_AA_Map, PGS_AA_GetSupp, PGS_AA_FF_Setup and

 6-366 EED2-333-001

PGS_AA_2DReadGrid. The first 3 of these modules determine the
validity of the call and initialize support and load the identified data into
memory. PGS_AA_2DReadGrid performs the extraction requested from
the input arguments

 [start]
PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data
DO allocate memory to parmBuffer using
 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
PERFORM PGS_AA_2DReadGrid
[end]

INPUTS:

Table 6-159. PGS_AA_2DRead Input
Name Description Units Min Max

parms parameter names requested see notes
nParms number of parms none 1 #defined
xStart the x start point none 1 variable
yStart the y start point none 1 variable
xDim the x dimension none 1 variable
yDim the y dimension none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-160. PGS_AA_2DRead Output
Name Description Units Min Max

results results variable N/A N/A

 6-367 EED2-333-001

RETURNS:

Table 6-161. PGS_AA_2DRead Returns
To User/Log

File
Return Description

u PGSAA_E_SUPPORTFILE Support or format files inaccessible
ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support

support file
l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file

ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one
physical file

ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function

ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeVA tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase

MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting

support data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the

requested values was miscalculated
u PGSAA_E_TWOD_READ_ERROR Function failure to read parameter values

from buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

EXAMPLE:

C: #include <PGS_AA.h>

PGSt_SMF_status retStatus;

 short results[50][20]
char parm[PGSd_AA_MAXNOCACHES][100] =
 {"OlsonWorldEcosystems1.3a"};
PGSt_integer nParms = 1;
PGSt_integer xStart = 4;
PGSt_integer yStart = 7;
PGSt_integer xDim = 20;

 6-368 EED2-333-001

PGSt_integer yDim = 50;
PGSt_integer fileId = 10952;

 PGSt_integer version = 1;

 PGSt_SMF_status = PGS_AA_2DRead (parm, nParms, xStart,
 yStart, xDim, yDim, fileId,
 version, 1, results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_2dread
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms
integer xStart
integer yStart
integer xDim
integer yDim
integer fileId
integer version
integer operation
PGSt_integer results(14, 20)
parms(1)= "OlsonWorldEcosystems1.3a"
nParms = 1
yStart = 102
xStart = 205
yDim = 20
xDim = 14
fileId = 10952
operation = 1
version = 1

 call pgs_aa_2dread(parms, nparms, xStart, yStart, xDim,
 yDim, fileId, version, operation,
 results)

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 6-369 EED2-333-001

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
results buffer is a memory buffer holding whatever data is extracted form
the data set requested by the user. It can hold data of 4 types (long, short,
float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0931, PGSTK–0980, PGSTK–1000, PGSTK–1030,
PGSTK–1360, PGSTK–1362

 6-370 EED2-333-001

Extract Data from Gridded Data Sets by File Structure Parameters

NAME: PGS_AA_3DRead()

SYNOPSIS:

C: #include <PGS_AA.h>

 PGSt_SMF_status
PGS_AA_3DRead(
 char iparms[][100],
 PGSt_integer nParms
 PGSt_integer xStart
 PGSt_integer yStart
 PGSt_integer zStart
 PGSt_integer xDim
 PGSt_integer yDim
 PGSt_integer zDim
 PGSt_integer fileId
 PGSt_integer version
 PGSt_integer operation
 void *results)

FORTRAN: include 'PGS_AA_10.f'
include "PGS_AA.f"

 integer function
pgs_aa_3dread(iparms, nparms, xStart, yStart, zStart, xDim, yDim, zDim,
 fileId, version, operation, results)
 character*99 iparms(*)
 integer nParms,
 integer xStart,
 integer yStart,
 integer zStart,
 integer xDim,
 integer yDim,
 integer zDim,
 integer fileId,
 integer version,
 integer operation,
 'user specified' results (see Notes)

 6-371 EED2-333-001

DESCRIPTION: The user specifies a parameter, a fileId and version from which the data
are to be extracted using the file structure coordinates. Since this tool is
similar to the other AA geo and Read tools, a single explanation of the
interface is provided in Appendix D.3.

 The interface to the calling algorithm that accepts the arguments and calls
PGS_AA_Map, PGS_AA_GetSupp, PGS_AA_FF_Setup and
PGS_AA_3DReadGrid. The first 3 of these modules determine the
validity of the call and initialize support and load the identified data into
memory. PGS_AA_3DReadGrid performs the extraction requested from
the input arguments

 [start]
PERFORM PGS_AA_Map
PERFORM PGS_AA_GetSupp to get support data
DO allocate memory to parmBuffer using
 totalParmMemoryCache
PERFORM PGS_AA_FF_Setup
PERFORM PGS_AA_3DReadGrid
[end]

INPUTS:

Table 6-162. PGS_AA_3DRead Inputs
Name Description Units Min Max

parms parameter names requested see notes
nParms number of parms none 1 #defined
xStart the x start point none 1 variable
yStart the y start point none 1 variable
zStart he z start point none 1 variable
xDim the x dimension none 1 variable
yDim the y dimension none 1 variable
zDim the z dimension none 1 variable
fileId logical file number none variable variable
version version of dynamic file none 1 variable
operation defines user required none 1 variable

OUTPUTS:

Table 6-163. PGS_AA_3DRead Outputs
Name Description Units Min Max

results results see notes

 6-372 EED2-333-001

RETURNS:

Table 6-164. PGS_AA_3DRead Returns
To User/Log File Return Description

u PGSAA_E_SUPPORTFILE Support or format files inaccess ble
ul PGSAA_E_PARMSNOTFOUND Parameter(s) not found in the support support file
l PGSAA_E_DATARATEUNSET dataRate attribute unset in support file

ul PGSAA_E_PARMSFROMANYFILES Parameters requested from more than one
physical file

ul PGSAA_E_INVALIDNOPARMS No of parms incorrect
ul PGSAA_E_BADSUPPSUPPORT Tool support file is corrupted or incomplete
ul PGSAA_E_CANTFINDFILE Format of input data file inaccessible
u PGSAA_E_FFERROR A freeform error has occured
l PGSAA_E_FFDBIN Failure in Freeform make_dbin function
l PGSAA_E_FFDBSET Failure in Freeform db_set function
l PGSAA_E_FFDBEVENTS Failure in Freeform db_events function

ul PGSAA_E_MALLOC Failure to malloc
u PGSAA_E_PEV_ERROR An error has occurred in the PeV tool
l PGSAA_E_PEV_XS_SUPPFILES Too many PeVA files open, increase MAXFILES
l PGSAA_E_CANT_GET_VALUE Unable to extract value from dbin
l PGSAA_E_GETDBIN Error in PeVA tool obtaining dbin
u PGSAA_E_GETSUPP An error was detected while extracting support

data
l PGSAA_E_POSITION_CALC_FAILURE The position in the parmBuffer of the requested

values was miscalculated
u PGSAA_E_THREED_READ_ERROR Function failure to read parameter values from

buffer
l PGSAA_E_EXTRACTORESULTSERROR Failure to transfer selected values from

parmBuffer to results
ul PGSAA_E_OUTOFRANGE Input values out of data set range

EXAMPLE:

C: PGSt_SMF_status retStatus;

 char parms[PGSs_AA_MAXNOCACHES][100] = {
 "nmcRucSigPres","nmcRucSigPot"};
 PGSt_integer xStart = 30;
 PGSt_integer yStart = 20;
 PGSt_integer zStart = 2;
 PGSt_integer xDim = 6;
 PGSt_integer yDim = 4;
 PGSt_integer zDim = 2;
 PGSt_integer fileId = 10972; /* contains interleaved
 parms */

 float results[2][4][6][2]; /* height,lat,long,parm */

 6-373 EED2-333-001

 PGSt_integer nParms = 2

 PGSt_SMF_status = PGS_AA_3DRead (iparms, nParms, xStart,
 yStart, zStart, xDim, yDim,
 zDim, fileId, 1, 2
 results);

FORTRAN: implicit none

 include "PGS_AA_10.f"
include "PGS_AA.f"
include "PGS_SMF.f"

 integer pgs_aa_3dread
character*99 parms(PGSd_AA_MAXNOCACHES)
integer nParms
integer xStart
integer yStart
integer zStart
integer xDim
integer yDim
integer zDim
integer fileId
integer version
integer operation

 integer result(2,50,20,2)
parms(1)= "nmcRucSigPot"
parms(2)= "nmcRucSigPres"
nParms=2
yStart=102
xStart=205
zStart=2
yDim=20
xDim=50
zDim=2
fileId=10972
operation=2
version = 1

 call pgs_aa_3dread(iparms, nparms, xStart, yStart, zStart,
 xDim, yDim, zDim, fileId, version,
 operation, results)

 6-374 EED2-333-001

NOTES: For further details of the background to these tools and the available data
sets, support files and the means by which new data sets can be introduced,
see the Toolkit Primer Ancillary Data section (info on how to access this
document can be found in the preface of the Users Guide) or Appendix D
in this document. These also include details of the operations that can be
set by the user and the autoOperations associated with particular data sets.

 The FORTRAN result argument returned is not specified since it depends
on the data set used; e.g., it could be real or integer.

 The upper limit of the range of input variables is data set specific. The
parms input variable is a parameter and data set specific set of strings. The
results buffer is a memory buffer holding whatever data is extracted form
the data set requested by the user. It can hold data of 4 types (long, short,
float, double).

 It is critical that the results buffer be declared to be of the same type as that
found in the first element of the support file (or PGSt_integer for short
/long when working in FORTRAN) and be dimensioned to exactly contain
the requested dimensions.

REQUIREMENTS: PGSTK–0931, PGSTK–1360, PGSTK–1362

 6-375 EED2-333-001

6.3.3 Celestial Body Position Tools
The tools included in this section provide the user with information about the locations of
celestial bodies (sun, moon, major planets and bright stars). The vector from the Earth or the
spacecraft can be computed and the presence of a body in the instrument field of view can be
detected.

6.3.3.1 Celestial Body Position Tool Notes

The following notes apply to several of the Celestial Body Position Tools.

TIME RANGE OF CELESTIAL BODY EPHEMERIS

The EOSDIS version of the JPL DE200 ephemeris which is used for the celestial body positions
is valid from Dec 14, 1949 through Jan 1, 2021. The user’s calling times are internally translated
to TDT (dynamical time, similar to the old “ephemeris time”) before being used to access the
epehemeris itself. This translation depends on leap seconds information. If the leap seconds file
is not up to date the error message “PGSTD_NO_LEAP_SECS” is returned but processing
continues. Since leap seconds are normally available only six months in advance, results for far
future simulations cannot be guaranteed. On the other hand, as time passes, with the leap seconds
file properly updated by automatic Toolkit procedures, the positions calculated at any given time,
for past times, for the present date, or a few months in advance will be reliable.

TIME OFFSETS:

These functions accept an ASCII UTC time, an array of time offsets and the number of offsets as
input. Each element in the offset array is an offset in seconds relative to the initial input ASCII
UTC time.

An error will be returned if the number of offsets specified is less than zero. If the number of
offsets specified is actually zero, the offsets array will be ignored. In this case the input ASCII
UTC time will be converted to Toolkit internal time (TAI) and this time will be used to process
the data. If the number of offsets specified is one (1) or greater, the input ASCII UTC time will
be converted to TAI and each element 'i' of the input data will be processed at the time: (initial
time) + (offset[i]).

Examples:

 if numValues is 0 and asciiUTC is "1993-001T12:00:00" (TAI: 432000.0),
then input[0] will be processed at time 432000.0 and return output[0]

 if numValues is 1 and asciiUTC is "1993-001T12:00:00" (TAI: 432000.0),
then input[0] will be processed at time 432000.0 + offsets[0] and
return output[0]

 if numValues is N and asciiUTC is "1993-001T12:00:00" (TAI: 432000.0),
then each input[i] will be processed at time 432000.0 + offsets[i] and
the result will be output[i], where i is on the interval [0,N)

 6-376 EED2-333-001

ERROR HANDLING:

These functions process data over an array of times (specified by an input ASCII UTC time and
an array of time offsets relative to that time).

If processing at each input time is successful the return status of these functions will be
PGS_S_SUCCESS (status level of 'S').

If processing at ALL input times was unsuccessful the status level of the return status of these
functions will be 'E'.

If processing at some (but not all) input times was unsuccessful the status level (see SMF) of the
return status of these functions will be 'W' AND all high precision real number (C: PGSt_double,
FORTRAN: DOUBLE PRECISION) output variables that correspond to the times for which
processing was NOT successful will be set to the value: PGSd_GEO_ERROR_VALUE. In this
case users may (should) loop through the output testing any one of the aforementioned output
variables against the value PGSd_GEO_ERROR_VALUE. This indicates that there was an error
in processing at the corresponding input time and no useful output data was produced for
that time.

Note: A return status with a status level of 'W' does not necessarily mean that some of the data
could not be processed. The 'W' level may indicate a general condition that the user may need to
be aware of but that did not prohibit processing. For example, if an Earth ellipsoid model is
required, but the user supplied value is undefined, the WGS84 model will be used, and
processing will continue normally, except that the return status will have a status level of 'W' to
alert the user that the default earth model was used and not the one specified by the user. The
reporting of such general warnings takes precedence over the generic warning (see RETURNS
above) that processing was not successful at some of the requested times. Therefore in the case of
any return status of level 'W', the returned value of a high precision real variable generally should
be examined for errors at each time offset, as specified above.

EPHEMERIS AND ATTITUDE DATA QUALITY CONTROL:

Some of the Celestial Body Positioning tools access spacecraft ephemeris and/or attitude data in
order to effect their respective transformations. In these cases users may define "masks" for the
two data quality flags (ephemeris and attitude) associated with spacecraft ephemeris data. The
quality flags are (currently) four byte entities (may be 8 bytes on the cray but only the first four
bytes will be considered) that are interpreted bit by bit for meaning (see Section L.3 Quality
Flags). Currently the only "fatal" bit (i.e. indicating meaningless data) that will be set prior to
access by the Toolkit is bit 16 (where the least significant bit is bit 0). Additionally, the Toolkit
will set bit 12 of the quality flag returned for a given user input time if NO data is found for that
input time. Note that this usage is different from most of the other bits which indicate the state
of some existing data point. By default the Toolkit will set the mask for each of the quality flags
to include bit 16 (fatally flawed data) and bit 12 (no data). This means that any data points
returned from the tool PGS_EPH_EphemAttit() with an associated quality flag that has either bit
12 or bit 16 set will be rejected by any TOOLKIT function that makes a call to
PGS_EPH_EphemAttit() (e.g. these CBP tools) (note that masking is not applied in the tool

 6-377 EED2-333-001

PGS_EPH_EphemAttit() itself since users calling this tool directly can examine the quality flags
themselves and make their own determination as to which data points to use or reject).

Users may use the Process Control File (PCF) to define their own masks which the Toolkit will
then use instead of the defaults mentioned above. The user defined mask should set any bit
which the user considers fatal for their purpose (e.g. red limit exceeded). WARNING: if the user
defined mask does not have bit 16 set, the Toolkit will pass through data the associated quality
flag of which has bit 16 set. The toolkit will not, however, process any data points if the
associated quality flag has bit 12 set (i.e. no data exists) whether or not the user mask has bit 12
explicitly set.

Below are the PCF entries which control the value of these masks:

The following parameter is a "mask" for the ephemeris data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the ephemeris data quality flag that
should be considered fatal (i.e. the ephemeris data associated
with the quality flag should be REJECTED/IGNORED).

10507|ephemeris data quality flag mask|65536

The following parameter is a "mask" for the attitude data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the attitude data quality flag that
should be considered fatal (i.e. the attitude data associated
with the quality flag should be REJECTED/IGNORED).

10508|attitude data quality flag mask|65536

Note that in the examples above, the value 65536 is the unsigned integer equivalant of a 32 bit
binary counter with bits 12 and 16 set. See section 6.2.3 (Process Control Tools) and (Appendix
C Process Control Files) for a detailed explanation of the use of the Process Control File.

REFERENCES:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac. Theoretical Basis of the SDP
Toolkit Geolocation Package for the ECS Project”, Document 445-TP-002-002, May 1995, by P.
Noerdlinger.

 6-378 EED2-333-001

Compute Earth to Celestial Body ECI Vector

NAME: PGS_CBP_Earth_CB_Vector()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CBP_Earth_CB_Vector(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_integer cbId,
 PGSt_double cbVectors[][3])

FORTRAN: include 'PGS_CBP.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'
include 'PGS_CBP_6.f'
include 'PGS_TD_3.f'

 integer function
pgs_cbp_earth_cb_vector(numvalues,asciiutc,offsets,cbid,cbvectors)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer cbid
 double precision cbvectors(3,*)

DESCRIPTION: This function computes the Earth–Centered Inertial (ECI J2000) frame
vector from the Earth to the selected bodies of Solar System.

INPUTS

Table 6-165. PGS_CBP_Earth_CB_Vector Inputs
NAME DESCRIPTION UNITS MIN MAX

asciiUTC UTC time in CCSDS ASCII Time Code A OR B
format

time 1961–01–01 see NOTES

offsets array of offsets of each input UTC time seconds see NOTES see NOTES
cbId identifier of celestialbody (see list below) N/A 1 13
numValues number of required data points

0—only asciiUTC in used
any—any time events are used

N/A 0 any

 6-379 EED2-333-001

 THE DESIGNATION OF THE ASTRONOMICAL BODIES BY
CELESTIAL BODY IDENTIFIER (cbId) IS:

 cbId =

 1 = MERCURY 8 = NEPTUNE
2 = VENUS 9 = PLUTO
3 = EARTH 10 = MOON
4 = MARS 11 = SUN
5 = JUPITER 12 = SOLAR–SYSTEM BARYCENTER
6 = SATURN 13 = EARTH–MOON BARYCENTER
7 = URANUS

OUTPUTS:

Table 6-166. PGS_CBP_Earth_CB_Vector Outputs
NAME DESCRIPTION UNITS MIN MAX

cbVectors[][3] ECI unit vectors from Earth to celestial body
first subscript for each time event specified
second subscript gives position vector

meter see NOTES see NOTES

RETURNS:

Table 6-167. PGS_CBP_Earth_CB_Vector Returns
Return Description

PGS_S_SUCCESS Successful completion
PGSCBP_W_EARTH_CB_ID Earth cbId is specified
PGSCBP_E_INVALID_CB_ID Invalid celestial body identifier
PGSTD_E_BAD_INITIAL_TIME Initial input time can not be deciphered
PGSCBP_E_BAD_ARRAY_SIZE Incorrect array size
PGSCBP_E_UNABLE_TO_OPEN_FILE Ephemeris file can not be opened
PGSCBP_E_TIME_OUT_OF_RANGE Initial time is outside the ephemeris bounds
PGSTD_E_NO_LEAP_SECS No leap second correction available
PGSCBP_W_BAD_CB_VECTOR One or more errors in CB vectors
PGS_E_TOOLKIT For unknown errors

 6-380 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer cbId = 10;
PGSt_integer numValues;
char asciiUTC[28] = "2002-07-
 27T11:04:57.987654Z";
PGSt_double offsets[ARRAY_SIZE] = {3600.0, 7200.0,
 10800.0};
PGSt_double cbVectors[ARRAY_SIZE][3];

 char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 numValues = ARRAY_SIZE;

 returnStatus = PGS_CBP_Earth_CB_Vector(numValues, asciiUTC,
 offsets, cbId,
 cbVectors)

 if (returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf ("ERROR: %s\n", msg);
}

FORTRAN: implicit none

 integer pgs_cbp_earth_cb_vector
integer returnstatus
integer cbid
integer numvalues

 double precision offsets(3)
double precision cbvectors(3,3)

 character*27 asciiutc
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 asciiutc = '2002-07-27T11:04:57.987654Z'
cbid = 10
numvalues = 3

 returnstatus = pgs_cbp_earth_cb_vector(numvalues, asciiutc,
 offsets, cbid,
 cbvectors)

 6-381 EED2-333-001

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: See Section 6.3.3.1 Celestial Body Position Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

REQUIREMENTS: PGSTK–0800

 6-382 EED2-333-001

Compute Satellite to Celestial Body Vector in
Spacecraft Reference Frame

NAME: PGS_CBP_Sat_CB_Vector()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CBP_Sat_CB_Vector(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_integer cbId,
 PGSt_double cbVectors[][3])

FORTRAN: include 'PGS_CBP.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'
include 'PGS_CBP_6.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'

 integer function
pgs_cbp_sat_cbvectors(spacecrafttag,numvalues,asciiutc,offsets,cbid,
 cbvectors)

 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer cbid
 double precision cbvectors(3,*)

DESCRIPTION: This function computes the vector in the spacecraft reference frame from
the spacecraft to the sun, moon, or planets at a given time or range
of times.

 6-383 EED2-333-001

INPUTS:

Table 6-168. PGS_CBP_Sat_CB_Vector Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft identifier N/A N/A N/A
numValues number of required data points:

0—only asciiUTC is used
any—any time events are used

N/A 0 any

asciiUTC [28] UTC time in CCSDS ASCII Time code A or B format time 1961–01–01 see NOTES
offsets[] array of time offsets from asciiUTC in seconds seconds see NOTES see NOTES
cbId identifier of celestial bodies (see list below) N/A N/A N/A

 THE DESIGNATION OF THE ASTRONOMICAL BODIES BY
CELESTIAL BODY IDENTIFIER (cbId) IS:

 cbId =
 1 = MERCURY 8 = NEPTUNE

2 = VENUS 9 = PLUTO
3 = EARTH 10 = MOON
4 = MARS 11 = SUN
5 = JUPITER 12 = SOLAR–SYSTEM BARYCENTER
6 = SATURN 13 = EARTH–MOON BARYCENTER
7 = URANUS

OUTPUTS:

Table 6-169. PGS_CBP_Sat_CB_Vector Outputs
Name Description Units Min Max

cbVectors[][3] vectors in spacecraft reference frame from satellite to
the celestial body for each time event

meter see NOTES see NOTES

RETURNS:

Table 6-170. PGS_CBP_Sat_CB_Vector Returns (1 of 2)
Return Description

PGS_S_SUCCESS Success
PGSCSC_W_BELOW_SURFACE Output vector from ECItoSC below surface
PGSCBP_W_BAD_CB_VECTOR One or more bad vectors for requested times
PGSCBP_E_BAD_ARRAY_SIZE numvalues is less than 0
PGSCBP_E_INVALID_CB_ID Invalid celestial body identifier
PGSMEM_E_NO_MEMORY Not enough memory for tmpVectors

 6-384 EED2-333-001

Table 6-170. PGS_CBP_Sat_CB_Vector Returns (2 of 2)
Return Description

PGSCBP_E_UNABLE_TO_OPEN_FILE Unable to open planetary data file
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSCBP_E_TIME_OUT_OF_RANGE Initial time is outside the ephemeris bounds
PGSTD_E_SC_TAG_UNKNOWN Invalid spacecraft tag
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGS_E_TOOLKIT Toolkit error

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;

 PGSt_integer numValues = ARRAY_SIZE;

 PGSt_double cbVectors[ARRAY_SIZE][3];
PGSt_double offsets[ARRAY_SIZE] = {3600.0,
 7200.0, 10800.0};

 char asciiUTC[28] = "2002-07-
 27T11:04:57.987654Z";
char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 returnStatus = PGS_CBP_Sat_CB_Vector(PGSd_EOS_AM, numValues,
 asciiUTC, offsets,
 PGSd_MOON, cbVectors);

 if (returnStatus != PGS_S_SUCCESS)
{
 PGS_SMF_GetMsg(&returnStatus, err, msg);
 printf ("ERROR: %s\n", msg);
}

FORTRAN: implicit none

 integer pgs_cbp_sat_cb_vector
integer numvalues
character*27 asciiutc
double precision offsets(3)
integer cbid
double precision cbvectors(3,3)

 6-385 EED2-333-001

 character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 asciiutc = "2002-07-27T11:04:57.987654Z"
cbid = 10
numvalues = 3

 returnstatus = pgs_cbp_sat_cb_vector(pgsd_eos_am, numvalues,
> asciiutc, offsets,
> pgsd_moon, cbvector)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: See Section 6.3.3.1. Celestial Body Position Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–0680, PGSTK–0810

 6-386 EED2-333-001

Get Solar Time and Coordinates

NAME: PGS_CBP_SolarTimeCoords()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CBP_SolarTimeCoords(
 char asciiUTC[28],
 PGSt_double longitude,
 PGSt_double *meanSolTimG,
 PGSt_double *meanSolTimL,
 PGSt_double *apparSolTimL,
 PGSt_double *solRA,
 PGSt_double *solDec)

FORTRAN: include 'PGS_SMF.f'
include 'PGS_TD_3.f'

 integer function pgs_cbp_solartimecoords(asciiutc, longitude,
 meansoltimg, meansoltiml,
 apparsoltiml, solra, soldec)
 character*27 asciiutc
 double precision longitude
 double precision meansoltimg
 double precision meansoltiml
 double precision apparsoltiml
 double precision solra
 double precision soldec

DESCRIPTION This tool performs a low accuracy rapid calculation of solar time and
coordinates. The accuracy of the equations here is expected to be about 0.5
minutes of time and 0.04 degrees for the coordinates of the sun.

 6-387 EED2-333-001

INPUTS:

Table 6-171. PGS_CBP_SolarTimeCoords Inputs
Name Description Units Min Max

asciiUTC Coordinated Universal Time in CCSDS ASCII
Time Code A or B format

N/A See NOTES See NOTES

longitude longitude of observer (positive is East) Not
required for solar coordinates; should be set to 0
in that case

radians -pi pi

OUTPUTS:

Table 6-172. PGS_CBP_SolarTimeCoords Outputs
Name Description Units Min Max

meanSolTimG Greenwich Mean Solar Time as seconds from midnight seconds 0 86400
meanSolTimL Local Mean Solar Time as seconds from midnight seconds 0 86400
apparSolTimL Local Apparent Solar Time as seconds from midnight seconds 0 86400
solRA Right Ascension of the Mean sun radians 0 2*pi
solDec Declination of the Mean sun radians -pi pi

RETURNS:

Table 6-173. PGS_CBP_SolarTimeCoords Returns
Return Description

PGS_S_SUCCESS Successful execution
PGSTD_M_LEAP_SEC_IGNORED Input leap second has been ignored
PGSTD_E_TIME_FORMAT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGS_E_TOOLKIT Something unexpected happened, execution aborted

EXAMPLES:

C: PGSt_SMF_status returnStatus;

char asciiUTC[28];
PGSt_double longitude;
PGSt_double meanSolTimG;
PGSt_double meanSolTimL;

 6-388 EED2-333-001

PGSt_double solRA;
PGSt_double solDec;

 strcpy(asciiUTC,"1991-01-01T11:29:30");
returnStatus = PGS_CBP_SolarTimeCoords(asciiUTC,longitude,
 &meanSolTimG,
 &meanSolTimL,
 &apparSolTimL,
 &solRA,&solDec)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
printf("\n longitude: %lf",longitude);

 printf("Greenwich Mean Solar Time:%lf Local Mean Solar
 Time:%lf", meanSolTimG,meanSolTimL);
printf("\n Local Apparent Solar Time:%lf Solar Right
 Asc/Dec:%lf/%lf", apparSolTimL,solRA,solDec);

FORTRAN: implicit none

 integer pgs_cbp_solartimecoords
character*27 asciiutc
double precision longitude
double precision meansoltimg
double precision meansoltiml
double precision apparsoltiml
double precision solra
double precision soldec
integer returnstatus

 asciiutc = '1991-01-01T11:29:30'
longitude = 1.0

 returnstatus = pgs_cbp_solartimecoords(asciiutc,longitude,
 meansoltimg,
 meansoltiml,
 apparsoltiml,solra,
 soldec)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) asciiutc,longitude
write(6,*)meansoltimg,meansoltiml,apparsoltiml,solra,soldec

 6-389 EED2-333-001

 90 write(6,99)returnstatus

 99 format('ERROR:',I50)

NOTES: The equations used in this function are referenced on page C24 of the
1994 Astronomical Almanac. They are low precision formulas that give
the apparent coordinates of the sun to a precision of 0.01 degrees and the
equation of time to a precision of 0.5 minutes between the years 1950 and
2050. Less accuracy is expected for dates before 1950 and after 2050.

 More accurate solar time determination requires improved solar
coordinates and the value of UT1–UTC. These items are accessible
through other SDP tools.

 In particular, the Solar ephemeris yields accurate solar coordinates and the
function PGS_TD_gmst() gives Greenwich Mean Sidereal Time. These
can be combined to obtain more accurate Mean Solar Time. The difference
UT1–UTC is determined within the coordinate system conversion (CSC)
group of functions, in the transformations between Earth Centered
Rotating (ECR) and Earth Centered Inertial (ECI).

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

REQUIREMENTS: PGSTK–0760

 6-390 EED2-333-001

Celestial Body in Field–of–View Indicator

NAME: PGS_CBP_body_inFOV()

SYNOPSIS:

C: #include <PGS_TD.h>
#include <PGS_CSC.h>
#include <PGS_CBP.h>
#include <PGS_EPH.h>
#include <PGS_MEM.h>

 PGSt_SMF_status
PGS_CBP_body_inFOV(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_tag spacecraftTag,
 PGSt_integer numFOVperimVec,
 PGSt_double inFOVvector[][3],
 PGSt_double *perimFOV_vectors,
 PGSt_tag cbID,
 PGSt_boolean inFOVflag[],
 PGSt_double cb_vector[][3],
 PGSt_double cb_SCvector[][3])

FORTRAN: include 'PGS_TD_3.f'
include 'PGS_CSC_4.f'
include 'PGS_CBP_4.f'
include 'PGS_EPH_4.f'
include 'PGS_MEM_4.f'
include 'PGS_SMF.f'

 integer function pgs_cbp_body_infov(numvalues,asciiutc,offsets,
 spacecrafttag,numfovperimvec,infovvector,
 perimfov_vectors,cbid,infovflag,cb_vector,
 cb_scvector)

 integer numvalues
character*27 asciiutc
double precision offsets(*)
integer spacecrafttag
integer numfovperimvec
double precision infovvector(*)
double precision perimfov_vectors(3,numfovperimvec,*)

 6-391 EED2-333-001

integer cbid
integer infovflag(*)
double precision cb_vector(3,*)
double precision cb_scvector(3,*)

DESCRIPTION: Given a celestial body (CB) identifier (as in the CBP tools) and a field of
view (FOV) description, tool returns a flag or flags indicating if the CB is
in the FOV, as well as the coordinates of the CB in SC coordinates.
Alternatively, the user can specify CB identifier 999 or PGSd_STAR and
supply the ECI vector to the body.

INPUTS:

Table 6-174. PGS_CBP_body_inFOV Inputs
Name Description Units Min Max

numValues number of time gridpoints N/A 1 any
asciiUTC UTC start time N/A 1979–06–

30T00:00:01
2008–01–01T
12:00:00

spacecraftTag unique spacecraft identifier N/A N/A N/A
numFOVperimVec number of vectors defining

FOV perimeter
N/A 3 any

inFOVvector vector in FOV, in SC
coordinates

N/A N/A N/A

perimFOV_vectors vectors in SC coords defining
FOV's; MUST be sequential
around FOV; middle
dimension must be exactly the
same value as
numFOVperimVec because of
the way the array
dimensioning works in the
function.

N/A N/A N/A

cbId celestial body ID (Earth not
included—see
PGS_CSC_Earthpt_FOV)

N/A 1 13

cb_vector ECI vectors of CB (this is an
input only when cbId = 999,
meaning user input of ECI
vector for CB—see notes)

Arbitrary see
PGS_CBP_Earth_CB
_Vector

 6-392 EED2-333-001

OUTPUTS:

Table 6-175. PGS_CBP_body_inFOV Outputs
Name Description Units Min Max

inFOVflag PGS_TRUE if CB is in FOV—see
notes

N/A N/A N/A

cb_SCvector vector of CB in SC coords notes meters see PGS_CBP_body_inFOV()
notes

RETURNS:

Table 6-176. PGS_CBP_body_inFOV Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location specified
PGSCBP_E_TIME_OUT_OF_RANGE Initial time is outside the ephemeris bounds
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSCBP_W_BAD_CB_VECTOR One or more bad vectors for requested times
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSCSC_W_DATA_FILE_MISSING The data file earthfigure.dat is missing
PGSCBP_E_UNABLE_TO_OPEN_FILE Unable to open file
PGSCBP_E_INVALID_CB_ID Invalid celestial body identifier
PGSCBP_W_EARTH_CB_ID The tool PGS_CSC_Earthpt_FOV() must be used to check for Earth

points in the FOV
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSEPH_E_NO_DATA_REQUESTED Both orb and att flags are set to false
PGSCSC_E_INVALID_FOV_DATA FOV perimeter vectors are invalid
PGSCSC_E_FOV_TOO_LARGE FOV specification outside algorithmic limits
PGS_E_TOOLKIT Something unexpected happened

EXAMPLES:
C: #define ARRAY_SIZE 3

#define PERIMVEC_SIZE 4
PGSt_SMF_status returnStatus;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_integer numValues;
PGSt_integer numFOVperimVec;

 6-393 EED2-333-001

PGSt_double inFOVvector[ARRAY_SIZE][3] =
 { {0.0,0.0,100.0},
 {0.0,0.0,200.0},
 {0.0,0.0,300.0}
 };
PGSt_double
 perimFOV_vectors[ARRAY_SIZE][PERIMVEC_SIZE][3]=
 { {100.0,100.0,100.0},
 {-100.0,100.0,100.0},
 {-100.0,-100.0,100.0},
 {100.0,-100.0,100.0},
 {200.0,200.0,200.0},
 {-200.0,200.0,200.0},
 {-200.0,-200.0,200.0},
 {200.0,-200.0,200.0},
 {300.0,200.0,200.0},
 {-200.0,300.0,200.0},
 {-200.0,-300.0,300.0},
 {300.0,-200.0,200.0},
 };
PGSt_boolean inFOVflag[ARRAY_SIZE];
PGSt_double cb_SCvector[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
numFOVperimVec = PERIMVEC_SIZE;
strcpy(asciiUTC,"1995-06-21T11:29:30.123211Z");

 returnStatus = PGS_CBP_body_inFOV(numValues,asciiUTC,
 offsets,PGSd_TRMM,
 numFOVperimVec,
 inFOVvector,
 perimFOV_vectors,
 PGSD_MOON,
 inFOVflag,NULL,
 cb_SCvector);

 if(returnStatus != PGS_S_SUCCESS)|
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_cbp_body_infov
integer returnstatus
integer spacecrafttag

 6-394 EED2-333-001

integer numvalues
character*27 asciiutc
double precision offsets(3)
integer spacecrafttag
integer numfovperimvec
double precision infovvector(3,3)
double precision perimfov_vectors(3,4,3)
integer cbid
integer infovflag(3)
double precision cb_vector(3,3)
double precision cb_scvector(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 infovvector(1,1) = 0.0
infovvector(1,2) = 0.0
infovvector(1,3) = 0.0

 infovvector(2,1) = 0.0
infovvector(2,2) = 0.0
infovvector(2,3) = 0.0

 infovvector(3,1) = 0.0
infovvector(3,2) = 0.0
infovvector(3,3) = 0.0

 perimfov_vectors(1,1,1) = 100.0
perimfov_vectors(2,1,1) = 100.0
perimfov_vectors(3,1,1) = 100.0

 perimfov_vectors(1,2,1) = -100.0
perimfov_vectors(2,2,1) = 100.0
perimfov_vectors(3,2,1) = 100.0

 perimfov_vectors(1,3,1) = -100.0
perimfov_vectors(2,3,1) = -100.0
perimfov_vectors(3,3,1) = 100.0

 perimfov_vectors(1,4,1) = 100.0
perimfov_vectors(2,4,1) = -100.0
perimfov_vectors(3,4,1) = 100.0

 perimfov_vectors(1,1,2) = 200.0
perimfov_vectors(2,1,2) = 200.0
perimfov_vectors(3,1,2) = 200.0

 6-395 EED2-333-001

 perimfov_vectors(1,2,2) = -200.0
perimfov_vectors(2,2,2) = 200.0
perimfov_vectors(3,2,2) = 200.0

 perimfov_vectors(1,3,2) = -200.0
perimfov_vectors(2,3,2) = -200.0
perimfov_vectors(3,3,2) = 200.0

 perimfov_vectors(1,4,2) = 200.0
perimfov_vectors(2,4,2) = -200.0
perimfov_vectors(3,4,2) = 200.0

 perimfov_vectors(1,1,3) = 300.0
perimfov_vectors(2,1,3) = 300.0
perimfov_vectors(3,1,3) = 300.0

 perimfov_vectors(1,2,3) = -300.0
perimfov_vectors(2,2,3) = 300.0
perimfov_vectors(3,2,3) = 300.0

 perimfov_vectors(1,3,3) = -300.0
perimfov_vectors(2,3,3) = -300.0
perimfov_vectors(3,3,3) = 300.0

 perimfov_vectors(1,4,3) = 300.0
perimfov_vectors(2,4,3) = -300.0
perimfov_vectors(3,4,3) = 300.0

 asciiutc = '1995-06-21T11:04:57.987654Z'
numvalues = 3
numfovperimvec = 4

 returnstatus = pgs_cbp_body_infov(numvalues,asciiutc,
 offsets,PGSd_TRMM,
 numfovperimvec,
 infovvector,
 perimfov_vectors,moon,
 infovflag,null,
 cb_scvector);

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: The FOV is always specified in SC coordinates; for an instrument fixed to
the SC, use the same FOV description always; for scanning instruments,
user should provide the description appropriate to the scan instant.

 numFOVperim must be at least 3. The tool determines if any part of the
CB requested lies within the perimeter defined by the vectors
perimFOV_vectors[][][3]. The first index in C (last in FORTRAN) is the

 6-396 EED2-333-001

time offset index, and the second MUST be sequential around the FOV
perimeter. The vector inFOVvector[][3] MUST lie within the FOV. It need
not be central, but there will be loss of efficiency if not. The last index in
C (first in FORTRAN) on these vectors is for X,Y and Z components in
SC coordinates. It is necessary for the user to supply a vector within the
FOV for the reason that on the surface of a sphere, a closed curve or
"perimeter" does not have an inside nor outside, except by arbitrary
definition; i.e., this vector tells the algorithm which part of sky is inside
FOV, which outside.

 The vectors "perimFOV_vectors[][][3]" defining the FOV perimeter can
be in clock- or counter-clockwise sequence .

 The tool may be used on the Sun, Moon, and planets other than the Earth,
in which case the cbID must be selected from the standard set (see the tool
PGS_CBP_Earth_CB_Vector()). The tool may also be used on another
object (such as a star), in which case cbID should be set = 999 and the ECI
J2000 coordinates of the star must be supplied in cb_vector[]. The Sun,
Moon and planets have finite radii, as specified in the Table below; CB's
with cdID = 999 (PGSd_STAR) are assumed to be of negligible radius.

 Note on Finite Size of CB: Since a primary use of this tool will be to
determine if the Sun, Moon, or a planet intrudes into the FOV, it is
important to allow for the finite size of the object. For this purpose, the
Moon and Planets are replaced with spheres of the following radii, which
are projected on the celestial sphere:

Table 6-177. Physical Radii for CB in FOV Tool
CB Radius (km) Explanation

Sun 7 e 5
Moon 1739 allows for topography
Mercury 2440
Venus 6055
Earth n/a use tool PGS_CSC_Earthpt_FOV()
Mars 3397 ignore satellites
Jupiter 1890 e 3 include Galilean satellites
Saturn 1225 e 3 include rings, satellites to Titan
Uranus 25600 planet only
Neptune 24800 planet only
Pluto 19600 planet and Charon
999 (STAR) 0.0 a star, or user–defined point

 In general, we have included satellites down to the 10th magnitude.

 In the case that the celestial body position is invalid for a particular time,
then the corresponding cb_SCvector will be set to
PGSd_GEO_ERROR_VALUE.

 6-397 EED2-333-001

 If the CB disk overlaps the FOV only behind the Earth's equatorial bulge
and the overlap is barely hidden by it, and the FOV has a sharp corner
protruding past the Earth limb it is possible in rare cases that a false
positive answer will issue.

 See Section 6.3.3.1 Celestial Body Position Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–0780

 6-398 EED2-333-001

6.3.4 Coordinate System Conversion Tools

6.3.4.1 Introduction

The ECI system is J2000. Thus in Fig. 6-2 the Z axis is along the Earth’s rotation axis at the
epoch of J2000. The ECR system is Earth fixed, i.e. rotating with the Earth. Since its definition
includes the effect of polar motion, then in Fig. 6-1 the Z axis is actually along geographic North,
which differs very slightly and variably (~ 3 to 15 meters) from the rotational North axis.

6.3.4.2 Unit Vectors for Input

In some functions, a unit vector or a set of unit vectors is required on input. In these cases, the
vectors are generally renormalized internally again, anyway, to prevent obscure errors. Thus,
generally, any vector defining the correct direction can be supplied; it need not be normalized.
An exception is in the transformations between ECI and Spacecraft Coordinates,
PGS_CSC_ECItoSC() and PGS_CSC_SCtoECI(). In these functions, the behavior is different
for unit vector input and for input vectors in meters. For these two functions, any input vector
whose length is between 0.99999 and 1.000001 is assumed to be a unit vector, while any other
vector is assumed to be measured in meters.

6.3.4.3 Other Specialized Vectors and Terminology

The vector along a line of sight from the spacecraft may be referred to as a "pixel vector" or
"look vector". It could be the boresight of an instrument or it could locate a point in a finite field
of view. The "look point" is the intersection of such a vector with the Earth ellipsoid. Vectors
designated by the name of a celestial body, such as the "Sun vector" are assumed to point from
Earth center or spacecraft center to the celestial body, depending on context. They are in meters
unless described as unit vectors. "Latitude" always means geodetic latitude, and the zenith vector
at Earth surface is always taken as the normal to the Earth ellipsoid. The "slant range" is from the
instrument boresight or spacecraft center to the look point (depending on the accuracy flag). The
"field of view" is always defined in spacecraft coordinates. The "subsatellite point" is at the foot
of a normal dropped from the spacecraft to the Earth ellipsoid, and its velocity what would be
measured by terrestrial instruments on the ellipsoid.

6.3.4.4 Altitudes; Altitude Warnings

In almost all the tools, such as transformations between ECR and Geodetic coordinates, in
PGS_CSC_GetFOV_Pixel(), and PGS_CSC_SubSatPoint() the altitude is defined in meters off
the Earth ellipsoid, as specified by the user through an Earth ellipsoid tag. If an invalid tag is
used, then the WGS84 ellipsoid is used. The altitude for PGS_CSC_ZenithAzimuth() is the
exception; it must be defined in meters off the geoid, because it is used to calculate air density to
correct the zenith angle for refraction when that correction is requested. The altitude is ignored
otherwise in PGS_CSC_ZenithAzimuth(). All the functions that input or output altitude, or
calculate it internally check for reasonableness. When large negative altitudes are input or
generated internally, warning messages issue to the log file, and a warning return will be given

 6-399 EED2-333-001

unless there is a more serious problem. The exact depth used to trigger a warning varies
according to context. For example, in PGS_CSC_ECItoSC(), the depth can be as great as 0.02
Earth radii, on the supposition that in an extreme case the user might wish the coordinates of
some point that deep in the Earth, while in PGS_CSC_Earthpt_FOV() and
PGS_CSC_Earthpt_FixedFOV(), the warning is issued if the depth exceeds 50 km. Here, the
function is not just a coordinate transformation, but it informs the user if the point can be seen.
The 50 km tolerance allows that even if the Earth ellipsoid model is set by the user so large as to
include most of the atmosphere, and the Earth point is on the ocean floor, no warning will be
returned. For greater depths the point is deemed not to be visible and the answer always
PGS_FALSE. The maximum altitude of 100 km is set to include noctilucent clouds. Higher
altitudes will be processed, with the answer PGS_TRUE or PGS_FALSE according to the
geometry, but a warning is issued. This is the only case in which a large positive altitude results
in a warning, because of the context that one is talking about an "Earth point."

6.3.4.5 Lines of sight; visibility of points

The various functions do not check for obstruction of the line of sight by part of the spacecraft or
clouds, nor for the occultation of one celestial body by another. The tool
PGS_CSC_Earthpt_FOV() checks for occultation of the specified point by the solid Earth, i.e.,
on the far side, and PGS_CBP_body_inFOV() checks for occultation by the Earth; in those cases
a PGS_FALSE answer is reported.

6.3.4.6 Ranges for variables

The minimum and maximum values specified in the tables are often guidelines only and may not
be rigidly enforced. For example, a likely range is indicated for any one component of the
spacecraft velocity, but, in principle a velocity component could be anything up to escape
velocity. When angles such as latitude or longitude are input, they generally are not be checked
against the specified ranges. If they are out of range, the results may be unpredictable. The angles
are always in radians. An angle inadvertently supplied in degrees will usually lead to a wrong
answer rather than an error return. Various mathematical libraries that vendors supply with
compilers may also give degraded performance when given angles that are badly out of range.

6.3.4.7 Updating the UT1 and polar motion file
The file $PGSDAT/CSC/utcpole.dat contains information about UT1 and polar motion used by
many tools. Since this information changes with time, the file must be periodically updated. The
SDP Toolkit contains utilities to perform this update function. If a new leap second is issued, the
data in this file will change for dates after that second. Since the IERS can announce a leap
second on as little as 90 days notice, the file will contain data for only 83 days after its last
update; this allows time for the posting of a new data set by the U.S. N. O. as described below,
and for the running of the Toolkit update. Tools that depend on these data, such as
transformations between ECR and ECI, and tools that deliver UT1 or sidereal time, will fail and
issue an error return if they are provided input times past the end of the file. The Log Status file
will indicate the failure with a message including " PGSTD_E_NO_UT1_VALUE".

 6-400 EED2-333-001

The shell script update_utcpole.sh, which is found in $PGSBIN, will update the utcpole.dat file
to the current date. To maintain a current utcpole.dat, this script should be run every week, but
twice a week is recommended for optimum accuracy (<~ 2m). The U.S. Naval Observatory file,
on which the update depends, is normally replaced by a current one by noon, Eastern Standard
Time, each Tuesday and Thursday. The accuracy is discussed in Section 6.2.7.5.2.
Update_utcpole.sh calls PGS_CSC_UT1_update, a C program that performs most of the actual
update work. A Clear Case capable version update_utcpole_CC.sh is provided, as well, with this
version of the Toolkit. It must be used from within a Clear Case view belonging to the process
owner.

The update is done by collecting the latest information via ftp from United States Naval
Observatory in Washington, DC. Their file "finals.data" in the Series 7 directory within server
"maia.usno.navy.mil" contains information on UT1-UTC and the x and y pole displacements.
The utcpole.dat header contains the date of updating and the file date as listed within ftp for the
last "finals.data" used to update it. The function PGS_CSC_UT1_update reformats the new
finals.data information and adds it to the utcpole.dat file, overwriting any old information that is
superseded. At the DAACs, the process is done automatically by the scheduler. At Science
Computing Facilities, for Toolkits through version 5.2.1, drop 4, users will need to have a
".netrc" file in their home directories, as explained in the comments within the scripts. Later
releases will not need such a file.

6.3.4.8 Coordinate System Conversion Tool Notes

The following notes apply to several of the Coordinate System Conversion Tools.

TIME OFFSETS:

These functions accept an ASCII UTC time, an array of time offsets and the number of offsets as
input. Each element in the offset array is an offset in seconds relative to the initial input ASCII
UTC time.

An error will be returned if the number of offsets specified is less than zero. If the number of
offsets specified is actually zero, the offsets array will be ignored. In this case the input ASCII
UTC time will be converted to Toolkit internal time (TAI) and this time will be used to process
the data. If the number of offsets specified is one (1) or greater, the input ASCII UTC time will
be converted to TAI and each element 'i' of the input data will be processed at the time: (initial
time) + (offset[i]). It is recommended that users take advantage of the efficiency that can be
gained by processing many time values in one run, using offsets. Many of the tools have been
designed to run more efficiently when operating in this mode, and in some cases an internal limit
~30 to 50 has been set on error messaging to the log file in this mode, to prevent excessive
growth of the log file.

Examples:

 if numValues is 0 and asciiUTC is "1993-001T12:00:00" (TAI93: 432000.0),
then input[0] will be processed at time 432000.0 and return output[0]

 6-401 EED2-333-001

 if numValues is 1 and asciiUTC is "1993-001T12:00:00" (TAI93: 432000.0),
then input[0] will be processed at time 432000.0 + offsets[0] and
return output[0]

 if numValues is N and asciiUTC is "1993-001T12:00:00" (TAI93: 432000.0),
then each input[i] will be processed at time 432000.0 + offsets[i] and
the result will be output[i], where i is on the interval [0,N)

ERROR HANDLING:

These functions process data over an array of times (specified by an input ASCII UTC time and
an array of time offsets relative to that time).

If processing at each input time is successful the return status of these functions will be
PGS_S_SUCCESS (status level of 'S').

If processing at ALL input times was unsuccessful the status level of the return status of these
functions will be 'E'.

If processing at some (but not all) input times was unsuccessful the status level (see SMF) of the
return status of this function will be 'W' AND all high precision real number (C: PGSt_double,
FORTRAN: DOUBLE PRECISION) output variables that correspond to the times for which
processing was NOT successful will be set to the value: PGSd_GEO_ERROR_VALUE. In this
case users may (should) loop through the output testing any one of the aforementioned output
variables against the value PGSd_GEO_ERROR_VALUE. This indicates that there was an error
in processing at the corresponding input time and no useful output data was produced for that
time.

Note: A return status with a status level of 'W' does not necessarily mean that some of the data
could not be processed. The 'W' level may indicate a general condition that the user may need to
be aware of but that did not prohibit processing. For example, if an Earth ellipsoid model is
required, but the user supplied value is undefined, the WGS84 model will be used, and
processing will continue normally, except that the return status will have a status level of 'W' to
alert the user that the default earth model was used and not the one specified by the user. The
reporting of such general warnings takes precedence over the generic warning (see RETURNS
section of the tool of interest) that processing was not successful at some of the requested times.
Therefore in the case of any return status of level 'W', the returned value of a high precision real
variable generally should be examined for errors at each time offset, as specified above.

EPHEMERIS AND ATTITUDE DATA QUALITY CONTROL:

Many of the Coordinate System Conversion tools access spacecraft ephemeris and/or attitude
data in order to effect their respective transformations. In these cases users may define "masks"
for the two data quality flags (ephemeris and attitude) associated with spacecraft ephemeris data.
The quality flags are (currently) four byte entities (may be 8 bytes on the cray but only the first
four bytes will be considered) that are interpreted bit by bit for meaning (see Section L.3 Quality
Flags). Currently the only "fatal" bit (i.e. indicating meaningless data) that will be set prior to
access by the Toolkit is bit 16 (where the least significant bit is bit 0). Additionally, the Toolkit

 6-402 EED2-333-001

will set bit 12 of the quality flag returned for a given user input time if NO data is found for that
input time. Note that this usage is different from most of the other bits which indicate the state
of some existing data point. By default the Toolkit will set the mask for each of the quality flags
to include bit 16 (fatally flawed data) and bit 12 (no data). This means that any data points
returned from the tool PGS_EPH_EphemAttit() with an associated quality flag that has either bit
12 or bit 16 set will be rejected by any TOOLKIT function that makes a call to
PGS_EPH_EphemAttit() (e.g. these CSC tools) (note that masking is not applied in the tool
PGS_EPH_EphemAttit() itself since users calling this tool directly can examine the quality flags
themselves and make their own determination as to which data points to use or reject).

Users may use the Process Control File (PCF) to define their own masks which the Toolkit will
then use instead of the defaults mentioned above. The user defined mask should set any bit
which the user considers fatal for their purpose (e.g. red limit exceeded). WARNING: if the user
defined mask does not have bit 16 set, the Toolkit will pass through data the associated quality
flag of which has bit 16 set. The toolkit will not, however, process any data points if the
associated quality flag has bit 12 set (i.e. no data exists) whether or not the user mask has bit 12
explicitly set.

Below are the PCF entries which control the value of these masks:

The following parameter is a "mask" for the ephemeris data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the ephemeris data quality flag that
should be considered fatal (i.e. the ephemeris data associated
with the quality flag should be REJECTED/IGNORED).

10507|ephemeris data quality flag mask|65536

The following parameter is a "mask" for the attitude data quality
flag. The value should be specified as an unsigned integer
specifying those bits of the attitude data quality flag that
should be considered fatal (i.e. the attitude data associated
with the quality flag should be REJECTED/IGNORED).

10508|attitude data quality flag mask|65536

Note that in the examples above, the value 65536 is the unsigned integer equivalant of a 32 bit
binary counter with bits 12 and 16 set. See section 6.2.3 (Process Control Tools) and (Appendix
C Process Control Files) for a detailed explanation of the use of the Process Control File.

6.3.4.9 Coordinate System Conversion Transformation Tools

These tools convert between various coordinate systems. This will allow calculations to be
computed in the most appropriate coordinate system and allow the conversion of results to a
common reference frame. Previously these coordinate transformations were contained in one tool

 6-403 EED2-333-001

entitled PGS_CSC_FrameChange. We have provided separate calls for each transformation, as
one tool proved unwieldy. Also, the user now need not supply extraneous parameters not needed
for the desired conversion.

Figures 6–1 through 6–3 show the definitions of the ECR, ECI, and orbital (Orb) reference
frames.

The spacecraft coordinate system coincides with the orbital system when all the Euler angles are
zero. Otherwise, it is rotated by the amount indicated by the Euler angles. Thus, a small,
positive roll angle indicates that its right side is lowered, and its left side raised. A small positive
pitch angle indicates that its nose is raised and thrusters depressed. A small positive zero angle
indicates that it is crabbing with its nose to the right of the flight path.

 6-407 EED2-333-001

Transform from ECI to ECR Coordinates

NAME: PGS_CSC_ECItoECR()

SYNOPSIS:
C: #include <PGS_CSC.h>

#include <PGS_TD.h>
 PGSt_SMF_status

PGS_CSC_ECItoECR(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posvelECI[][6],
 PGSt_double posvelECR[][6])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecitoecr (numvalues,asciiutc,offsets,posveleci,posvelecr)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision posveleci(6,*)
 double precision posvelecr(6,*)

DESCRIPTION: This function rotates an array of 6-vectors from ECI (J2000) coordinates to
ECR (of date) coordinates. The rotation is done in 4 parts: precession,
nutation, Earth rotation about the nutated axis, and polar motion
(correction from the rotational North to geographic North).

 6-408 EED2-333-001

INPUTS:

Table 6-178. PGS_CSC_ECItoECR Inputs
Name Description Units Min Max

numValues number of input time offsets N/A 0 any
asciiUTC UTC start time in CCSDS ASCII

Time Code A or B format
N/A 1972-01-01 see NOTES

offsets array of time offsets seconds Max and Min such that asciiUTC+offset is between
asciiUTC Min and Max values

posvelECI[6] vector (position and velocity) in
J2000 to be transformed to
ECR of date

posvelECI[0].. x position meters
posvelECI[1] y position meters
posvelECI[2].. z position meters
posVelECI[3] x velocity meters/

second

posVelECI[4] y velocity meters/
second

posvelECI[5] z velocity meters/
second

OUTPUTS:

Table 6-179. PGS_CSC_ECItoECR Outputs
Name Description Units Min Max

posvelECR[0] vector after being transformed to ECR of date - x
position

meters

posvelECR[1] vector after being transformed to ECR of date - y
position

meters

posvelECR[2] vector after being transformed to ECR of date - z
position

meters

posvelECR[3] vector after being transformed to ECR of date - x
velocity

meters/second

posvelECR[4] vector after being transformed to ECR of date - y
velocity

meters/second

posvelECR[5] vector after being transformed to ECR of date - z
velocity

meters/second

RETURNS:

Table 6-180. PGS_CSC_ECItoECR Returns (1 of 2)
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_BAD_TRANSFORM_VALUE Invalid ECItoECR transformation
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSTD_E_NO_LEAP_SECS No leap seconds correction available input time
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC

 6-409 EED2-333-001

Table 6-180. PGS_CSC_ECItoECR Returns (2 of 2)
Return Description

PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posvelECI[ARRAY_SIZE][6] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posvelECR[ARRAY_SIZE][6];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ECItoECR(numValues,asciiUTC,offsets,
 posvelECI,posvelECR)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecitoecr
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision posvelECI(6,3)
double precision posvelECR(6,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-410 EED2-333-001

 asciiutc = '2002-07-27T11:04:57.987654Z'
numvalues = 3

 DO 10 cnt1 = 1,6
 DO 10 cnt2 = 1,3
 posveleci(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 CONTINUE

returnstatus = pgs_csc_ecitoecr(numValues, asciiutc,
 & offsets, posvelECI, posvelECR)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: Users not needing to transform velocity can supply floating point numbers
equal to zero for the last three components of each input vector. The Tool
cannot transform velocity, however, without correct values for the
position. Note that to avoid generating absuredly large velocities for
distant objects, no velocity transformation is performed for points more
than 500,000,000 m from Earth center.

 UTC is: Coordinated Universal Time

 J2000 is Julian Date 2451545.0

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes.

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 REFERENCES:

 The Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac. “Theoretical Basis of the SDP Toolkit Geolocation Package for
the ECS Project”, Document 445-TP-002-002, May 1995, by P.
Noerdlinger.

REQUIREMENTS: PGSTK–1050

 6-411 EED2-333-001

Transform from ECR to ECI Coordinates

NAME: PGS_CSC_ECRtoECI()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECRtoECI(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posvelECR[][6],
 PGSt_double posvelECI[][6])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecrtoeci(numvalues,asciiutc,offsets,posvelecr,posveleci)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision posvelecr(6,*)
 double precision posveleci(6,*)

DESCRIPTION: This function rotates an array of 6-vectors from ECR (of date) coordinates
to ECI (J2000) coordinates. The rotation is done in 4 parts: polar motion
(correction from the geographic North to rotational North), rotation about
the true rotation, nutation to the mean of date axis axis, and precession
to J2000).

 6-412 EED2-333-001

INPUTS:

Table 6-181. PGS_CSC_ECRtoECI Inputs
Name Description Units Min Max

numValues number of input time
offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII Time
Code A or B format

N/A 1972-01-01 see NOTES

offsets array of time offsets seconds Max and Min such that asciiUTC+offset is between
asciiUTC Min and Max values

posvelECR[6] vector (position and
velocity) in ECR

posvelECR[0].. position meters
posvelECR[2]
posvelECR[3].. velocity meters/

seconds

posvelECR[5]

OUTPUTS:

Table 6-182. PGS_CSC_ECRtoECI Outputs
Name Description Units Min Max

posvelECI[6] vector after being transformed to J2000
posvelECI[0].. position meters
posvelECI[2] meters
posvelECI[3].. velocity meters/second
posvelECI[5] meters/second

RETURNS:

Table 6-183. PGS_CSC_ECRtoECI Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_BAD_TRANSFORM_VALUE Invalid ECItoECR transformation
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSTD_E_NO_LEAP_SECS No leap seconds correction available input time
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

 6-413 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posvelECR[ARRAY_SIZE][6] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posvelECI[ARRAY_SIZE][6];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ECRtoECI(numValues,asciiUTC,offsets,
 posvelECR,posvelECI)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecrtoeci
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision posveleci(6,3)
double precision posvelecr(6,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 asciiutc = '2002-07-27T11:04:57.987654Z'
numvalues = 3

 6-414 EED2-333-001

 do 10 cnt1 = 1,6
 do 10 cnt2 = 1,3
 posvelecr(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_ecrtoeci (numValues, asciiutc,
 offsets, posvelecr,
 posveleci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: Users not needing to transform velocity can supply floating point numbers
equal to zero for the last three components of each input vector. The Tool
cannot transform velocity, however, without correct values for the
position. Note that to avoid generating absuredly large velocities for disant
objects, no velocity transformation is performed for points more than
500,000,000 m from Earth center.

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes.

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 REFERENCES:

 The Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac. “Theoretical Basis of the SDP Toolkit Geolocation Package for
the ECS Project”, Document 445-TP-002-002, May 1995, by P.
Noerdlinger.

REQUIREMENTS: PGSTK–1050

 6-415 EED2-333-001

Convert from ECR to Geodetic Coordinates

NAME: PGS_CSC_ECRtoGEO()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECRtoGEO(
 PGSt_double posECR[3],
 char *earthEllipsTag,
 PGSt_double *longitude,
 PGSt_double *latititude,
 PGSt_double *altitude);

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function
pgs_csc_ecrtogeo(posecr,earthellipstag,longitude,latitude,height)
 double precision posecr(3)
 character*49 earthellipstag
 double precision longitude
 double precision latitude
 double precision altitude

DESCRIPTION: This function converts from ECR to geodetic coordinates.

INPUTS:

Table 6-184. PGS_CSC_ECRtoGEO Inputs
Name Description Units Min Max

posECR[3] geocentric position meters N/A N/A
EarthEllipsTag Earth model used N/A N/A N/A

OUTPUTS:

Table 6-185. PGS_CSC_ECRtoGEO Outputs
Name Description Units Min Max

latitude geodetic latitude radians -pi/2 pi/2
longitude longitude radians -pi pi
altitude altitude meters -.1* Earth sky's the limit

 6-416 EED2-333-001

RETURNS:

Table 6-186. PGS_CSC_ECRtoGEO Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_TOO_MANY_ITERS Normal Iteration Count exceeded—could indicate

inconsistent units for Spacecraft and Earth data, or
corrupted Earth Axis values

PGSCSC_W_INVALID_ALTITUDE Spacecraft underground—probably indicates bad input
data

PGSCSC_W_SPHERE_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_W_DEFAULT_EARTH_MODEL Uses default Earth model
PGSCSC_E_BAD_EARTH_MODEL The equatorial or polar radius is negative or zero OR

the radii define a prolate Earth
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double longitude
PGSt_double latitude
PGSt_double altitude
char earthEllipsTag[50],
PGSt_double posECR[3] = {1000.5,64343.56,34343.92}
char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 strcpy(earthEllipsTag,"WGS84");

 returnStatus = PGS_CSC_ECRtoGEO(posECR[3],earthEllipsTag,
 longitude,latitude,
 altitude);
if(returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf("\nERROR: %s",msg);
 }

FORTRAN: implicit none

 integer pgs_csc_ecrtogeo
integer returnstatus

 6-417 EED2-333-001

double precision longitude
double precision latitude
double precision altitude
character*49 earthellipstag,
double precision posecr(3)
character*33 err
character*241 msg

 data posECR/1000.5,64343.56,34343.92/
earthellipstag = 'WGS84'

 returnstatus = pgs_csc_ecrtogeo(posecr,earthellipstag,
 longitude,latitude,altitude)

 if(returnstatus .ne. pgs_s_success) then
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: The Earth axes will be accessed from the earthfigure.dat.file. The input
must always be in meters and should never be a unit vector.

REQUIREMENTS: PGSTK–0930, PGSTK–1050

 6-418 EED2-333-001

Convert from Geodetic to ECR Coordinates

NAME: PGS_CSC_GEOtoECR()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GEOtoECR(
 PGSt_double longitude,
 PGSt_double latitude,
 PGSt_double altitude,
 char *earthEllipsTag,
 PGSt_double posECR[3]);

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function
pgs_csc_geotoecr(longitude,latitude,altitude,earthellipstag,posecr)
 double precision longitude
 double precision latitude
 double precision altitude
 character*49 earthellipstag
 double precision posecr(3)

DESCRIPTION: This tool converts a geodetic latitude and longitude to ECR (Earth
Centered Rotating) coordinates.

INPUTS:

Table 6-187. PGS_CSC_GEOtoECR Inputs
Name Description Units Min Max

longitude longitude radians -pi pi
latitude latitude radians -pi/2 pi/2
altitude altitude meters -.1* radius N/A
earthellipstag Earth model used N/A N/A N/A

 6-419 EED2-333-001

OUTPUTS:

Table 6-188. PGS_CSC_GEOtoECR Outputs
Name Description Units Min Max

posECR ECR rectangular
coordinates

meters -100,000,000 (usually each component
will be in range [-10,000,000, +10,000,000
m] but function will work for
Geosynchronous cases, e.g.)

100,000,000

RETURNS:

Table 6-189. PGS_CSC_GEOtoECR Returns
Return Description

PGS_S_SUCCESS Success case
PGSCSC_W_DEFAULT_EARTH_MODEL The default Earth model is used because a correct one

was not specified
PGSCSC_W_SPHERICAL_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_W_INVALID_ALTITUDE An invalid altitude was specified
PGSCSC_E_BAD_EARTH_MODEL The equatorial or polar radius is negative or zero OR

the radii define a prolate Earth
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: PGSt_SMF_status returnStatus
PGSt_double longitude
PGSt_double latitude
PGSt_double altitude
char earthEllipsTag[50],
PGSt_double posECR[3]
char err[PGS_SMF_MAX_MNEMONIC_SIZE];
char msg[PGS_SMF_MAX_MSG_SIZE];

 longitude = 0.45;
latitude = 1.34;
altitude = 5000.0;
strcpy(earthEllipsTag,"WGS84");

 6-420 EED2-333-001

 returnStatus = PGS_CSC_GEOtoECR(longitude,latitude,altitude,
 earthEllipsTag,posECR);
if(returnStatus != PGS_S_SUCCESS)
 {
 PGS_SMF_GetMsg(&returnStatus,err,msg);
 printf("\nERROR: %s",msg);
 }

FORTRAN: implicit none

 integer pgs_csc_geotoecr
integer returnstatus
double precision longitude
double precision latitude
double precision altitude
character*49 earthellipstag,
double precision posecr(3)
character*33 err
character*241 msg

 longitude = 0.45
latitude = 1.34
altitude = 5000
earthellipstag = 'WGS84'

 returnstatus = pgs_csc_geotoecr(longitude,latitude,altitude,
 earthellipstag,posecr)

 if(returnstatus .ne. pgs_s_success) then
 returnstatus = pgs_smf_getmsg(returnstatus,err,msg)
 write(*,*) err, msg
endif

NOTES: NONE

REQUIREMENTS: PGSTK–0930, PGSTK–1050

 6-421 EED2-333-001

Transform from ECI Frame to Spacecraft Reference Frame

NAME: PGS_CSC_ECItoSC()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECItoSC(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posECI[][3],
 PGSt_double posSC[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecitosc(spacecraftTag,numvalues,asciiutc,offsets,poseci,possc)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision poseci(3,*)
 double precision possc(3,*)

DESCRIPTION: Transforms vector in ECI coordinate system to vector in Spacecraft
coordinate system. If a unit vector is input, only its direction is
transformed. If a vector in meters is input, it is first corrected for the
displacement between Earth center and spacecraft location and then
rotated into spacecraft coordinates.

 6-422 EED2-333-001

INPUTS:

Table 6-190. PGS_CSC_ECItoSC Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft identifier N/A N/A N/A
numValues number of input time offsets N/A 0 any
asciiUTC UTC start time in CCSDS ASCII Time Code A or

B format
N/A 1961–01–01 see NOTES

offsets array of time offsets seconds Max and Min such that
asciiUTC+offset is between
asciiUTC Min and Max values

posECI coordinates
or unit vector components in ECI reference
frame

meter N/A N/A

OUTPUTS:

Table 6-191. PGS_CSC_ECItoSC Outputs
Name Description Units Min Max

posSC coordinates or unit vector components in spacecraft reference
frame

meters N/A N/A

RETURNS:

Table 6-192. PGS_CSC_ECItoSC Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE vector magnitude indicates subsurface location specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSEPH_E_NO_DATA_REQUESTED Both orb and att flags are set to false

 6-423 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posECI[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posSC[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ECItoSC(PGSd_TRMM,numValues,asciiUTC,
 offsets,posECI,posSC)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecitosc
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision poseci(3,3)
double precision possc(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 posveleci(cnt1,cnt2) = 100 * cnt1 * cnt2

 6-424 EED2-333-001

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_ecitosc(PGSd_TRMM, numValues,
asciiutc,
 offsets, poseci, possc)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: Points are checked to make sure they are not subterranean, but no other
visibility check is performed (such as line–of–sight).

 Next the function checks the input vector to see if it is a unit vector. If so,
it is assumed that the user wishes only to transform its direction. If not, it
is assumed that the vector locates some point of interest (for example, a
TDRSS satellite, or a lookpoint). Thus, for that case a translation to the
spacecraft center is performed first and then a rotation. Aberration
correction is also performed in both cases, except in the second case, for
points within 120 m of spacecraft center. Vectors to such points are not
aberrated. This cutoff is imposed on the supposition that anyone wishing
to transform a point within 120 m of the spacecraft center could be dealing
with an alignment, glint, or other spacecraft-related problem, in which case
there is no aberration. For the purposes of this function, a vector is a unit
vector if its magnitude is between 0.99999 and 1.00001.

 TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Conversion System Coordinate Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-425 EED2-333-001

Transform Between Spacecraft and ECI Reference Frames

NAME: PGS_CSC_SCtoECI()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SCtoECI(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posSC[][3],
 PGSt_double posECI[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_sctoeci(spacecraftTag,numvalues,asciiutc,offsets,possc,poseci)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision possc(3,*)
 double precision poseci(3,*)

DESCRIPTION: Transforms vector in Spacecraft coordinate system to vector in ECI
coordinate system. If a unit vector is input, it is simply rotated to ECI
coordinates. If a vector in meters in input, it is rotated to ECI axes and
then translated from having its origin at the spacecraft center to having its
origin at Earth center.

 6-426 EED2-333-001

INPUTS:

Table 6-193. PGS_CSC_SCtoECI Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

posSC coordinates
or unit vector
components in SC
reference frame

meters N/A N/A

OUTPUTS:

Table 6-194. PGS_CSC_SCtoECI Outputs
Name Description Units Min Max

posECI coordinates or unit vector components in ECI reference
frame

meters N/A N/A

RETURNS:

Table 6-195. PGS_CSC_SCtoECI Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input
PGSEPH_E_NO_DATA_REQUESTED Both orb and att flags are set to false

 6-427 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posSC[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posECI[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_SCtoECI(PGSd_TRMM,numValues,
 asciiUTC,offsets, posSC,
 posECI)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_sctoeci
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision possc(3,3)
double precision poseci(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-428 EED2-333-001

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 posveleci(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_sctoeci (PGSd_TRMM,numValues,
 asciiutc,offsets,possc,
 poseci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: This function first checks the input vector to see if it is a unit vector. If so,
it is assumed that the user wishes only to transform its direction. If not, it
is assumed that the vector locates some point of interest (for example, a
TDRSS satellite, or a lookpoint). For that case a rotation to ECI axes is
performed first, and then a translation to the Earth center. An aberration
correction is also made if the input is a unit vector or is in meters and
represents a point more than 120 m from spacecraft center. This cutoff is
imposed on the supposition that anyone wishing to transform a point
within 120 m of the spacecraft center could be dealing with an alignment,
glint, or other spacecraft-related problem, in which case there is no
aberration. For the purposes of this function, a vector is a unit vector if its
magnitude is between 0.99999 and 1.00001

Certain checks are performed in the case of translation to ensure that the
transformed point is not below the Earth's surface; other visibility checks
(such as line–of–sight) are not performed.

 TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-429 EED2-333-001

Transform from Spacecraft Frame to Orbital Frame

NAME: PGS_CSC_SCtoORB()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SCtoORB(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posSC][3],
 PGSt_double posORB[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_sctoorb(spacecraftTag,numvalues,asciiutc,offsets,possc,posorb)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision possc(3,*)
 double precision posorb(3,*)

DESCRIPTION: Transforms vector in Spacecraft reference frame to a vector in Orbital
reference frame.

 6-430 EED2-333-001

INPUTS:

Table 6-196. PGS_CSC_SCtoORB Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

posSC coordinates
or unit vector
components in SC
reference frame

meters N/A N/A

OUTPUTS:

Table 6-197. PGS_CSC_SCtoORB Outputs
Name Description Units Min Max

posORB coordinates or unit vector components in Orbital
reference frame

meters N/A N/A

RETURNS:

Table 6-198. PGS_CSC_SCtoORB Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-431 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posSC[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posORB[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_SCtoORB(pgsd_trmm,numvalues,asciiutc,
 offsets,possc,posORB)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_sctoorb
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision possc(3,3)
double precision posorb(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 do 10 cbt1 = 1,3
 do 10 cnt2 = 1,3
 possc(cnt1,cnt2) = 100 * cnt1 * cnt2

 6-432 EED2-333-001

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_sctoorb(pgsd_trmm,numvalues,
asciiutc,
 offsets, possc, posorb)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-433 EED2-333-001

Transform from Orbital Frame to Spacecraft Frame

NAME: PGS_CSC_ORBtoSC()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ORBtoSC(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double posORB][3],
 PGSt_double posSC[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_orbtosc(spacecrafttag,numvalues,asciiutc,offsets,posorb,possc)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision posorb(3,*)
 double precision possc(3,*)

DESCRIPTION: Transforms vector from Orbital reference frame to a vector in Spacecraft
reference frame.

 6-434 EED2-333-001

INPUTS:

Table 6-199. PGS_CSC_ORBtoSC Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1960–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

posORB coordinates
or unit vector
components in
Orbital reference
frame

meters N/A N/A

OUTPUTS:

Table 6-200. PGS_CSC_ORBtoSC Outputs
Name Description Units Min Max

posSC coordinates or unit vector components in spacecraft
reference frame

meters N/A N/A

RETURNS:

Table 6-201. PGS_CSC_ORBtoSC Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-435 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double posORB[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double posSC[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus = PGS_CSC_ORBtoSC(PGSd_TRMM,numValues,asciiUTC,
 offsets, posORB, posSC)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_orbtosc
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision posorb(3,3)
double precision possc(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 posorb(cnt1,cnt2) = 100 * cnt1 * cnt2

 6-436 EED2-333-001

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_orbtosc(pgsd_trmm,numvalues,
asciiutc,
 offsets, posorb, possc)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinted Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-437 EED2-333-001

Transform from ECI Frame to Orbital Frame

NAME: PGS_CSC_ECItoORB()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ECItoORB(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double positionECI[][3],
 PGSt_double positionORB[][3])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EHP_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_ecitoorb(spacecraftTag,numvalues,asciiutc,offsets,positioneci,
 positionorb)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision positioneci(3,*)
 double precision positionorb(3,*)

DESCRIPTION: Transforms vector in ECI coordinate system to vector in Orbital
coordinate system. If a unit vector is input only its direction is changed. If
a vector in meters is input, it is first translated from the Earth centered
system to a spacecraft centered origin, and then rotated to orbital
coordinate axes.

 6-438 EED2-333-001

INPUTS:

Table 6-202. PGS_CSC_ECItoORB Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

positionECI coordinates
or unit vector
components in ECI
reference frame

meters N/A N/A

OUTPUTS:

Table 6-203. PGS_CSC_ECItoORB Outputs
Name Description Units Min Max

positionORB coordinates or unit vector components in orbital reference
frame

meters N/A N/A

RETURNS:

Table 6-204. PGS_CSC_ECItoORB Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-439 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double positionORB[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double positionORB[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus =
PGS_CSC_ECItoORB(PGSd_TRMM,numValues,asciiUTC,
 offsets, positionECI,
 positionORB)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_ecitoorb
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision positioneci(3,3)
double precision positionorb(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-440 EED2-333-001

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 positioneci(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_ecitoorb(pgsd_trmm,numvalues,
 asciiutc,offsets,
 positioneci, positionorb)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-441 EED2-333-001

Transform from Orbital Frame to ECI Frame

NAME: PGS_CSC_ORBtoECI()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ORBtoECI(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double positionORB[][3],
 PGSt_double positionECI[][3])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_SMF.f'

 integer function pgs_csc_orbtoeci(spacecraftTag,numvalues,asciiutc,
 offsets,positionorb,positioneci)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision positionorb(3,*)
 double precision positioneci(3,*)

DESCRIPTION: Transforms vector in Orbital coordinate system to vector in ECI
coordinate system. If a unit vector is input it is simply rotated from Orbital
to ECI axes. If a vector in meters is input, it is first rotated from Orbital to
ECI axes and then translated from the system referenced at spacecraft
center to the system referenced at Earth center.

 6-442 EED2-333-001

INPUTS:

Table 6-205. PGS_CSC_ORBtoECI Inputs
Name Description Units Min Max

spacecraftTag unique spacecraft
identifier

N/A N/A N/A

numValues number of input
time offsets

N/A 0 any

asciiUTC UTC start time in
CCSDS ASCII
Time Code A or B
format

N/A 1961–01–01 see NOTES

offsets array of time
offsets

seconds Max and Min such that asciiUTC+offset is
between asciiUTC Min and Max values

positionORB coordinates
or unit vector
components in
Orbital reference
frame

meters N/A N/A

OUTPUTS:

Table 6-206. PGS_CSC_ORBtoECI Outputs
Name Description Units Min Max

positionECI coordinates or unit vector components in ECI reference
frame

meters N/A N/A

RETURNS:

Table 6-207. PGS_CSC_ORBtoECI Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSSC_W_BELOW_SURFACE Vector magnitude indicates subsurface location

specified
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times

 6-443 EED2-333-001

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double positionORB[ARRAY_SIZE][3] =
 {
 {0.5,0.75,0.90,0.3,0.2,0.8},
 {0.65,1.2,3.65,0.1,3.2,1,7},
 {0.98,2.6,4,78,0.2,1.5,0.9}
 };
PGSt_double positionECI[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30.123211Z");
returnStatus =
PGS_CSC_ORBtoECI(PGSd_TRMM,numValues,asciiUTC,offsets,
 positionORB,positionECI)

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_orbtoeci
integer returnstatus
integer numvalues
character*27 asciiutc
double precision offsets(3)
double precision positionorb(3,3)
double precision positioneci(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 6-444 EED2-333-001

 do 10 cnt1 = 1,3
 do 10 cnt2 = 1,3
 positionorb(cnt1,cnt2) = 100 * cnt1 * cnt2

 10 continue

 asciiutc = '1991-07-27T11:04:57.987654Z'
numvalues = 3

 returnstatus = pgs_csc_orbtoeci(pgsd_trmm,numvalues,
 asciiutc,offsets,
 positionorb,positioneci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.1 (TAI-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1050

 6-445 EED2-333-001

6.3.4.10 Coordinate System Conversion—Other Tools

These tools provide other location and orientation information to the user.

Get Sub–Satellite Point Position and Velocity

NAME: PGS_CSC_SubSatPoint()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SubSatPoint(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 char earthEllipsTag[50],
 PGSt_boolean velFlag,
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_double altitude[],
 PGSt_double velSub[][3])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_MEM_7.f'

 integer function
pgs_csc_subsatpoint(spacecrafttag,numvalues,asciiutc,offsets,

 earthellipstag,velflag,latitude,longitude,
 altitude,velsub)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 character*49 earthellipstag
 integer velflag
 double precision latitude(*)

 6-446 EED2-333-001

 double precision longitude(*)
 double precision altitude(*)
 integer velsub(3,*)

DESCRIPTION: This tool finds the latitude, longitude, and altitude of the subsatellite
points at the input times/offsets and, optionally, returns North and East
components of each subsatellite point. The third component returned for
each subsatellite point, when velocity is requested, is the rate of change of
the spacecraft altitude off the Earth ellipsoid (as would be measured by a
Doppler radar altimiter, ignoring terrain).

INPUTS:

Table 6-208. PGS_CSC_SubSatPoint Inputs
Name Description Units Min Max

spacecraftTag spacecraft identifier N/A N/A N/A
numValues number of input offset times N/A 0 any
asciiUTC timesstart UTC time in

CCSDS ASCII Time Code (A
or B format)

N/A 1979–06–30 see NOTES

offsets array of time offsets seconds Max and Min such that asciiUTC +
offset is between Min and Max values

earthEllipsTag tag selecting Earth ellipsoid
model (default is WGS84)

N/A N/A N/A

velFlag flag indicating whether to
return the velocity of the
subsatellite points

N/A PGS_FALSE

PGS_TRUE

OUTPUTS:

Table 6-209. PGS_CSC_SubSatPoint Outputs
Name Description Units Min Max

latitude array of subsatellite point geodetic latitudes radians -pi/2 pi/2
longitude array of subsatellite point longitudes radians -pi pi
altitude array of spacecraft altitudes m 250000 10000000
velSub[0] North component of the subsatellite point

velocity on the ellipsoid
m/s -7000 7000

velSub[1] East component of the subsatellite point
velocity on the ellipsoid

m/s -7000 7000

velSub[2] rate of change of spacecraft altitude relative
to nadir on the ellipsoid

m/s -200 200

 6-447 EED2-333-001

RETURNS:

Table 6-210. PGS_CSC_SubSatPoint Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_ERROR_IN_SUBSATPT An error occurred in computing at least one subsatellite

point
PGSCSC_W_PREDICTED_UT1 At least one of the values obtained from the utcpole.dat

file is 'predicted'
PGSCSC_W_PROLATE_BODY Using a prolate Earth model
PGSCSC_W_SPHERE_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater than 0.01
PGSCSC_W_DEFAULT_EARTH_MODEL Default Earth model was used
PGSCSC_W_ZERO_JACOBIAN_DET Jacobian determinant is close to zero
PGSCSC_E_BAD_ARRAY_SIZE numValues (and array size) is less than zero
PGSMEM_E_NO_MEMORY No memory available to allocate vectors
PGSTD_E_SC_TAG_UNKNOWN Invalid spacecraft tag
PGSEPH_E_BAD_EPHEM_FILE_HEADER No spacecraft ephemeris files had reasonable headers
PGSEPH_E_NO_SC_EPHEM_FILE No spacecraft ephemeris files could be found for input
PGSTD_E_TIME_FMT_ERROR Format error in input asciiUTC
PGSTD_E_TIME_VALUE_ERROR Error in one of time values in asciiUTC
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for at least one of

the input times/offsets—a linear approximation was
used to obtain the leapsec value

PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSTD_E_BAD_EARTH_MODEL The equatorial or polar radius is negative or zero OR

the radii define a prolate Earth
PGS_E_TOOLKIT Something unexpected happened—execution aborted

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_tag spacecraftTag = PGSd_EOS_AM;
PGSt_integer numValues;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
char earthEllipsTag[50];
PGSt_boolean velFlag = PGS_TRUE;
PGSt_double latitude[ARRAY_SIZE];

 6-448 EED2-333-001

PGSt_double longitude[ARRAY_SIZE];
PGSt_double altitude[ARRAY_SIZE];
PGSt_double velSub[ARRAY_SIZE][3];
PGSt_integer counter;

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30");
strcpy(earthEllipsTag,"WGS84");

 returnStatus = PGS_CSC_SubSatPoint(spacecraftTag,numValues,
 asciiUTC,offsets,
 earthEllipseTag,velFlag,
 latitude,longitude,
 altitude,velSub);

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
counter = 0;
while(counter <= numValues)
{
 printf("Offset: %lf Latitude: %lf Longitude: %lf
 Altitude: %lf", offset[counter],
 latitude[counter], longitude[counter],
 altitude[counter]);
 printf("Velocity of subsatellite point
 (North,East,altitude): %lf, %lf, %lf" " m/s",
 velSub[counter][0], velSub[counter][1],
 velSub[counter][2]);

 counter++;
}

FORTRAN: implicit none

 integer pgs_csc_subsatpoint
integer array_size
integer spacecrafttag
integer numvalues
character*27 asciiutc
double precision offsets(array_size)
character*49 earthellipstag
integer velflag

 6-449 EED2-333-001

double precision latitude(array_size)
double precision longitude(array_size)
double precision altitude(array_size)
double precision velsub(3,array_size)
integer returnstatus
integer counter

 data offsets/3600.0,7200.0,10800.0/
data earthellipstag/'WGS84'/,velflag/PGS_TRUE/
array_size = 3
numvalues = array_size
spacecrafttag = pgsd_eos_am
asciiutc = '1991-01-01T11:29:30'

 returnstatus = pgs_csc_subsatpoint(spacecrafttag,numvalues,
 asciiutc,offsets,
 earthellipsetag,velflag,
 latitude,longitude,
 altitude,velsub)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) asciiutc
do 40 counter = 0,numvalues,1
 write(6,*)offsets(counter), latitude(counter),
 longitude(counter), altitude(counter),
 velsub(1,counter), velsub(2,counter),
 velsub(3,counter)

 40 continue

 90 write(6,99)returnstatus

 99 format('ERROR:',I50)

NOTES: If an error occurs during computation for one or more input times but does
not necessarily affect all input times, latitude, longitude, altitude, and
velocity values of PGSd_GEO_ERROR_VALUE are returned for the
input times where the error occurred. An indication that an error occurred
in this tool is returned in the returnStatus value, and a description of the
error is returned in the corresponding message.

 If an invalid earthEllipsTag is input, the program will use the WGS84
Earth model by default.

 The option to obtain velocity is controlled by setting the velocity flag
velFlag to either PGS_TRUE or PGS_FALSE. If velFlag is PGS_FALSE,
all components of velSub will be set to zero. If the velocity is not needed it
is recommended to use PGS_FALSE to speed the execution of the code.

 6-450 EED2-333-001

 The horizontal velocity calculated in function
PGS_CSC_SubSatPointVel() is that of a mathematical point on the Earth
at (nominal) spacecraft nadir, and not that of any material object. It is
orthogonal to nadir, so is suitable as a descriptor of ground track but not
for Doppler work.

 The third (vertical) component of velocity is useful for Doppler work at
nadir, but Doppler velocity along ANY look vector (not just nadir) is
provided in the lookpoint algorithm in the function
PGS_CSC_GetFOV_Pixel().

 The condition PGSCSC_W_ZERO_JACOBIAN_DET is not expected to
occur. Its appearance would indicate that the geometry is singular: the
altitude of the spacecraft is zero or the spacecraft is exactly at the north or
south pole, for example.

 TIME ACRONYMS:

 UT1 is: Universal Time
UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

 REFERENCES FOR TIME:

 CCSDS 301.0–B–2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK–0930, PGSTK–1060

 6-451 EED2-333-001

Get Times of Earth Point in Fixed Field of View

NAME: PGS_CSC_Earthpt_FixedFOV()

SYNOPSIS:

C: #include <PGS_TD.h>
#include <PGS_CSC.h>
#include <PGS_EPH.h>
#include <PGS_MEM.h>

 PGSt_SMF_status
PGS_CSC_Earthpt_FixedFOV(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_tag spacecraftTag,
 char *earthEllipsTag,
 PGSt_double latitude,
 PGSt_double longitude,
 PGSt_double altitude,
 PGSt_integer numFOVperimVec,
 PGSt_double inFOVvector[3],
 PGSt_double perimFOV_vectors[][3],
 PGSt_boolean inFOVflag[],
 PGSt_double sctoEarthptVec[][3])

FORTRAN: include 'PGS_TD_3.f'
include 'PGS_CSC_4.f'
include 'PGS_EPH_5.f'
include 'PGS_MEM_7.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_earthpt_fixedfov(numvalues,asciiutc,offsets,
 spacecrafttag,earthellipstag,latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer spacecrafttag
 character*49 earthellipstag

 6-452 EED2-333-001

 double precision latitude
 double precision longitude
 double precision altitude
 integer numfovperimvec
 double precision infovvector(3)
 double precision perimfov_vectors(3,*)
 integer infovflag(*)
 double precision sctoearthptvec(3,*)

DESCRIPTION: For each time value, the tool, using the FOV description, returns a flag or
flags indicating if the Earth point of given latitude, longitude and altitude
is in the FOV, and the vector to that point from the SC in SC coordinates.

INPUTS:

Table 6-211. PGS_CSC_Earthpt_FixedFOV Inputs
Name Description Units Min Max

numValues number of time gridpoints N/A 0 any
asciiUTC UTC start time N/A 1972-01-01 see NOTES
offsets array of time offsets seconds Max and Min such that asciiUTC+offset

is between asciiUTC Min and Max
values

spacecraftTag unique spacecraft identifier N/A N/A N/A
earthEllipsTag Earth model used N/A N/A N/A
latitude latitude of Earth point radians -pi/2 +pi/2
longitude longitude of Earth point radians -2*pi +2*pi
altitude altitude of Earth point meters -50000 100000
numFOVperimVec number of vectors defining

FOV perimeter
N/A 3 any

inFOVvector vector in FOV—preferably
near the center in SC
coordinates

N/A N/A N/A

perimFOV_vectors vectors in SC coords
defining FOV's; MUST be
sequential around FOV; the
middle dimension must be
exactly the same as
numFOVperimVec
because of the way the
array dimensioning works
in the function

N/A N/A N/A

 6-453 EED2-333-001

OUTPUTS:

Table 6-212. PGS_CSC_Earthpt_FixedFOV Outputs
Name Description Units Min Max

inFOVflag PGS_TRUE if Earth point is in FOV—see notes n/a n/a n/a
sctoEarthptVec vector to Earth point in SC coords—returned normalized meters -1 1

RETURNS:

Table 6-213. PGS_CSC_Earthpt_FixedFOV Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Location is below surface
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSCSC_W_DEFAULT_EARTH_MODEL The default Earth model is used because a correct one

was not specified
PGSCSC_W_DATA_FILE_MISSING The data file earthfigure.dat is missing
PGSCSC_W_SPHERICAL_BODY Using a spherical Earth model
PGSCSC_W_PROLATE_BODY Using a prolate Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_E_INVALID_ALTITUDE An invalid altitude was specified
PGSCSC_E_NEG_OR_ZERO_RAD The equatorial or polar radius is negative or zero
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSCSC_E_INVALID_FOV_DATA FOV perimeter vectors are invalid
PGSCSC_E_FOV_TOO_LARGE FOV specification outside algorithmic limits
PGSCSC_E_INVALID_EARTH_PT One of the Earth point vectors was zero
PGSCSC_W_ZERO_PIXEL_VECTOR Instrument pixel vector of zero length
PGSCSC_W_BAD_EPH_FOR_PIXEL Ephemeris Data missing for some pixels

EXAMPLES:

C: #define ARRAY_SIZE 3
#define PERIMVEC_SIZE 4

 6-454 EED2-333-001

PGSt_SMF_status returnStatus;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_integer numValues;
PGSt_double latitude;
PGSt_double longitude;
PGSt_double altitude;
PGSt_integer numFOVperimVec;
PGSt_double inFOVvector[3] =
 { {0.0,0.0,100.0},
 };
PGSt_double perimFOV_vectors[PERIMVEC_SIZE][3]=
 { {100.0,100.0,100.0},
 {-100.0,100.0,100.0},
 {-100.0,-100.0,100.0},
 {100.0,-100.0,100.0} };
PGSt_boolean inFOVflag[ARRAY_SIZE];
PGSt_double sctoEarthptVec[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
numFOVperimVec = PERIMVEC_SIZE;
strcpy(asciiUTC,"1995-06-21T11:29:30.123211Z");
altitude = 10000.0;
latitude = 0.32;
longitude = 2.333;
returnStatus =
PGS_CSC_Earthpt_FixedFOV(numValues,asciiUTC,offsets,
 PGSd_TRMM,"WGS84",latitude,
 longitude,altitude,numFOVperimVec,
 inFOVvector,perimFOV_vectors,inFOVflag,
 sctoEarthptVec)
if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}

 6-455 EED2-333-001

FORTRAN: implicit none

 integer pgs_csc_earthpt_fixedfov
integer returnstatus
integer numvalues
character*27 startutc
double precision offsets(3)
double precision latitude
double precision longitude
double precision altitude
integer numfovperimvec
double precision infovvector(3)
double precision perimfov_vectors(3,4)
integer infovflag(3)
double precision sctoearthptvec(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 perimfov_vectors(1,1) = 100.0
perimfov_vectors(2,1) = 100.0
perimfov_vectors(3,1) = 100.0

 perimfov_vectors(1,2) = -100.0
perimfov_vectors(2,2) = 100.0
perimfov_vectors(3,2) = 100.0

 perimfov_vectors(1,3) = -100.0
perimfov_vectors(2,3) = -100.0
perimfov_vectors(3,3) = 100.0

 perimfov_vectors(1,4) = 100.0
perimfov_vectors(2,4) = -100.0
perimfov_vectors(3,4) = 100.0

 infovvector(1) = 0.0
infovvector(2) = 0.0
infovvector(3) = 100.0

 asciiutc = '1995-06-21T11:04:57.987654Z'
numvalues = 3
numfovperimvec = 4
altitude = 10000.0
latitude = 0.32
longitude = 2.333

 6-456 EED2-333-001

 returnstatus =
pgs_csc_earthpt_fixedfov(numvalues,startutc,offsets,
 PGSd_TRMM,'WGS84',latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: At each time, the tool determines if the Earth point at (latitude, longitude,
altitude) is in the FOV, setting inFOVflag = PGS_TRUE if so, else
PGS_FALSE. The vector from SC to Earth point is also returned, whether
or not the Earth point is in the FOV, and even if it is on the far side of the
Earth. Test for the spacecraft to Earth point being equal to 1.0e50 to avoid
processing Earth points that could not be determined because of one or
more errors in the transformation.

 The FOV is always specified and fixed in SC coordinates.
numFOVperimVec should be at least 3. The tool determines if the Earth
point lies within the perimeter defined by the vectors perim–
FOVvectors[][3]. The first index in C (last in FORTRAN) runs around the
perimeter and must be sequential. If the altitude is unknown use zero.

 The vector inFOVvector[3] must be defined in SC coordinates and must
lie within the FOV. It is necessary for the user to supply a vector within
the FOV because on the surface of a sphere, a closed curve or "perimeter"
does not have an inside nor outside, except by arbitrary definition; i.e., this
vector tells the algorithm which part of sky is inside the FOV, which
outside. If the vector is well centered in the FOV, the algorithm will be
faster.

 The vectors "perimFOV_vectors[][3]" defining the FOV perimeter can be
in clock or counter–clockwise sequence. If the FOV perimeter vectors are
supplied out of order, the algorithm will run but the results are
unpredictable. The input vectors need not be normalized but must not be
zero.

 See Section 6.3.4.8 Conversion System Coordinate Tool Notes

 See Section 6.2.7.5.1 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1090

 6-457 EED2-333-001

Get Times of Earth Point in Field of View

NAME: PGS_CSC_Earthpt_FOV()

SYNOPSIS:

C: #include <PGS_TD.h>
#include <PGS_CSC.h>
#include <PGS_EPH.h>
#include <PGS_MEM.h>

 PGSt_SMF_status
PGS_CSC_Earthpt_FOV(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_tag spacecraftTag,
 char *earthEllipsTag,
 PGSt_double latitude,
 PGSt_double longitude,
 PGSt_double altitude,
 PGSt_integer numFOVperimVec,
 PGSt_double inFOVvector[][3],
 void *perimFOV_vectors,
 PGSt_boolean inFOVflag[],
 PGSt_double sctoEarthptVec[][3])

FORTRAN: include 'PGS_TD_3.f'
include 'PGS_CSC_4.f'
include 'PGS_EPH_5.f'
include 'PGS_MEM_7.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_earthpt_fov(numvalues,asciiutc,offsets,
 spacecrafttag,earthellipstag,latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 integer spacecrafttag
 character*49 earthellipstag

 6-458 EED2-333-001

 double precision latitude
 double precision longitude
 double precision altitude
 integer numfovperimvec
 double precision infovvector(3,*)
 double precision perimfov_vectors(3,*,*)
 integer infovflag(*)
 double precision sctoearthptvec(3,*)

DESCRIPTION: For each time value, the tool, using the FOV description, returns a flag or
flags indicating if the Earth point of given latitude, longitude and altitude
is in the FOV, and a unit vector to that point from the SC in SC
coordinates.

INPUTS:

Table 6-214. PGS_CSC_Earthpt_FOV Inputs
Name Description Units Min Max

numValues number of time gridpoints N/A 0 any
asciiUTC UTC start time N/A 1972-01-01 see NOTES
offsets array of time offsets seconds Max and Min such that asciiUTC+offset

is between asciiUTC Min and Max
values

spacecraftTag unique spacecraft identifier N/A N/A N/A
earthEllipsTag Earth model used N/A N/A N/A
latitude latitude of Earth point radians -pi/2 +pi/2
longitude longitude of Earth point radians -2*pi +2*pi
altitude altitude of Earth point meters -50000 100000
numFOVperimVec number of vectors defining

FOV perimeter
N/A 3 any

inFOVvector vector in FOV—preferably
near the center in SC
coordinates

N/A N/A N/A

perimFOV_vectors vectors in SC coords
defining FOV's; MUST be
sequential around FOV; the
middle dimension must be
exactly the same as
numFOVperimVec
because of the way the
array dimensioning works
in the function

N/A N/A N/A

 6-459 EED2-333-001

OUTPUTS:

Table 6-215. PGS_CSC_Earthpt_FOV Outputs
Name Description Units Min Max

inFOVflag PGS_TRUE if Earth point is in FOV—see notes n/a n/a n/a
sctoEarthptVec vector to Earth point in SC coords—returned normalized meters -1 1

RETURNS:

Table 6-216. PGS_CSC_Earthpt_FOV Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_BELOW_SURFACE Location is below surface
PGSCSC_W_BAD_TRANSFORM_VALUE One or more values in transformation could not be

determined
PGSTD_E_BAD_INITIAL_TIME Initial time is incorrect
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSCSC_W_DEFAULT_EARTH_MODEL The default Earth model is used because a correct one

was not specified
PGSCSC_W_DATA_FILE_MISSING The data file earthfigure.dat is missing
PGSCSC_W_SPHERICAL_BODY Using a spherical Earth model
PGSCSC_W_PROLATE_BODY Using a prolate Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater then 0.01
PGSCSC_E_INVALID_ALTITUDE An invalid altitude was specified
PGSCSC_E_NEG_OR_ZERO_RAD The equatorial or polar radius is negative or zero
PGSMEM_E_NO_MEMORY No memory is available to allocate vectors
PGSCSC_E_BAD_ARRAY_SIZE Incorrect array size
PGSCSC_W_PREDICTED_UT1 Status of UT1–UTC correction is predicted
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input times
PGSCSC_E_INVALID_FOV_DATA FOV perimeter vectors are invalid
PGSCSC_E_FOV_TOO_LARGE FOV specification outside algorithmic limits
PGSCSC_E_INVALID_EARTH_PT One of the Earth point vectors was zero
PGSCSC_W_ZERO_PIXEL_VECTOR Instrument pixel vector of zero length
PGSCSC_W_BAD_EPH_FOR_PIXEL Ephemeris Data missing for some pixels

EXAMPLES:

C: #define ARRAY_SIZE 3
#define PERIMVEC_SIZE 4
PGSt_SMF_status returnStatus;
char asciiUTC[28];

 6-460 EED2-333-001

PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_integer numValues;
PGSt_double latitude;
PGSt_double longitude;
PGSt_double altitude;
PGSt_integer numFOVperimVec;
PGSt_double inFOVvector[ARRAY_SIZE][3] =
 { {0.0,0.0,100.0},
 {0.0,0.0,200.0},
 {0.0,0.0,300.0}
 };
PGSt_double
 perimFOV_vectors[ARRAY_SIZE][PERIMVEC_SIZE][3]=
 { {100.0,100.0,100.0},
 {-100.0,100.0,100.0},
 {-100.0,-100.0,100.0},
 {100.0,-100.0,100.0},
 {200.0,200.0,200.0},
 {-200.0,200.0,200.0},
 {-200.0,-200.0,200.0},
 {200.0,-200.0,200.0},
 {300.0,200.0,200.0},
 {-200.0,300.0,200.0},
 {-200.0,-300.0,300.0},
 {300.0,-200.0,200.0},
 };
PGSt_boolean inFOVflag[ARRAY_SIZE];
PGSt_double sctoEarthptVec[ARRAY_SIZE][3];

 numValues = ARRAY_SIZE;
numFOVperimVec = PERIMVEC_SIZE;
strcpy(asciiUTC,"1995-06-21T11:29:30.123211Z");
altitude = 10000.0;
latitude = 0.32;
longitude = 2.333;
returnStatus =
PGS_CSC_Earthpt_FOV(numValues,asciiUTC,offsets,
 PGSd_TRMM,"WGS84",latitude,
 longitude,altitude,numFOVperimVec,
 inFOVvector,perimFOV_vectors,inFOVflag,
 sctoEarthptVec)
if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,

 6-461 EED2-333-001

 take appropriate
 action **
}

FORTRAN: implicit none

 integer pgs_csc_earthpt_fov
integer returnstatus
integer numvalues
character*27 startutc
double precision offsets(3)
double precision latitude
double precision longitude
double precision altitude
integer numfovperimvec
double precision infovvector(3,4)
double precision perimfov_vectors(3,4,3)
integer infovflag(3)
double precision sctoearthptvec(3,3)
integer cnt1
integer cnt2
character*33 err
character*241 msg

 data offsets/3600.0, 7200.0, 10800.0/

 perimfov_vectors(1,1,1) = 100.0
perimfov_vectors(2,1,1) = 100.0
perimfov_vectors(3,1,1) = 100.0

 perimfov_vectors(1,2,1) = -100.0
perimfov_vectors(2,2,1) = 100.0
perimfov_vectors(3,2,1) = 100.0

 perimfov_vectors(1,3,1) = -100.0
perimfov_vectors(2,3,1) = -100.0
perimfov_vectors(3,3,1) = 100.0

 perimfov_vectors(1,4,1) = 100.0
perimfov_vectors(2,4,1) = -100.0
perimfov_vectors(3,4,1) = 100.0

 perimfov_vectors(1,1,2) = 200.0
perimfov_vectors(2,1,2) = 200.0
perimfov_vectors(3,1,2) = 200.0

 perimfov_vectors(1,2,2) = -200.0
perimfov_vectors(2,2,2) = 200.0
perimfov_vectors(3,2,2) = 200.0

 6-462 EED2-333-001

 perimfov_vectors(1,3,2) = -200.0
perimfov_vectors(2,3,2) = -200.0
perimfov_vectors(3,3,2) = 200.0

 perimfov_vectors(1,4,2) = 200.0
perimfov_vectors(2,4,2) = -200.0
perimfov_vectors(3,4,2) = 200.0

 perimfov_vectors(1,1,3) = 300.0
perimfov_vectors(2,1,3) = 300.0
perimfov_vectors(3,1,3) = 300.0

 perimfov_vectors(1,2,3) = -300.0
perimfov_vectors(2,2,3) = 300.0
perimfov_vectors(3,2,3) = 300.0

 perimfov_vectors(1,3,3) = -300.0
perimfov_vectors(2,3,3) = -300.0
perimfov_vectors(3,3,3) = 300.0

 perimfov_vectors(1,4,3) = 300.0
perimfov_vectors(2,4,3) = -300.0
perimfov_vectors(3,4,3) = 300.0

 infovvector(1,1) = 0.0
infovvector(1,2) = 0.0
infovvector(1,3) = 100.0

 infovvector(2,1) = 0.0
infovvector(2,2) = 0.0
infovvector(2,3) = 200.0

 infovvector(3,1) = 0.0
infovvector(3,2) = 0.0
infovvector(3,3) = 300.0

 asciiutc = '1995-06-21T11:04:57.987654Z'
numvalues = 3
numfovperimvec = 4
altitude = 10000.0
latitude = 0.32
longitude = 2.333

 returnstatus =
pgs_csc_earthpt_fov(numvalues,startutc,offsets,
 PGSd_TRMM,'WGS84',latitude,
 longitude,altitude,numfovperimvec,
 infovvector,perimfov_vectors,
 infovflag,sctoearthptvec)

 6-463 EED2-333-001

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: At each time, the tool determines if the Earth point at (latitude, longitude,
altitude) is in the FOV, setting inFOVflag = PGS_TRUE if so, else
PGS_FALSE. The vector from SC to Earth point is also returned, whether
or not the Earth point is in the FOV, and even if it is on the far side of the
Earth. Test for the spacecraft to Earth point being equal to 1.0e50 to avoid
processing Earth points that could not be determined because of one or
more errors in the transformation.

 The FOV is always specified in SC coordinates. For an instrument fixed to
the SC, use the same FOV description always. For scanning instruments,
user should provide the description appropriate to the scan instrument.
numFOVperimVec should be at least 3. The tool determines if the Earth
point lies within the perimeter defined by the vectors perim–
FOVvectors[][][3]. The first index in C (last in FORTRAN) is the time
offset index and the second must be sequential around the FOV perimeter.
If the altitude is unknown use zero.

 The vector inFOVvector[][3] must be defined in SC coordinates and must
lie within the FOV. The last index in C, (first in FORTRAN) on these
vectors is for X,Y, and Z, components in SC coordinates. It is necessary
for the user to supply a vector within the FOV because on the surface of a
sphere, a closed curve or "perimeter" does not have an inside nor outside,
except by arbitrary definition; i.e., this vector tells the algorithm which
part of sky is inside the FOV, which outside. If the vector is well centered
in the FOV, the algorithm will be faster.

 The vectors "perimFOV_vectors[][][3]" defining the FOV perimeter can
be in clock or counter–clockwise sequence. If the FOV perimeter vectors
are supplied out of order, the algorithm will run but the results are
unpredictable. The input vectors need not be normalized but must not be
zero.

 See Section 6.3.4.8 Conversion System Coordinate Tool Notes

 See Section 6.2.7.5.1 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File

REQUIREMENTS: PGSTK–1090

 6-464 EED2-333-001

Estimate Refraction of Ray

NAME: PGS_CSC_SpaceRefract()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_SpaceRefract(
 PGSt_double spaceZenith,
 PGSt_double altitude,
 PGSt_double latitude,
 PGSt_double *surfaceZenith,
 PGSt_double *displacement)

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_spacerefract(spacezenith,altitude,
 latitude,surfacezenith, displacement)
 double precision spacezenith
 double precision altitude
 double precision latitude
 double precision surfacezenith
 double precision displacement

DESCRIPTION: This function estimates the refraction of a ray incident from space or a line
of sight from space to the Earth's surface based on the unrefracted zenith
angle (most common algorithms, intended for ground based observation,
require knowledge of the refracted, not the unrefracted zenith angle). The
algorithm is suitable for:

a. approximate determination of the apparent Solar zenith angle from the
true (geometrical, unrefracted) Solar zenith angle (obviously, also
applicable to Lunar zenith angle, etc.)

b. correction of the viewing angle from space, to approximately remove
the effects of refraction

 The method is briefly indicated in the NOTES, q.v. for various caveats.

 6-465 EED2-333-001

INPUTS:

Table 6-217. PGS_CSC_SpaceRefract Inputs
Name Description Units Min Max

spaceZenith unrefracted zenith angle radians 0 pi/2 (90 deg)
altitude altitude off the geoid meters -1000 50000
latitude latitude radians -pi/2 pi/2

OUTPUTS:

Table 6-218. PGS_CSC_SpaceRefract Outputs
Name Description Units Min Max

surfaceZenith refracted zenith angle radians 0 n/a
displacement displacement of the footpoint of ray radians 0 ~0.01

RETURNS:

Table 6-219. PGS_CSC_SpaceRefract Returns
Return Description

PGS_S_SUCCESS Successful return
PGS_CSC_BAD_LAT a latitude out of the range (- pi/2, pi/2) was entered
PGS_CSC_E_INVALID_ZENITH a negative zenith angle was entered
PGSCSC_W_INVALID_ALTITUDE Attempt to calculate refraction at point too far below Earth's

surface
PGSCSC_W_BELOW_HORIZON Attempt to calculate refraction of ray below horizon

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double spaceZenith=0.4;
PGSt_double altitude=5000.0;
PGSt_double latitude= - 0.2 ; **** not implemented at
 present ***
PGSt_double surfaceZenith;
PGSt_double displacement;

 returnStatus = PGS_CSC_SpaceRefract(spaceZenith,altitude,
 latitude,&surfaceZenith,
 &displacement)

 {
 ** test errors,
 take appropriate

 6-466 EED2-333-001

 action **
}

FORTRAN: implicit none

 integer pgs_csc_spacerefract
integer returnstatus
double precision spacezenith
double precision altitude
double precision latitude
double precision surfacezenith
double precision displacement

 data spacezenith /0.4/
data altitude /5000.0/
data latitude /-0.2/

 returnstatus = pgs_csc_spacerefract(spacezenith,altitude,
 latitude,surfacezenith,
 displacement)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) surfacezenith,displacement

 90 write(6,99)returnstatus
99 format('ERROR:',I15)

NOTES: This algorithm is intended as a mean-atmosphere approximation, valid for
white light (for example, sunlight). Refraction is quite wavelength
dependent, and in the atmosphere it will also depend strongly on local
conditions (e.g., the weather). The present algorithm is intended to be a
reasonable approximation such that to do better one would need local and,
for large zenith angles, regional weather.

 Caveat: The altitude is used ONLY to obtain the air pressure, which is
then used to obtain the surface index of refraction. Users who employ an
inflated Earth radius in geolocation should be especially careful to replace
any derived altitude with the height in meters above the geoid before
calling this function.

 The method is based on the author's calculations, using a conservation law
originally due to W. Chauvenet, for the important difference z0 - z', and an
empirical refraction algorithm in Equation 3.283-1, p. 144, Astron.
Almanac Supplement (U.S. Naval Observatory) to derive the less
important displacement.

 The (horizontal) displacement of the ray is in a vertical plane containing
the ray and is in the sense that the actual (refracted) ray will meet the Earth
d = (displacement)*Re meters from the geometrical (unrefracted) position,
on the side towards the horizon.

 Outer Space Here

 6-467 EED2-333-001

 .
 . unrefracted ray
 .
 refracted ray .*
 . * unrefracted ray
 _____________________.__*________________ Earth surface
 d
 the angle "displacement" is the angle that the displacement in meters "d"

subtends at Earth center.
 The following table exemplifies results at sea level, using a conversion of

6371000 m per radian on the displacement.

Table 6-220. Altitude – Sea Level
Zenith Angle in Space

(deg)
Zenith Angle at Surface

(deg)
Refraction

(deg)
Linear Displacement

(meters)
10.000000 9.997066 0.002934 0.549064
20.000000 19.993944 0.006056 1.222937
30.000000 29.990394 0.009606 2.221314
40.000000 39.986039 0.013961 3.982978
45.000000 44.983363 0.016637 5.464087
50.000000 49.980174 0.019826 7.725334
55.000000 54.976243 0.023757 11.398788
60.000000 59.971192 0.028808 17.845724
61.000000 60.969996 0.030004 19.696711
62.000000 61.968722 0.031278 21.816620
63.000000 62.967361 0.032639 24.256691
64.000000 63.965905 0.034095 27.080360
65.000000 64.964340 0.035660 30.366779
70.000000 69.954333 0.045667 58.380584
75.000000 74.938025 0.061975 136.072953
76.000000 75.933417 0.066583 166.728721
77.000000 76.928121 0.071879 207.384912
78.000000 77.921967 0.078033 262.469333
79.000000 78.914723 0.085277 338.977167
80.000000 79.906069 0.093931 448.379942
81.000000 80.895543 0.104457 610.332976
82.000000 81.882461 0.117539 860.316290
83.000000 82.865762 0.134238 1266.536004
84.000000 83.843713 0.156287 1970.638000
85.000000 84.813286 0.186714 2974.066487
86.000000 85.768718 0.231282 4858.394025
87.000000 86.697712 0.302288 8677.416632
88.000000 87.569758 0.430242 17538.457911
89.000000 88.295108 0.704892 41818.325388
90.000000 88.619113 1.380887 113429.256196

 Note that the linear displacement at 88 degrees zenith angle is about 17.5
km—very substantial. Because of the very approximate atmosphere model,

 6-468 EED2-333-001

this number could vary by perhaps 25% depending on weather in
temperate and tropical regions; in the Arctic it would be considerably
smaller. The displacement at 90 degrees incidence, over 113 km, is only
suggestive and could easily vary by 50%.

The increments in latitude and longitude due to refraction are:

Direction Value
latitude (φ) dAng * cos(ψ)
longitude (λ) dAng * sin(ψ)/cos(φ)

where ψ is the azimuth from PGS_CSC_ZenithAzimuth(). The expression
for longitude is singular at the North and South poles and the user should
avoid using it there, or within too close range. When |latitude| > π - dAng,
the point is so near the pole that the displacement of the ray can be
assumed to be South at the North pole and North at the South pole; but
when starting at either pole, the longitude (not its increment) must be
found from -atan2(yray,xray) where (xray,yray,zray) are the components of
the look vector in ECR. After calling PGS_CSC_SpaceRefract(), then, the
user who is interested in the displacement in latitude and longitude needs
to implement the equations above and, for the exceptional case at a pole,
the alternate just explained: latitude = dAng, longitude = -atan2(yray,xray).
The Toolkit software does not perform these operations, which are a user
responsibility if the positional correction is desired.

 The composition of the atmosphere was obtained from Allen's
"Astrophysical Quantities, 2nd ed." (London, the Athlone Pre, 1976) p.
121, because the U.S. Standard Atmosphere (NOAA, 1976) is bone dry,
which is unrealistic.

 The atmosphere model is used only to get the index of refraction at sea
level. The latitude dependence is that the sea level temperature and mean
scale height are functions of latitude.

 The calculations are based on the geometry of a spherical Earth. User may
employ her/his favorite Earth radius to transform radians of displacement
to meters. See also “Theoretical Basis of the SDP Toolkit Geolocation
Package for the ECS Project”, Document 445-TP-002-002, May 1995, by
P. Noerdlinger, where the equation to transform displacement magnitude
to North and East components is given.

REQUIREMENTS: PGSTK–0860, PGSTK-1080

 6-469 EED2-333-001

Get Field-of-View Footprint and Pixel Centers

NAME: PGS_CSC_GetFOV_Pixel()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GetFOV_Pixel(
 PGSt_tag spacecraftTag,
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 char earthEllipsTag[50],
 PGSt_boolean accurFlag,
 PGSt_double pixelUnitvSC[][3],
 PGSt_double offsetXYZ[][3],
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_double pixelUnitvECR[][3],
 PGSt_double slantRange[],
 PGSt_double velocDoppl[])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_EPH_5.f'
include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_getfov_pixel(spacecrafttag,numvalues,asciiutc,
 offsets, earthellipstag,accurflag,
 pixelunitvsc,offsetxyz,latitude,
 longitude,pixelunitvecr,
 slantrange,velocdoppl)
 integer spacecrafttag
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 character*49 earthellipstag
 integer accurflag
 double precision pixelunitvsc(3,*)
 double precision offsetxyz(3,*)
 double precision latitude(*)

 6-470 EED2-333-001

 double precision longitude(*)
 double precision pixelunitvecr(3,*)
 double precision slantrange(*)
 double precision velocdoppl(*)

DESCRIPTION: This function obtains the latitude and longitude of the intersection of a line
of sight with the spheroidal Earth, the slant range from Spacecraft to look
point, and the Doppler velocity along the line of sight. The ECR pixel
vector is also returned; it can be used, for example, to determine the zenith
angle of the line of sight. The line of sight is defined by a unit vector in the
Spacecraft frame of reference and a time. (The unit vector along the line of
sight is called a "look vector" in the sequel.)

 The Doppler velocity is true, in the sense that it is relative to the Earth's
surface.

INPUTS:

Table 6-221. PGS_CSC_GetFOV_Pixel Inputs
Name Description Units Min Max

spacecraftTag spacecraft identifier N/A N/A N/A
numValues number of input time offsets (to use ASCII time

with no offsets, set numValues =0 or set it =1
and make first [and only] offset = 0.0)

N/A 0 N/A

asciiUTC UTC start time in CCSDS ASCII Time A or B
format

N/A 1972-01-01 see NOTES

offsets array of time offsets SI seconds Max and Min such that floating
equivalent of asciiUTC+offset is
between asciiUTC Min and Max
values

EarthEllipsTag tag selecting Earth Ellipsoid model N/A N/A N/A
accurFlag flag to regulate accuracy N/A PGS_FALSE PGS_TRUE
pixelUnitvSC array of pixel unit vectors in SC coords N/A -1 1
offsetXYZ array of displacements of instrument boresight

from SC nominal center in SC coordinates(see
overall limit for length of this vector in
"RETURNS" section) (offsetXYZ is used only
when accurFlag == PGS_TRUE)

m -120 +120

OUTPUTS:

Table 6-222. PGS_CSC_GetFOV_Pixel Outputs
Name Description Units Min Max

latitude latitude of the lookpoint radians -pi/2 pi/2
longitude longitude of the lookpoint radians -pi pi
pixelUnitvECR ECR unit pixel vector N/A -1 +1
slantRange slant range: SC to lookpoint m 0 100000
velocDoppl Doppler velocity of the look point (+ meaning "away") m/s -8000 8000

 6-471 EED2-333-001

RETURNS:

Table 6-223. PGS_CSC_GetFOV_Pixel Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_W_MISS_EARTH Look Vector fails to intersect Earth
PGSTD_E_SC_TAG_UNKNOWN Invalid Spacecraft tag
PGSCSC_W_ZERO_PIXEL_VECTOR Instrument pixel vector of zero length
PGSCSC_W_BAD_EPH_FOR_PIXEL Ephemeris Data missing for some pixels
PGSCSC_W_INSTRUMENT_OFF_BOARD Instrument offset from SC center is > 120 m which is considered

unreasonably large (applicable only when accurFlag = PGS_TRUE)
PGSCSC_W_BAD_ACCURACY_FLAG Accuracy Flag neither PGS_TRUE nor PGS_FALSE
PGSCSC_E_BAD_ARRAY_SIZE The user has supplied a negative number of time offsets
PGSCSC_W_DEFAULT_EARTH_MODEL Invalid EarthEllipsTag; WGS84 model used
PGSCSC_W_DATA_FILE_MISSING A file such as the ephemeris, utcpole, Earth Model or leap seconds

file is missing
PGSCSC_E_NEG_OR_ZERO_RAD One of the Earth axes is zero or negative
PGSMEM_E_NO_MEMORY Malloc operation for scratch memory failed
PGSTD_E_NO_LEAP_SECS no leap seconds data available for input time
PGSTD_E_TIME_FMT_ERROR format error in asciiUTC
PGSTD_E_TIME_VALUE_ERROR value error in asciiUTC
PGSCSC_W_PREDICTED_UT1 predicted UT1 value used
PGSCSC_E_NO_UT1_VALUE no UT1 value available
PGS_E_TOOLKIT Error in Toolkit—for example, inconsistent error message from a

subordinate function
PGSEPH_E_BAD_EPHEM_FILE_HDR No s/c ephem files had readable headers
PGSEPH_E_NO_SC_EPHEM_FILE No s/c ephem files could be found for input

EXAMPLES:

C: #include <PGS_CSC.h>
char asciiUTC[28] = "1994-01-15T12:21:33.9939Z";
PGSt_tag spacecraftTag = PGSd_EOS_AM;
char EarthEllipsTag[50] = "WGS84";
PGSt_double offsets[4] = {0.0,0.1,2.0,30.0};
PGSt_double pixelUnitvSC[4][3];
PGSt_double offsetXYZ[4][3];
PGSt_integer numValues = 4;
PGSt_boolean accurFlag = PGS_FALSE;

 PGSt_double latitude[4];
PGSt_double longitude[4];
PGSt_double velocDoppl[4];
PGSt_double slantRange[4];
PGSt_double pixelUnitvECR[4][3];
PGSt_SMF_status returnStat;

 6-472 EED2-333-001

PGSt_SMF_status code;
char msg[240];
char mnemonic[31];
int i;
int jj;

 for (i=0;i<4;i++)
 for(jj=0;jj<3 ;++jj)
 offsetXYZ[i][jj] = 0.0;

 /** initialize pixel unit vectors
 All but the 3rd case hit Earth; to miss Earth reverse
 the last component of any other one **/

 pixelUnitvSC[0][0] = 0.03;
pixelUnitvSC[0][1] = 0.12;
pixelUnitvSC[0][2] = 0.08;

 pixelUnitvSC[1][0] = -0.2;
pixelUnitvSC[1][1] = 0.12;
pixelUnitvSC[1][2] = 0.6;

 /**This case will display error**/

 pixelUnitvSC[2][0] = -0.0;
pixelUnitvSC[2][1] = 0.00;
pixelUnitvSC[2][2] = 0.0;

 pixelUnitvSC[3][0] = -0.2;
pixelUnitvSC[3][1] = -0.12;
PixelUnitvSC[3][2] = 0.6;

 returnStat = PGS_CSC_GetFOV_Pixel(spacecraftTag,numValues,
 asciiUTC,offsets,
 EarthEllipsTag,accurFlag,
 pixelUnitvSC,offsetXYZ,
 latitude,longitude,
 pixelUnitvECR,santRange,
 velocDoppl);

 printf(" Toolkit return value: %d\n\n",returnStat);

 PGS_SMF_GetMsg(&code,mnemonic,msg);
printf(" Return %s: %s\n\n",mnemonic,msg);

 printf(" accurFlag == %d Earth Tag == %s ECR Pixels:\n"
 "%15.11lg %15.11lg %15.11lg\n"
 "%15.11lg %15.11lg %15.11lg\n "
 "%15.11lg %15.11lg %15.11lg\n"

 6-473 EED2-333-001

 "%15.11lg %15.11lg %15.11lg\n",
 accurFlag,EarthEllipsTag,
 pixelUnitvECR[0][0],pixelUnitvECR[0][1],
 pixelUnitvECR[0][2],
 pixelUnitvECR[1][0],pixelUnitvECR[1][1],
 pixelUnitvECR[1][2],
 pixelUnitvECR[2][0],pixelUnitvECR[2][1],
 pixelUnitvECR[2][2],
 pixelUnitvECR[3][0],pixelUnitvECR[3][1],
 pixelUnitvECR[3][2]);

 /** Test for some variable like latitude =
 PGSd_GEO_ERROR_VALUE before further processing to avoid
 processing pixels that missed Earth or had zero pixel
 vector. In multi-pixel processing, results from good and
 bad pixels can be distinguished only by answers being
 PGSd_GEO_ERROR_VALUE; in single pixel processing return
 status indicates any error **/

 if(returnStatus != PGS_S_SUCCESS)
{
 /** print results - latitude, longitude, etc.; test
 errors, take appropriate action **/
}

FORTRAN: implicit none

 parameter(numPixels = 4)
integer pgs_csc_getfov_pixel
integer spacecrafttag
integer numvalues
character*27 asciiutc
double precision offsets(numPixels)
character*49 earthellipstag
integer accurflag
double precision pixelUnitvSC(3,numPixels)
double precision offsetXYZ(3,numPixels)
double precision latitude(numPixels)
double precision longitude(numPixels)
double precision pixelUnitvECR(3,numPixels)
double precision slantRange(numPixels)
double precision velocDoppl(numPixels)
character*33 err
character*241 msg

 6-474 EED2-333-001

 data offsets/360.0, 720.0, 1080.0, 1600.0/
asciiutc = '1991-07-27T11:04:57.987654Z'
spacecrafttag = PGSd_EOS_AM

 do 1 jj = 1,3
do 1 i = 1,4
 offsetXYZ(jj,i) = 0.0;

1 continue

!

! This puts instrument at the nominal SC center

1 For example, to put instrument on a 20 m boom fore of

! SC center, make offsetXYZ(1,i) = 20.0 for each i

! initialize pixel unit vectors

! All but the 3rd case hit Earth; to miss Earth reverse the

! last component of any other one

 pixelUnitvSC(1,1) = 0.03;
pixelUnitvSC(2,1) = 0.12;
pixelUnitvSC(3,1) = 0.08;

 pixelUnitvSC(1,2) = -0.2;
pixelUnitvSC(2,2) = 0.12;
pixelUnitvSC(3,2) = 0.6;

! This case will display error

 pixelUnitvSC(1,3) = -0.0;
pixelUnitvSC(2,3) = 0.00;
pixelUnitvSC(3,3) = 0.0;

 pixelUnitvSC(1,4) = -0.2;
pixelUnitvSC(2,4) = -0.12;
pixelUnitvSC(3,4) = 0.6;

returnstatus = pgs_csc_getfov_pixel(spacecrafttag,numvalues,
> asciiutc,offsets,
> earthellipstag,
> accurflag,pixelUnitvSC,
> offsetXYZ,latitude,
> longitude,pixelUnitvECR,
> slantRange,velocDoppl)

! Print output values

 6-475 EED2-333-001

! Test for some variable like latitude = 1.0e50 before further

! processing to avoid processing pixels that missed Earth or had

! zero pixel vector

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: An accuracy flag is required, allowing two accuracy levels:

 Normal or PGS_FALSE

• do ECI to ECR transformation at moment of taking data

• consider instrument axis to pass through nominal center of spacecraft

 High or PGS_TRUE

• do ECI to ECR transformation with approximate allowance for Earth
rotation during the light travel time (spherical Earth approximation.)
This will slow the calculation slightly.

• user must supply vector offsetXYZ that represents the displacement
in meters of the instrument boresight from nominal spacecraft center.
(Only the part of the displacement orthogonal to the look vector will
have an effect.) Users invoking the High Accuracy option but wishing
not to take advantage of this feature should supply zeros for the
components of offsetXYZ.

 The maximum error in omitting this calculation is approximately as
follows for a worst case of a spacecraft at 700 km altitude, crossing the
equator and looking E or W:

Table 6-224. Error due to Earth Motion in Time of Flight of Light
Nadir Angle

(deg)
Slant Range (km) Worst Case Error (m) if

accurFlag = PGS_FALSE
0 700 1.1
30 830 1.3
40 945 1.5
50 1200 1.9
55 1410 2.1
60 1770 2.7
64 2440 3.7

 6-476 EED2-333-001

 The nature of the error is a smooth distortion such that points near either
the East or the West limb would be assigned a longitude slightly to the
West in comparison with points near nadir. The effect could be somewhat
exaggerated, for some orbits, in terms of illumination changes near the
terminator.

 Caution: The user is advised that the spacecraft ephemeris refers to the
nominal center of the spacecraft. The displacements of individual
instruments relative to the center of the spacecraft are taken into account
herein through the vector offsetXYZ. When the flag "accurFlag" is set to
PGS_TRUE, the user should specify the instrument coordinates relative to
spacecraft center (in meters) with this vector. It WILL be used by the
present function, so if the user does not actually wish to employ it, then
offsetXYZ must be set to zero (all three components). If "accurFlag" is set
to PGS_FALSE, the displacement is ignored.

 TIME ACRONYMS:
 UT1 is: Universal Time

UTC is: Coordinated Universal Time
 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 See Section 6.2.6.3 Spacecraft Tags Definition File
 REFERENCES FOR TIME:
 CCSDS 301.0–B–2 (CCSDS => Consultative Committee for Space Data

Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac. See also “Theoretical Basis of the SDP Toolkit
Geolocation Package for the ECS Project”, Document 445-TP-002-002,
May 1995, by P. Noerdlinger.

REQUIREMENTS: PGSTK–0930, PGSTK–1080, PGSTK–1083,

 6-477 EED2-333-001

Precesses a Vector Between TDB Julian Date and J2000 Coordinates

NAME: PGS_CSC_precs2000()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_precs2000(
 PGSt_integer threeOr6,
 PGSt_double jedTDB[2],
 PGSt_boolean frwd,
 PGst_double posVel[])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_TD.4.f'

 integer function pgs_csc_precs2000(threeor6,jedtdb,fwrd,posvel)
 integer threeor6
 double precision jedtdb(2)
 integer frwd
 double precision posvel(6)

DESCRIPTION: This tool precesses a vector from Celestial Coordinates of date in
Barycentric Dynamical Time (TDB) to J2000 coordinates or from J2000
coordinates to Celestial Coordinates of date in Barycentric Dynamical
Time (TDB).

INPUTS:

Table 6-225. PGS_CSC_precs2000 Inputs
Name Description Units Min Max

jedTDB[2] TBD (Barycentric Dynamical Time) as a Julian
Date to or from which the vector is to be
processed

days ANY ANY

frwd flag for sense of precession:
PGS_TRUE if precessing from J2000
 to jedTDB
PGS_FALSE if precessing from
 jedTDB to J2000

T/F N/A N/A

posVel vector (position and velocity) in final reference
frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

 6-478 EED2-333-001

OUTPUTS:

Table 6-226. PGS_CSC_precs2000 Outputs
Name Description Units Min Max

posVel vector (position and velocity) in final reference frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

RETURNS:

Table 6-227. PGS_CSC_precs2000 Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_BAD_ARRAY_SIZE The size of the vector is not either 3 or 6
PGSCSC_E_BAD_DIRECTION_FLAG The value of the direction flag is not either PGS_TRUE or PGS_FALSE

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double jedTDB[2]={2449720.5,0.25};
PGSt_double posVel[6]={6400000.0,-5000000.0,40000.0,
 4000.0,7000.0,-6000.0};

 ** precess the vector **

 returnStatus = PGS_CSC_precs2000(6,jedTDB,PGS_TRUE,posVel);

 ** the input vector "posVel" has been overwritten with the
 precessed value **

FORTRAN: implicit none

 integer pgs_csc_precs2000
integer returnstatus
integer threeor6
double precision jedtdb(2)
double precision posvel(6)

 data jedtdb/2449720.5,0.25/
data posvel/6400000.0,-5000000.0,40000.0,4000.0,7000.0,-
 6000.0/

 threeor6 = 6

 6-479 EED2-333-001

 returnstatus = pgs_csc_nutate2000(threeor6,jedtdb,frwd,
 posvel)

! the input vector "posvel" has been overwritten with the precessed value

NOTES: This function is a simplified version of PGS_CSC_precs3or6(). This
function is specific to the case of precessing to or from the epoch of J2000.
The various coefficients used are the constants that result for
this epoch.

 This function produces an output vector that overwrites the input vector.
The code was kept this way to preserve its heritage. The user is cautioned
that her/his input vector will be therefore be altered by this function.
The underlying rotation functions do not have this property.

 TIME ACRONYMS:
 TDB is: Barycentric Dynamical Time
 JULIAN DATES:
 Format:
 Toolkit Julian dates are kept as an array of two real (high precision)

numbers (C: PGSt_double, FORTRAN: DOUBLE PRECISION). The first
element of the array should be the half integer Julian day (e.g., N.5 where
N is a Julian day number). The second element of the array should be a
real number greater than or equal to zero AND less than one (1.0)
representing the time of the current day (as a fraction of that (86400
second) day. This format allows relatively simple translation to calendar
days (since the Julian days begin at noon of the corresponding calendar
day). Users of the Toolkit are encouraged to adhere to this format to
maintain high accuracy (one number to track significant digits to the left of
the decimal and one number to track significant digits to the right of the
decimal). Toolkit functions that do NOT require a Julian type date as an
input and return a Julian date will return the Julian date in the above
mentioned format. Toolkit functions that require a Julian date as an input
and do NOT return a Julian date will first convert the input date (internal)
to the above format. Toolkit functions that have a Julian date as both an
input and an output will assume the input is in the above described format
but will not check and the format of the output may not be what is
expected if any other format is used for the input.

 Meaning:
 Toolkit "Julian dates" are all based on UTC. A Julian date in any other

"time" (e.g., TAI, TDT, UT1, etc.) is based on the difference between that
"time" and the equivalent UTC time (differences range in magnitude from
0 seconds to about a minute).

 6-480 EED2-333-001

 REFERENCES FOR TIME:
 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data

Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK–0930, PGSTK–1050

 6-481 EED2-333-001

Nutate State Vector Between True of Date and Mean of Date

NAME: PGS_CSC_nutate2000()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_nutate2000(
 PGSt_integer threeOr6,
 PGSt_double jedTDB[2],
 PGSt_double dvnut[4],
 PGSt_boolean frwd,
 PGst_double posVel[])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function pgs_csc_nutate2000(threeor6,jedtdb,dvnutfwrd,posvel)
 integer threeor6
 double precision jedtdb(2)
 double precision dvnut(4)
 double precision frwd
 double precision posvel(*)

DESCRIPTION: This tool transforms a vector under nutation from Celestial Coordinates of
date in Barycentric Dynamical Time (TDB) to J2000 coordinates or from
J2000 coordinates to Celestial Coordinates of date.

INPUTS:

Table 6-228. PGS_CSC_nutate2000 Inputs (1 of 2)
Name Description Units Min Max

threeOr6 chooses a 3 or 6 dimensional vector to
nutate

N/A N/A N/A

jedTDB TBD (Barycentric Dynamical Time) as a
Julian Date to or from which the vector is
to be nutated (this variable is generally
referred to in Toolkit code as jedTDB

days ANY ANY

dvnut the two nutation angles and their rates,
output from “PGS_CSC_wahr2” (this
variable is generally referred to in Toolkit
code as dvnut)

rad/s -1.e-11 1.e-11

posVel vector (position and velocity) in initial
reference frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

 6-482 EED2-333-001

Table 6-228. PGS_CSC_nutate2000 Inputs (2 of 2)
Name Description Units Min Max

frwd flag for sense of nutation:
PGS_TRUE if nutating fromTrue of Date
at
 jedTDB to Mean of Date
PGS_FALSE if nutating from Mean of
Date
 to True of Date at jedTDB

T/F N/A N/A

OUTPUTS:

Table 6-229. PGS_CSC_nutate2000 Outputs
Name Description Units Min Max

posVel vector (position and velocity) in final reference frame:
posvel[0-2] position
posvel[3-5] velocity

m
m/s

ANY
ANY

ANY
ANY

RETURNS:

Table 6-230. PGS_CSC_nutate2000 Returns
Return Description

PGS_S_SUCCESS Success
PGSCSC_E_BAD_ARRAY_SIZE The size of the vector is not either 3 or 6
PGSCSC_E_BAD_DIRECTION_FLAG The value of the direction flag is not either PGS_TRUE or

PGS_FALSE

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double jedTDB[2]={2449720.5,0.25};
PGSt_double dvnut[4];
PGSt_double posVel[6]={6400000.0,-5000000.0,40000.0,
 4000.0,7000.0,-6000.0};

 ** get the nutation angles and rates **

 PGS_CSC_wahr2(jedTDB,dvnut);

 ** nutate the vector **

 returnStatus = PGS_CSC_nutate2000(6,jedTDB,dvnut,PGS_TRUE,
 posVel);

 6-483 EED2-333-001

 ** the input vector "posVel" has been overwritten with the
 nutated value **

FORTRAN: implicit none

 integer pgs_csc_nutate2000
integer returnstatus
integer threeor6
double precision jedtdb(2)
double precision dvnut
double precision posvel(6)

 data jedtdb/2449720.5,0.25/
data posvel/6400000.0,-5000000.0,40000.0,4000.0,7000.0,
 -6000.0/

 threeor6 = 6

! get the nutation angles and rates

 returnstatus = pgs_csc_wahr2(jedtdb,dvnut)

! nutate the vector

 returnstatus = pgs_csc_nutate2000(threeor6,jedtdb,dvnut,
 frwd,posvel)

! the input vector "posvel" has been overwritten with the nutated
value

NOTES: Purpose: The case of transforming a vector from J2000 to True of Date,
requires first procession and then nutation. The intermediate system,
processed but not nutated, is the Mean of Date system. With the direction
flag at PGS_TRUE, this function transforms a vector (position and
velocity) from Mean of Date to True of Date. True of date has its Z axis
along the Earth’s true angular velocity and the X axis is toward the true
equinox of date-the intersection of the equator perpendicular to Z with the
ecliptic. Mean of date is arranged similarly, but ignoring nutation, so its
pole has a constant angle to the ecliptic, along which its X axis moves at a
constant rate.

 In the opposite case, with the direction flag at PGS_FALSE, i.e. in going
from arbitrary epoch to J2000, this function carries the vector from True of
Date to Mean of Date, after which it must be precessed to J2000 by the
function PGS_CSC_precs2000().

 This code was modified so it now takes either a 3 or 6 dimensional vector.
When 6 dimensions are used, they must be in the order (position, velocity)
because the transformation of velocity is slightly different. This function
produces an output vector that overwrites the input vector. The code was

 6-484 EED2-333-001

kept this way to preserve its heritage. The user is cautioned that her/his
input vector will therefore be altered by this function. The underlying
rotation functions do not have this property.

 TIME ACRONYMS:

 TDB is: Barycentric Dynamical Time

 JULIAN DATES:

 Format:

 Toolkit Julian dates are kept as an array of two real (high precision)
numbers (C: PGSt_double, FORTRAN: DOUBLE PRECISION). The first
element of the array should be the half integer Julian day (e.g., N.5 where
N is a Julian day number). The second element of the array should be a
real number greater than or equal to zero AND less than one (1.0)
representing the time of the current day (as a fraction of that (86400
second) day. This format allows relatively simple translation to calendar
days (since the Julian days begin at noon of the corresponding calendar
day). Users of the Toolkit are encouraged to adhere to this format to
maintain high accuracy (one number to track significant digits to the left of
the decimal and one number to track significant digits to the right of the
decimal). Toolkit functions that do NOT require a Julian type date as an
input and return a Julian date will return the Julian date in the above
mentioned format. Toolkit functions that require a Julian date as an input
and do NOT return a Julian date will first convert the input date (internal)
to the above format. Toolkit functions that have a Julian date as both an
input and an output will assume the input is in the above described format
but will not check and the format of the output may not be what is
expected if any other format is used for the input.

 Meaning:

 Toolkit "Julian dates" are all based on UTC. A Julian date in any other
"time" (e.g., TAI, TDT, UT1, etc.) is based on the difference between that
"time" and the equivalent UTC time (differences range in magnitude from
0 seconds to about a minute).

 REFERENCES FOR TIME:

 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK–0914, PGSTK–0930, PGSTK–1050

 6-485 EED2-333-001

Transform from ECI J2000 to ECI True of Date Coordinates

NAME: PGS_CSC_J2000toTOD()

SYNOPSIS:

C: #include <PGS_CSC.h>

PGSt_SMF_status
PGS_CSC_J2000toTOD(
 PGSt_integer threeOr6,
 PGSt_double secTAI93
 PGSt_double posvelECI[6],
 PGSt_double posvelTOD[6])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_SMF.f'

integer function pgs_csc_j2000totod(threeor6,sectai93,posveleci,
> posveltod)
 integer threeor6
 double precision sectai93
 double precision posveleci(*)
 double precision posveltod(*)

DESCRIPTION: This function transforms from ECI (J2000) coordinates to TOD (true of
date) coordinates.

INPUTS:

Table 6-231. PGS_CSC_J2000toTOD.c Inputs
Name Description Units Min Max

threeOr6 dimension of input vector N/A 3 6
secTAI93 TOD time seconds
posvelECI[] Vector (position and possibly velocity) in ECI

J2000

posvelTOD[0] x position meters
posvelTOD[1] y position meters
posvelTOD[2] z position meters
posvelTOD[3] x velocity m/s
posvelTOD[4] y velocity m/s
posvelTOD[5] z velocity m/s

 6-486 EED2-333-001

OUTPUTS:

Table 6-232. PGS_CSC_J2000to.TOD.c Outputs
Name Description Units Min Max

posvelTOD[6] Vector (position and possibly velecity)
in ECI TOD

posvelECI[0] x position meters
posvelECI[1] y position meters
posvelECI[2] z position meters
posvelECI[3] x velocity m/s
posvelECI[4] y velocity m/s
posvelECI[5] z velocity m/s

RETURNS:

Table 6-233. PGS_CSC_J2000toTOD Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_E_BAD_ARRAY_SIZE incorrect array size

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double secTAI93 = -44496000.0;
PGSt_double posvelECI[6] = {0.5,0.75,0.90,0.3,0.2,0.8};
PGSt_double posvelTOD[6];

returnStatus=
PGS_CSC_J2000toTOD(6,secTAI93,posvelECI,posvelTOD);

 if(returnStatus != PGS_S_SUCCESS)
{
/** test errors, take appropriate action **/
}

FORTRAN: implicit none

 integer returnstatus
integer pgs_csc_j2000totod
integer threeor6
double precision sectai93
double precision posveleci(6)

 6-487 EED2-333-001

double precision posveltod(6)
integer cnt1
character*33 err
character*241 msg

 do 10 cnt1 = 1,6
 posveleci(cnt1) = 100 * cnt1
10 continue
sectai93 = -44496000.0
three0r6 = 6

 returnstatus=s_csc_j2000totod(threeor6,sectai93,posveleci,
 posveltod)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err, msg
endif

NOTES: If threeOr6 is 3, only position is transformed; if 6 then both position and
velocity.

REQUIREMENTS: PGSTK - 0910, 1050

 6-488 EED2-333-001

Transform from ECI True of Date to ECI J2000 Coordinates

NAME: PGS_CSC_TODtoJ2000()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_TODtoJ2000(
 PGSt_integer threeOr6,
 PGSt_double secTAI93,
 PGSt_double posvelTOD[6],
 PGSt_double posvelECI[6])

FORTRAN: include 'PGS_CSC_4.f'

 include 'PGS_SMF.f'

 integer function pgs_csc_todtoj2000(threeor6,sectai93,posveltod,
 posveleci)
 integer
 double precision
 double precision posveltod(*)
 double precision posveleci(*)

DESCRIPTION: This function transforms from TOD (true of date) coordinates to ECI
(J2000) coordinates.

INPUTS:

Table 6-234. PGS_CSC_TODtoJ2000.c Inputs
Name Description Units Min Max

threeOr6 dimension of input vector N/A 3 6
secTAI93 TOD time posvel TOD[6] seconds
posvelTOD[] Vector (position and possibly velocity) in ECI TOD
posvelTOD[0] x position meters
posvelTOD[1] y position meters
posvelTOD[2] z position meters
posvelTOD[3] x velocity m/s
posvelTOD[4] y velocity m/s
posvelTOD[5] z velocity m/s

 6-489 EED2-333-001

OUTPUTS:

Table 6-235. PGS_CSC_TODtoJ2000.c Outputs
Name Description Units Min Max

posvelECI[] Vector (position and possibly velecity)
in ECI J2000

posvelECI[0] x position meters
posvelECI[1] y position meters
posvelECI[2] z position meters
posvelECI[3] x velocity m/s
posvelECI[4] y velocity m/s
posvelECI[5] z velocity m/s

RETURNS:

Table 6-236. PGS_CSC_TODtoJ2000c Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_E_BAD_ARRAY_SIZE incorrect array size

EXAMPLES:
C: PGSt_SMF_status returnStatus

PGSt_double secTAI93 = -44496000.0
PGSt_double posvelTOD[6] = 0.5,0.75,0.90,0.3,0.2,0.8};
PGSt_double posvelECI[6];

 returnStatus =
PGS_CSC_TODtoJ2000(6,secTAI93,posvelTOD,posvelECI);

 if(returnStatus != PGS_S_SUCCESS
{
/** test errors, take appropriate action **/
}

FORTRAN: implicit none

 integer pgs_csc_todtoj2000
integer returnstatus
integer threeor6
double precision sectai93
double precision posveltod(6)
double precision posveleci(6)
integer cnt1
character*33 err
character*241 msg

 6-490 EED2-333-001

 do 10 cnt1 = 1,6
 posveltod(cnt1) = 100 * cnt1
10 continue
sectai93 = -44496000.0
three0r6 = 6

 returnstatus=pgs_csc_todtoj2000(threeor6,sectai93,posveltod,
> posveleci)

 if (returnstatus .ne. pgs_s_success) then
 pgs_smf_getmsg(returnstatus, err, msg)
 write(*,*) err,
endif

NOTES: If threeor6 is 3, only position is transformed; if 6 then both position and
velocity.

 TIME ACRONYMS:
 TAI is: International Atomic Time
 TDB is: Barycentric Dynamical Time
 TOOLKIT INTERNAL TIME (TAI):
 Toolkit internal time is the real number of continuous SI seconds since the

epoch of UTC 12 AM 1-1-1993. Toolkit internal time is also referred to
inthe toolkit as TAI.

 REFERENCES FOR TIME:
 CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data

Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK - 0910, 1050

 6-491 EED2-333-001

Determine if Location on Earth is in Day or Night

NAME: PGS_CSC_DayNight()

SYNOPSIS:

C: #include <PGS_CBP.h>

 PGSt_SMF_status
PGS_CSC_DayNight(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double latitude[],
 PGSt_double longitude[],
 PGSt_tag sunZenithLimitTag,
 PGSt_boolean afterDark[])

FORTRAN: include 'PGS_MEM_7.f'
include 'PGS_CBP_6.f'
include 'PGS_CSC_4.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function pgs_csc_daynight(numvalues,asciiutc,offsets,latitude,
 longitude, sunzenithlimittag, afterdark)
 integer numvalues
 character*27 asciiutc
 double precision offsets(*)
 double precision latitude(*)
 double precision longitude(*)
 integer sunzenithlimittag
 integer afterdark(*)

DESCRIPTION: This function determines whether each point in a set of input Earth
locations is in day or night at the corresponding input times. The function
accepts an input start time, array of offsets from that start time, and an
array of corresponding geodetic latitudes and longitudes. It then
determines whether each time and point on the surface of the Earth
(altitude = 0 km) is night, based on definitions of either civil twilight or
night, nautical night, or astronomical night.

 6-492 EED2-333-001

INPUTS:

Table 6-237. PGS_CSC_DayNight Inputs
Name Description Units Min Max

numValues number of input time offsets,
longitudes, and latitudes

N/A 0 any

asciiUTC UTC start time in CCSDS ASCII
Time Code A or B format

N/A 1972–01-01 see NOTES

offsets array of time offsets seconds Max and Min such that
asciiUTC+ offset is between
asciiUTC Min and Max values

latitude array of geodetic latitudes for
array of time offsets

radians -pi/2 +pi/2

longitude array of longitudes corresponding
to time offsets

radians -2*pi 2*pi

sunZenithLimitTag tag specifying basis of day/night
determination
Allowed values:
PGSd_CivilTwilight—(end of day)
 sun deemed to set within 90
 degrees 50 arc minutes from
 zenith
PGSd_CivilNight—(end of civil
 twilight) sun more than 96
 degrees from zenith (same as
 start of Nautical twilight)
PGSd_NauticalNight—(end of
 Nautical twilight) sun more than
 102 degrees from zenith.
PGSd_AstronNight—(end of
 Astronomical Twilight) sun
 more than 108 degrees from
 zenith.

N/A N/A N/A

OUTPUTS:

Table 6-238. PGS_CSC_DayNight Outputs
Name Description Units Min Max

afterDark array of answers:
Array values will be either PGS_TRUE or
PGS_FALSE, according to the tag
definition. PGS_TRUE means point is in
night, PGS_FALSE means point is in
daylight or twilight.

Boolean see
DESCRIPTION

see
DESCRIPTION

 6-493 EED2-333-001

RETURNS:

Table 6-239. PGS_CSC_DayNight Returns
Return Description

PGS_S_SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap second value available in table for at least one

of the input offset times; a linear approximation was
used to get value

PGSCSC_E_INVALID_LIMITTAG Invalid sunZenithLimitTag
PGSCSC_E_BAD_ARRAY_SIZE numValues (and array size) is less than zero
PGSCSC_W_ERROR_IN_DAYNIGHT An error occurred in computing at least one afterDark

value
PGSCSC_W_BAD_TRANSFORM_VALUE Invalid ECItoECR transformation
PGSCSC_W_BELOW_HORIZON Sun is below horizon
PGSCSC_W_PREDICTED_UT1 At least one of the values obtained from the utcpole.dat

file is 'predicted'
PGSTD_E_NO_UT1_VALUE No UT1–UTC correction available
PGSTD_E_BAD_INITIAL_TIME Initial input time cannot be deciphered
PGSCBP_E_TIME_OUT_OF_RANGE Start UTC time is not in the range of the planetary

ephemeris file (de200.eos)
PGSCBP_E_UNABLE_TO_OPEN_FILE Ephemeris file cannot be opened
PGSMEM_E_NO_MEMORY No memory available to allocate vectors
PGS_E_TOOLKIT Something unexpected happened, execution of function

ended prematurely

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
PGSt_integer counter;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE] =
 {3600.0,7200.0,10800.0};
PGSt_double latitude[ARRAY_SIZE]= {0.5,0.75,0.90};
PGSt_double longitude[ARRAY_SIZE] = {1.0,2.0,3.0};
PGSt_tag sunZenithLimitTag = PGSd_CivilTwilight;
PGSt_boolean afterDark[ARRAY_SIZE];

 numValues = ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30");
returnStatus = PGS_CSC_DayNight(numValues,asciiUTC,offsets,

 6-494 EED2-333-001

 latitude,longitude,
 sunZenithLimitTag,
 afterDark);

 if(returnStatus != PGS_S_SUCCESS)
{
 ** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
counter = 0;
while(counter <= numValues)
{
 printf("Offset: %lf Latitude:%lf Longitude:%lf
 Day/Night:%u", offset[counter],
 latitude[counter], longitude[counter],
 afterDark[counter]);
 counter++;
}

FORTRAN: implicit none

 integer pgs_csc_daynight
parameter (array_size=3)
integer returnstatus
integer counter
integer numvalues
character*27 asciiutc
double precision offsets(array_size)
double precision latitude(array_size)
double precision longitude(array_size)
integer sunzenithlimittag
integer afterdark(array_size)

 data offsets/3600.0,7200.0,10800.0/
data latitude/0.5,0.75,0.90/
data longitude/1.0,2.0,3.0/
numvalues = array_size
asciiutc = '1991-01-01T11:29:30'
sunzenithlimittag = pgsd_civiltwilight

 returnstatus = pgs_csc_daynight(numvalues,asciiutc,offsets,
 latitude,longitude,
 sunzenithlimittag,
 afterdark)

 6-495 EED2-333-001

 if(returnstatus .ne. pgs_s_success) go to 90

 write(6,*) asciiutc
if(numvalues.eq.0) numvalues = 1
do 40 counter = 1,numvalues,1
 write(6,*)offsets(counter),latitude(counter),
 longitude(counter),afterdark(counter)

 40 continue

 90 write(6,99)returnstatus

 99 format('ERROR:',I50)

NOTES: If there is an error in computing one or more of the afterDark values,
which does not affect the computation of the other values for the input
offset times, it is set to the returnStatus value.

 An Earth model tag is not needed because the latitude is geodetic. Input
latitude values should be based on an Earth model (flattening) consistent
with that used for other data analysis and processing for the same
spacecraft.

 User supplies one of the four sunZenithLimitTags as part of the input
information. Users wishing to know if a point is in Nautical Twilight or
darker should use the Civil Night tag; those wishing to determine whether
the point is after the start of Astronomical Twilight should use the
Nautical Night tag. An example of tag usage is the following: if the tag is
set to Nautical night and the Sun zenith angle is less than 102 degrees,
afterDark will be false; if 102 degrees or more it will be true.

 TIME ACRONYMS:

 UTC is: Coordinated Universal Time

 See Section 6.3.4.8 Coordinate System Conversion Tool Notes

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REQUIREMENTS: PGSTK–0860, PGSTK–0930

 6-496 EED2-333-001

Calculate Nutation Angles

NAME: PGS_CSC_wahr2()

SYNOPSIS:
C: #include <PGS_CSC.h>
 PGS_CSC_wahr2(

 PGSt_double ddjd[2],
 PGSt_double dvnut[4])

FORTRAN: include 'PGS_SMF.f'
 integer function pgs_csc_wahr2(ddjd,dvnut)

 double precision ddjd(2)
 double precision dvnut(4)

DESCRIPTION: Calculates nutation angles delta psi and delta epsilon, and their rates of
change, referred to the ecliptic of date, from the Wahr series.

INPUTS:

Table 6-240. PGS_CSC_wahr2 Inputs
Name Description Units Min Max

ddjd[2] Barycentric Dynamical Time as a Julian Date N/A ANY ANY
ddjd[0] half-integral Julian day
ddjd[1] Julian day fraction

OUTPUTS:

Table 6-241. PGS_CSC_wahr2 Outputs
Name Description Units Min Max

dvnut[0] nutation in longitude radians -0.01 0.01
dvnut[1] nutation in obliquity radians -0.001 0.001
dvnut[2] nutation rate in longitude radians/sec -1.16e-1 +1.16e-11
dvnut[3] nutation rate in obliquity radians/sec -1.16e-13 +1.16e-13

RETURNS:

Table 6-242. PGS_CSC_wahr2 Returns
Return Description

PGS_S_SUCCESS Successful return

 6-497 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double jedTDB[2]={2449720.5,0.25};
PGSt_double dvnut[4];

 returnStatus = PGS_CSC_wahr2(jedTDB,dvnut);

 ** do something with shiny new nutation angles and rates **
 :
 :

FORTRAN: implicit none

 integer pgs_csc_wahr2
integer returnstatus
double precision jedtdb(2)
double precision dvnut(4)

 data jedtdb/2449720.5,0.25/

 returnstatus = pgs_csc_wahr2(jedtdb,dvnut)

! do something with shiny new nutation angles and rates

 :

 :

NOTES: From table 1, "proposal to the International Astronomical Union (IAU)
working group on nutation," John M. Wahr and Martin L. Smith (1979)
subroutine to compute nutation angles and rates from expressions given in
Supplement to Astronomical Almanac 1984, S21–S26. Ref: P.K.
Seidelmann, V.K. Abalakin, H. Kinoshita, J. Kovalevsky, C.A. Murray,
M.L. Smith, R.O. Vicente, J.G. Williams, Ya. S. Yatskiv: 1982, "1980
IAU Theory of Nutation", Celestial Mechanics Journal, vol 27., p. 79–105

 Changes to code prior to acquisition for ECS project:
 Lieske 3/91. NUTATION in the IAU J2000 system. Univac version

obtained from Myles Standish, (subroutine WAHR) who had obtained it
from USNO. Re-ordered terms to match Astronomical Almanac 1984
table S23-S25 and corrected the rate for dPsi in the 0 0 2 -2 2 term.
Eliminated the equivalencies, common block and added necessary SAVEs.
Corrected the fundamental angles (L, L', F, D, Node) to match Almanac.

 Acquired from E. Myles Standish, JPL, 12/93 by Peter Noerdlinger. This
is not JPL certified code. Please do not modify the names of the variables
in this code. It is heritage code and we may receive updates. We may also
receive other related code with the same names for variables.

 Users concerned with speed may wish to avoid repeated calls where
possible. In this regard, the rates that are provided by Wahr2 can be used
either for estimating the error of using nearby times, or for short term

 6-498 EED2-333-001

extrapolation. Note that in the original JPL code the rates issued by wahr2
are in radians per day; this routine returns the rates as radians per second.

REQUIREMENTS: PGSTK–0916, PGSTK–0930, PGSTK–1050

 6-499 EED2-333-001

Get Greenwich Hour Angles

NAME: PGS_CSC_GreenwichHour()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GreenwichHour(
 PGSt_integer numValues,
 char asciiUTC[28],
 PGSt_double offsets[],
 PGSt_double hourAngleGreenw[])

FORTRAN: include 'PGS_CSC_4.f'
include 'PGS_TD_3.f'
include 'PGS_TD.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_greenwichhour(numvalues, asciiutc, offsets(*),
 houranglegreenw(*))
 integer numvalues,
 character*27 asciiutc,
 double precision offsets(*),
 double precision houranglegreenw(*)

DESCRIPTION: This function computes hour angle of the Vernal Equinox at the
Greenwich meridian, accepting an input start time plus an array of time
offsets.

INPUTS:

Table 6-243. PGS_CSC_GreenwichHour Inputs
Name Description Units Min Max

numValues number of input time
offsets

N/A 0 any

asciiUTC UTC start time in CCSDS
ASCII Time Code A or B
format

N/A see Notes see Notes

offsets array of time offsets seconds Max and Min such that asciiUTC + offset is
between asciiUTC Min and Max values

 6-500 EED2-333-001

OUTPUTS:

Table 6-244. PGS_CSC_GreenwichHour Outputs
Name Description Units Min Max

hourAngleGreenw array of values of the hour angle of the Vernal
Equinox at Greenwich; a value of 999999.0 is
returned for invalid offset times

hours 0 24

RETURNS:

Table 6-245. PGS_CSC_GreenwichHour Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_ERRORS_IN_GHA An error occurred in computing at least one Greenwich hour

angle
PGSCSC_W_PREDICTED_UT1 Data in utcpole.dat file is predicted (not final) value for at least

one input time
PGSTD_E_TIME_VALUE_ERROR Error in input time value
PGSTD_E_TIME_FMT_ERROR Error in input time format
PGSTD_E_NO_LEAP_SECS No leap seconds correction is available in leapsec.dat file for

at least one of the input times/offsets
PGS_E_TOOLKIT Something unexpected happened, execution of function ended

prematurely

EXAMPLES:

C: #define ARRAY_SIZE 3

 PGSt_SMF_status returnStatus;
PGSt_integer numValues;
PGSt_integer counter;
char asciiUTC[28];
PGSt_double offsets[ARRAY_SIZE]=
 {3600.0,7200.0,10800.0};
PGSt_double hourAngleGreenw[ARRAY_SIZE];

 numValues=ARRAY_SIZE;
strcpy(asciiUTC,"1991-01-01T11:29:30");
returnStatus = PGS_CSC_GreenwichHour(numValues,asciiUTC,
 offsets,
 hourAngleGreenw);

 6-501 EED2-333-001

if(returnStatus != PGS_S_SUCCESS)
{
** test errors,
 take appropriate
 action **
}
printf("start time:%s",asciiUTC);
counter = 0;
while(counter < numValues)
{
 printf("Offset: %lf Hour Angle:%lf",offset[counter],
 hourAngleGreenw[counter]);
 counter++;
}

FORTRAN: implicit none

 parameter (array_size=3)
integer pgs_csc_greenwichhour
integer array_size
integer returnstatus
integer counter
integer numvalues
character*27 asciiutc
double precision offsets(array_size)
double precision houranglegreenw(array_size)

 data offsets/3600.0,7200.0,10800.0/
array_size = 3
numvalues = array_size
asciiutc = '1991-01-01T11:29:30'

 returnstatus = pgs_csc_greenwichhour(numvalues,asciiutc,
 offsets,
 houranglegreenw)

 if(returnstatus .ne. pgs_s_success) go to 90
write(6,*) asciiutc
if(numvalues.eq.0) numvalues = 1
do 40 counter = 1, numvalues,1
write(6,*)offsets(counter),houranglegreenw(counter)

 40 continue

 90 write(6,99)returnstatus

 99 format('ERROR:',A50)

 6-502 EED2-333-001

NOTES: Historically, UT1 was used as a measure of time, but since 1958 it has
served only as a measure of Earth rotation. The only real difference
between UT1 and Greenwich Mean Sidereal Time (GMST) is that UT1
measures Earth rotation in regards to the vector from Earth center to the
mean sun (a fictitious point that traverses the celestial equator at the same
mean rate that the sun apparently traverses the ecliptic), while GMST
measures Earth rotation relative to the vernal equinox. Essentially, the
value of GMST in radians is larger than that of UT1 in radians by the ratio
of the mean solar day to the sidereal day; however, there are small
correction terms due to precession. The equation used in function
PGS_TD_gmst() is valid for the period 1950 to well past 2000, as long as
the definition of UT1 and the reference equinox (J2000) are not changed.
The basic limitation is the accuracy of UT1. Users obtaining UT1 from the
SDP Toolkit should observe time limitations in the function
PGS_TD_UTCtoUT1().

 TIME ACRONYMS:

 GMST is: Greenwich Mean Sidereal Time
TAI is: International Atomic Time
UT1 is: Universal Time
UTC is: Coordinated Universal Time

 See Section 6.2.7.5.2 (UT1-UTC Boundaries)

 REFERENCE FOR TIME:

 CCSDS 301.0–B–2 (CCSDS => Consultative Committee for Space Data
Systems Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac.

REQUIREMENTS: PGSTK–0770

 6-503 EED2-333-001

Get Zenith and Azimuth of an ECR Vector at the Look Point

NAME: PGS_CSC_ZenithAzimuth()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_ZenithAzimuth(
 PGSt_double vectorECR[3],
 PGSt_double latitude,
 PGSt_double longitude,
 PGSt_double altitude,
 PGSt_tag vectorTag,
 PGSt_boolean zenithOnlyFlag,
 PGSt_boolean refractFlag,
 PGSt_double *zenith,
 PGSt_double *azimuth
 PGSt_double *refraction)

FORTRAN: include 'PGS_CSC.f'
include 'PGS_CSC_4.f'
include 'PGS_SMF.f'

 integer function
pgs_csc_zenithazimuth(vectorecr,latitude,longitude,altitude,
 vectortag,zenithonlyflag,
 refractflag,zenith,azimuth,
 refraction)
 double precision vectorECR[3]
 double precision latitude
 double precision longitude
 double precision altitude
 integer vectortag
 integer zenithonlyflag
 integer refractflag
 double precision zenith
 double precision azimuth
 double precision refraction

DESCRIPTION: Computes the zenith and the azimuth of a vector at the look point. This
tool allows for refraction if desired.

 6-504 EED2-333-001

INPUTS:

Table 6-246. PGS_CSC_ZenithAzimuth Inputs
Name Description Units Min Max

vectorECR ECR vector whose zenith & azimuth is
desired (in case of PGSD_MOON do
not use a unit vector!—see NOTES)

meters or unit vector N/A N/A

latitude geodetic latitude radian -pi/2 pi/2
longitude longitude radian -2*pi 2*pi
altitude altitude off the geoid (altitude is an

input only when refracFlag is
PGS_TRUE see NOTES).

meters -2000 80000

vectorTag PGSd_CB, PGSd_moon, or
PGSd_Look or a CB identifier (see
NOTES)

N/A N/A N/A

zenithOnlyFlag omit azimuth calculation N/A N/A N/A
refracFlag turns on refraction N/A N/A N/A

OUTPUTS:

Table 6-247. PGS_CSC_ZenithAzimuth Outputs
Name Description Units Min Max

zenith zenith angle radian 0 1.6755 (96 deg)
azimuth azimuth E from N radian -pi +pi
refraction increase of zenith angle due to refraction radian 0 0.1

RETURNS:

Table 6-248. PGS_CSC_ZenithAzimuth Returns
Return Description

PGS_S_SUCCESS Successful execution
PGSCSC_W_BELOW_HORIZON Warning indicating the object is below horizon
PGSCSC_W_UNDEFINED_AZIMUTH The object is at the zenith. In this case azimuth is not

calculated
PGSCSC_W_NO_REFRACTION No refraction calculation done due to errors
PGSCSC_E_INVALID_VECTAG The input vector tag is not PGSd_CB, PGSd_MOON,

PGSd_LOOK or a celestial body identifier
PGSCSC_E_LOOK_PT_ALTIT_RANGE Look point altitude not reasonable
PGSCSC_E_ZERO_INPUT_VECTOR The input vector has zero length
PGS_E_TOOLKIT Unknown error occurred

 6-505 EED2-333-001

EXAMPLES:

C: PGSt_SMF_status returnStatus;
PGSt_double vectorECR[3];
PGSt_double latitude = 0.2;
PGSt_double longitude = 0.1;
PGSt_double altitude = 0.0;
PGSt_tag vectorTag = PGSd_LOOK;
PGSt_boolean zenithOnlyFlag = PGS_FALSE;
PGSt_boolean refractFlag = PGS_FALSE;
PGSt_double zenith;
PGSt_double azimuth;
PGSt_double refraction;

 vectorECR[2] = -0.26;
vectorECR[1] = 0.0;
vectorECR[0] = sqrt(1 - vectorECR[2]*vectorECR[2]);

 returnStatus = PGS_CSC_ZenithAzimuth(vectorECR,latitude,
 longitude,altitude,
 vectorTag,
 zenithOnlyFlag,
 refractFlag,&zenith,
 &azimuth,&refraction)

 do some error handling
 if desired, convert zenith and azimuth to degrees
printf("zenith angle = %lf, azimuth = %lf\n", zenith,
 azimuth);

FORTRAN: implicit none

 integer pgs_csc_zenithazimuth
double precision look[3]
double precision latitude
double precision longitude
double precision altitude
integer zenithonlyflag
integer refractflag
double precision zenith
double precision azimuth
double precision refraction
integer vectortag,returnstatus

 vectortag = pgsd_look
latitude = 0.2D0
longitude = -0.3D0

 6-506 EED2-333-001

altitude = 0.0D0
zenithonlyflag = PGS_FALSE
refractflag = PGS_FALSE

 look[3] = -0.26;
look[2] = 0.0;
look[1] = sqrt(1 - look[3]*look[3]);

 returnstatus = pgs_csc_zenithazimuth(look,latitude,
 longitude,altitude,
 vectortag,
 zenithonlyflag,
 refractflag,zenith,
 azimuth,refraction)

C do some error handling

C if desired, convert zenith and azimuth to degrees

NOTES: The vectorECR vector must be in ECR coordinates. For celestial bodies, it
is the vector from Earth to the celestial body. It can be obtained by getting
the ECI vector to the body from PGS_CBP_Earth_CB_Vector(), and
transforming that vector to ECR rectangular coordinates with
PGS_CSC_ECItoECR().

The "look vector" (which could as well be called the "boresight vector") is
an ECR vector from the instrument to the point being viewed)"look
point."). To obtain the zenith and azimuth of the look vector, the
vectorTag must be set to PGSd_LOOK (this allows for the reversed sense
of such a vector, which represents a line of sight above the horizon when
pointing down). If desired, the unit look vector can be obtained and saved
from PGS_CSC_GetFOV_Pixel(); this will achieve very good
performance, as the ECR look vector is calculated there. If the ECR look
vector has to be constructed (for example, when starting with already-
geolocated data), this can be done, for example, as follows: Convert the
latitude, longitude and altitude of the look point to ECR rectangular
coordinates with PGS_CSC_GEOtoECR(). Then obtain the ECI spacecraft
position from PGS_CSC_Ephem_Attit(), and convert it to ECR with
PGS_CSC_ECItoECR(). Finally, subtract the last result from the first. The
geometry is illustrated in Fig 6-4:

 6-508 EED2-333-001

angle between a direction and either geocentric, geodetic, or nominal
spacecraft nadir.

Note: In ECR coordinates, the Look Vector is also called the ECR Pixel
Vector, but in SC coordinates, it is called the SC Pixel Vector.

If the zenith and azimuth of a distant celestial body (such as the sun or a
planet) are desired, the user may supply PGSd_CB or any of the
identifiers: PGSd_SUN, PGSd_MERCURY, PGSd_VENUS,
PGSd_MARS, PGSd_JUPITER, PGSd_SATURN, PGSd_URANUS,
PGSd_NEPTUNE, or PGSd_PLUTO. This is purely a convenience for
users doing other calculations with a CB identifier; the action of the
function is in all cases the same—it finds the zenith and azimuth of the
vector at the look point, without regard to parallax (i.e., the vector from
Earth center to the Celestial body is regarded as unchanged due to the
displacement of the look point from Earth center).

 In the case of the PGSd_MOON, the geocentric parallax is appreciable,
meaning that its apparent position is, in general, different as viewed from
Earth center or from the look point. The difference can be as large as a
degree. Therefore, in this case, a parallax correction is made. It is essential,
in this case, of course, that the PGSd_MOON vector be supplied in meters.
In this case, the input vector should be the Earth to PGSd_MOON vector
defined from Earth center (geocentric), as obtained, for example, from the
PGS_CBP_Earth_CB_Vector() tool.

 In all other cases, the input vector can be in any units, including
normalized (unit vector).

 Users wishing to take into account the minuscule parallax correction for
the sun, or the correction for some other chosen body such as an asteroid,
could simply label the vector as PGSd_MOON. (For the sun, the
correction is only ~ 2.5 millidegrees.)

 Refraction by the atmosphere is calculated if the flag is set to PGS_TRUE.
This calculation approximately corrects, in the visual band, for the fact
that any line of sight, such as the sun, moon, or look vector is bent by the
atmosphere.

 If the vector is well below the horizon, a warning is returned and no
azimuth calculation is done. The present algorithm is fairly forgiving for
points slightly below the horizon (to 96 degrees), in order that the user
interested in the location of the glow before sunrise or after sunset can find
its azimuth; it is user responsibility to take special action between 90
degrees and 96 degrees if these data are not wanted.

 6-509 EED2-333-001

 The altitude is required only if refraction is to be calculated, and its only
effect is to change the mean density of the atmosphere in the refraction
function.

 If the zenith only flag is defined by the user to be PGS_TRUE the function
will run faster but will not calculate the azimuth.

 If the azimuth is requested but the zenith angle is < 0.026 deg, it is deemed
that the azimuth calculation is unreliable, because variations in the local
vertical as determined from the geoid, and variable refraction in the
atmosphere dominate at that level. The azimuth is returned as 0.0 and the
warning PGSCSC_W_UNDEFINED_AZIMUTH is returned

 The calculation herein is entirely independent of the Earth model except
for the parallax correction, where WGS84 is assumed, and any difference
in other models introduces negligible error. The use of geodetic latitude as
input guarantees that the rest of the algorithm is independent of Earth
model.

REQUIREMENTS: PGSTK–1091

 6-510 EED2-333-001

Find Point of Closest Miss and Surface Point

NAME: PGS_CSC_GrazingRay()

SYNOPSIS:

C: #include <PGS_CSC.h>

 PGSt_SMF_status
PGS_CSC_GrazingRay(
 char earthEllipsTag[50],
 PGSt_double posECR[3],
 PGSt_double ray[3],
 PGSt_double *latitude,
 PGSt_double *longitude,
 PGSt_double *missAltitude,
 PGSt_double *slantRange,
 PGSt_double posNEAR[3],
 PGSt_double posSURF[3])

FORTRAN: include 'PGS_SMF.f'
include 'PGS_CSC_4.f'

 integer function pgs_csc_grazingray(
 earthellipstag,pos,ray,latitude,longitude,
 missaltitude,slantrange,posnear,possurf)

 character*49 earthellipstag
double precision posecr(3)
double precision ray(3)
double precision latitude
double precision longitude
double precision missaltitude
double precision slantrange
double precision posnear(3)
double precision possurf(3)

DESCRIPTION: For rays that miss Earth limb, this function finds the nearest miss point on
the ray and the corresponding surface point. For rays that strike the Earth,
it finds instead the midpoint of the chord of the ray within the ellipsoid
and the surface point of intersection nearest the observer.

 6-511 EED2-333-001

INPUTS:

Table 6-249. PGS_CSC_GrazingRay Inputs
Name Description Units Min Max

earthEllipsTag tag selecting Earth ellipsoid
model (default is WGS84)

N/A N/A N/A

posECR ECR Spacecraft Position meters N/A see NOTES
ray[3] unit vector along the line of

sight, in ECR coordinates
N/A -1 per component +1 per component

OUTPUTS:

Table 6-250. PGS_CSC_GrazingRay Outputs
Name Description Units Min Max

latitude geodetic latitude of posNEAR (q.v. below) radians -pi/2 pi/2
longitude longitude of posNEAR (q.v. below) radians -pi pi
missAltitude altitude of posNEAR (q.v. below) meters N/A N/A
slantRange range to posNEAR (q.v. below) m/s -7000 7000
posNEAR[0] X coordinate (in ECR) of the point on ray

nearest to the ellipsoid (when ray misses);
when ray hits, this point is defined to be
midpoint of the ray chord within the ellipsoid
(see NOTES)

meters N/A N/A

posNEAR[1] Y coordinate (in ECR) of the point on ray
nearest to the ellipsoid (when ray misses);
when ray hits, this point is defined to be
midpoint of the ray chord within the ellipsoid
(see NOTES)

meters N/A N/A

posNEAR[2] Z coordinate (in ECR) of the point on ray
nearest to the ellipsoid (when ray misses);
when ray hits, this point is defined to be
midpoint of the ray chord within the ellipsoid
(see NOTES)

meters N/A N/A

posSURF[0] X coordinate (in ECR) of the point on Earth
closest to the ray (when the ray misses Earth
limb) or where the ray first strikes the Earth
ellipsoid, (in the case that it does not miss)

meters N/A, but
normally <
6378140

N/A, but
normally >
-6378140

posSURF[1] Y coordinate (in ECR) of the point on Earth
closest to the ray (when the ray misses Earth
limb) or where the ray first strikes the Earth
ellipsoid (in the case that it does not miss)

meters N/A, but
normally <
6378140

N/A, but
normally >
-6378140

posSURF[2] Z coordinate (in ECR) of the point on Earth
closest to the ray (when the ray misses Earth
limb) or where the ray first strikes the Earth
ellipsoid (in the case that it does not miss)

meters N/A, but
normally <
6378140

N/A, but
normally >
-6378140

 6-512 EED2-333-001

RETURNS:

Table 6-251. PGS_CSC_GrazingRay Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCSC_W_SUBTERRANEAN User provided a subterranean position for the spacecraft
PGSCSC_W_HIT_EARTH Line of Sight struck the Ellipsoid
PGSCSC_W_LOOK_AWAY Line of sight points away from Earth
PGSCSC_W_ERROR_IN_GRAZINGRAY Generic return for warning in lower level function
PGSCSC_W_SPHERE_BODY Using a spherical Earth model
PGSCSC_W_LARGE_FLATTENING Issued if flattening factor is greater than 0.01
PGSCSC_W_DEFAULT_EARTH_MODEL Default Earth model was used - user's model not found
PGSCSC_W_ZERO_PIXEL_VECTOR Zero length ray vector supplied (terminates execution)
PGSCSC_E_BAD_EARTH_MODEL Equatorial or polar radius less than or equal to 0.0 or the

model defines a prolate Earth
PGS_E_TOOLKIT Something unexpected happened—execution aborted

EXAMPLES:1
C: #include <PGS_CSC.h>
 PGSt_SMF_status returnStatus

 char earthEllipsTag[50];
 PGSt_double posECR[3];
 PGSt_double ray[3];
 PGSt_double latitude;
 PGSt_double longitude;
 PGSt_double missAltitude;
 PGSt_double slantRange;
 PGSt_double posNEAR[3];
 PGSt_double posSURF[3];

 strcpy(earthEllipsTag,"GEM-10B");
 posECR[0] = 4077000.0;

 posECR[1] = 5000000.0;
 posECR[2] = -3200000.0;

 ray[0] = 0.0002;
 ray[1] = -1.0;
 ray[2] = -0.422;

 returnStatus = PGS_CSC_GrazingRay(
 earthEllipsTag,posECR,ray,&latitude,&longitude,
 &missAltitude,&slantRange, posNEAR,
 posSURF);

1 Note: As is Toolkit standard, to avoid possible interface problems to outside software that may support different
word lengths, the Toolkit renormalizes all unit input vectors at the same time it checks for zero length input vectors.
Therefore the inputs shown here are unnormalized.

 6-513 EED2-333-001

 printf("Longitude %f\n",longitude);
 printf("Latitude: %f\n",latitude);
 printf("Altitude: %f\n",missAltitude);
 printf("Slant Range: %f\n",slantRange);

 if(returnStatus == PGS_S_SUCCESS)
 {
 printf("Point on Ray Nearest Earth: %f, %f, %f\n",
 posNEAR[0],posNEAR[1],posNEAR[2]);
 printf("Point on Surface Nearest Ray: %f, %f, %f\n",
 posSURF[0],posSURF[1],posSURF[2]);
 }
else if(returnStatus == PGSCSC_W_HIT_EARTH)
 {
 printf("Midpoint of Ray Chord in Earth: %f, %f, %f\n",

 posNEAR[0],posNEAR[1],posNEAR[2]);
 printf("Line of Sight Strikes Earth at: %f, %f, %f\n",
 posSURF[0],posSURF[1],posSURF[2]);
 }
else
 {
 ** test errors,
 take appropriate
 action **
 }

FORTRAN:
 include 'PGS_SMF.f'

include 'PGS_CSC_4.f'
 implicit none

integer pgs_csc_grazingray
integer returnstatus
character*19 earthellipstag
double precision posecr(3)
double precision ray(3)
double precision latitude
double precision longitude
double precision missaltitude
double precision slantrange
double precision posnear(3)
double precision possurf(3)

 posecr(1) = 4077000.0

posecr(2) = 5000000.0
posecr(3) = -3200000.0
ray(1) = -0.0002
ray(2) = -1.0
ray(3) = -0.422
returnstatus = pgs_csc_grazingray(
earthellipstag,posecr,ray,latitude,longitude,
 missaltitude,slantrange, posnear,
 possurf)

 print*,'Longitude: ',longitude
print*,'Latitude: ',latitude
print*,'Slant Range: ',slantrange
print*,'Altitude: ',missaltitude

 if(returnStatus .eq. PGS_S_SUCCESS) then
C ampersands & below are continuation marks in column

 6-514 EED2-333-001

 print*,'Point on Ray Nearest Earth: X = ',
 posnear(1),' Y = ',posnear(2),' Z = ', posnear(3)
 print*,'Point on Surface Nearest Ray: X = ',
 & possurf(1),' Y = ',possurf(2),' Z = ', possurf(3)
 else if (returnStatus .eq. PGSCSC_W_HIT_EARTH) then
 print*,'Midpoint of Ray Chord in Earth: X = ',
 &posnear(1),' Y = ',posnear(2),' Z = ', posnear(3)
 print*,'Line of Sight Strikes Earth at: X = ',
 &possurf(1),' Y = ',possurf(2),' Z = ', possurf(3)
 else
C ** test errors, take appropriate action **
 endif
 print*,err,msg

NOTES: For a line of sight ("ray") that misses Earth limb, this tool calculates the
rectangular coordinates of the point Q of closest approach to the Earth and
the slant range to Q. It also obtains the latitude and longitude of the surface
point P nearest Q (and therefore nearest to the ray) and the geodetic
altitude of Q above P (Q and P have the same longitude and geodetic
altitude). When the ray, instead, intersects the Earth ellipsoid, the
rectangular coordinates of Q are replaced by those of a point halfway
between the two "pierce points" where the ray intersects the ellipsoid. The
intent is to provide a point with the nearly the same latitude and longitude
as the point closest to the Earth's surface on a ray from a background
object (such as the Sun) that is actually refracted round the Earth. When
the ray intersects the Earth, the latitude and longitude of P are also
replaced by those of the nearest pierce point, i.e. where the instrument is
looking, and the slant range is replaced by the range to that point.
Furthermore, the return value PGSCSC_W_HIT_EARTH issues. If the
ray, instead, points away from the Earth ellipsoid, the altitude output
variable is set to PGSd_GEO_ERROR_VALUE and the return value to
PGSCSC_W_LOOK_AWAY, in either case - ray missing the ellipsoid or
ray striking it. The return PGSCSC_W_ZERO_PIXEL_VECTOR
terminates execution, even though it is a "warning" level only; the
"warning" status was defined for this message to support certain tools that
process arrays of pixels at once, in order that if a few pixel vectors were
bad, the remainder could be processed. The same return is reused here,
but promoted to have a fatal result.

 If an invalid earthEllipsTag is input, the program will use the WGS84
Earth model by default.

REQUIREMENTS: PGSTK-1085

6.3.4.11 CSC Functions

PGS_CSC_DayNight

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

 6-515 EED2-333-001

PGS_CSC_ECItoECR

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECItoORB

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECItoSC

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECRtoECI

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ECRtoGEO

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_EarthOccult

Test for earth occultation of a celestial body in the field of view. The test is in three phases. The
first phase does not depend on the CB at all - it is just a check if the Earth fills the field of view.
The second test (exercised only if the first fails to find total occultation) determines if the
celestial body is behind the Earth. If the second test fails, the vector in SC coordinates that points
at the part of the CB most distant from the Earth center is returned so that the calling function
can determine if the Earth's bulge (difference in radius over that of an inscribed sphere) occults
the CB.

PGS_CSC_Earthpt_FixedFOV

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_Earthpt_FOV

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_EulerToQuat

Transforms Euler angles to Quaternions.

PGS_CSC_FOVconicalHull

A circular cone is drawn around the FOV and a check is made as to whether the candidate point
is inside it before going any further. The function has two purposes:

a. it will speed up tasks by obviating complicated algorithms for points well away from the
FOV

b. it will enable detection and rejection of FOV specifications outside our present
algorithmic limits. [Present software does not reliably handle fields of view more than
180 degrees across.]

 6-516 EED2-333-001

PGS_CSC_GEOtoECR

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_GetEarthFigure

This tool gets the equatorial and polar radii from the earthfigure.dat file for the earth model input.

PGS_CSC_GetFOV_Pixel

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_GreenwichHour

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_J2000toTOD

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_LookPoint

Solves the look point equation. method:

Solve the quadratic equation

x = p + d*u

where x must lie on an ellipsoid, for the slant range, d, corresponding to the intersection of the
extended look vector, u, with the surface of the earth. Then compute x directly.

PGS_CSC_Norm

This tool computes the norm of a 3-vector.

PGS_CSC_ORBtoECI

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_ORBtoSC

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_PointInFOVgeom

For each input point, the function does the processing to determine if a point is in the field of
view and returns a flag indicating whether the point is in the field of view.

PGS_CSC_QuatToEuler

This function gets Euler angles from a quaternion.

PGS_CSC_SCtoECI

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

 6-517 EED2-333-001

PGS_CSC_SCtoORB

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_SpaceRefract

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_SubSatPoint

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_SubSatPointVel

This tool finds the North and East components of the velocity of the subsatellite point and the
rate of change of spacecraft altitude.

PGS_CSC_TODtoJ2000

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_TiltYaw

Obtains the tipped orbital (geodetic nadir) to orbital transformation quaternion.

PGS_CSC_UT1_update

updates the file “utcpole.dat”

PGS_CSC_UTC_UT1Pole

This tool accesses the file 'utcpole.dat' and extracts using interpolation the x,y pole postion in
seconds of arc and the difference of UT1 and UTC, given an input Julian date.

PGS_CSC_ZenithAzimuth

See description in 6.3.4.9: Coordinate System Conversion Transformation Tools

PGS_CSC_crossProduct

Cross product of vectors

PGS_CSC_dotProduct

Dot product of vectors

PGS_CSC_getECItoORBquat

This function returns a quaternion describing the rotation from the Earth Centered Inertial (ECI)
reference frame to the Orbital (ORB) reference frame. That is the quaternion returned will
transform a vector in the ECI frame to the equivalent vector in the ORB frame.

 6-518 EED2-333-001

PGS_CSC_getORBtoECIquat

This function returns a quaternion describing the rotation from the Orbital (ORB) reference
frame to the Earth Centered Inertial (ECI) reference frame. That is the quaternion returned will
transform a vector in the ORB frame to the equivalent vector in the ECI frame.

PGS_CSC_getQuats

Converts a transformation matrix to a quaternion

PGS_CSC_nutate2000

This tool transforms a vector under nutation between Mean Celestial Coordinates of date in
Barycentric Dynamical Time (TDB) and True Celestial Coordinates of date.

PGS_CSC_precs2000

This tool precesses a vector from Mean Celestial Coordinates of date in Barycentric Dynamical
Time (TDB) to J2000 coordinates or from J2000 coordinates to Mean Celestial Coordinates of
date in Barycentric Dynamical Time (TDB).

PGS_CSC_quatMultiply

This file contains the function PGS_CSC_quatMultiply(). This function multiplies two
quaternions, using a short algorithm with 11 multiplications and 19 additions.

PGS_CSC_quatRotate

This function transforms a vector from one coordinate system to a rotated coordinate system with
a common origin, where the rotation is defined by a quaternion.

PGS_CSC_quickWahr

Wahr nutation with extrapolation for up to 1/2 hour (valid to microseconds of arc)

PGS_CSC_wahr2

Calculates nutation angles delta psi and delta epsilon, and their rates of change, referred to the
ecliptic of date, from the Wahr series.

6.3.5 Geo–Coordinate Transformation Tools

The geo–coordinate transformation tools are required to support the bi–directional transformation
between geographic coordinates and various standard map projection frames. The tools are
designed to give rapid coordinate transformations for many points. The tool provides
transformations from geodetic latitude and longitude as output from the geolocation tool into the
required map projection frames.

There are initialization routines for each set of transformations (PGS_GCT_Init). PGS_GCT_Init
routine is used to “save” in memory the projection parameters and to pre–calculate any variables
that are required in all subsequent transformations. Following the initialization of a projection

 6-519 EED2-333-001

there are routines for the forward and reverse transformations combined into a single interface
(PGS_GCT_Proj).

The tool may be used to perform many transformations in different projections within the same
executable program. If the same projection is required twice to perform transformations with two
different sets of parameters, then the initialization routine has to be called before each set of
transformations.

Every effort should be made to standardize projection definitions throughout the project to enable
data sets to be generated in a consistent manner.

In addition to the standard transformations of latitude and longitude to map projection specific
transformations from one projection to another are required, these are treated in a similar manner
as discussed below.

The tool is based on the commonly available packages general cartographic transformation
package (GCTP) for coordinate transformation; this package is based on the projections
described by Snyder. Map Projections—A Working Manual—J.P. Snyder, USGS professional
paper 1395, 1987.

 6-520 EED2-333-001

Initialize Given Projection Parameters

NAME: PGS_GCT_Init()

SYNOPSIS:

C: #include <PGS_GCT.h>

 PGSt_SMF_status
PGS_GCT_Init(
 PGSt_integer projId,
 PGSt_double projParam[],
 PGSt_integer directFlag)

FORTRAN: include "PGS_GCT.f"
include "PGS_GCT_12.f"
include "PGS_SMF.f"

 integer function pgs_gct_init(projid, projparam, directflag)
 integer projid
 double precision(30) projparam
 integer directflag

DESCRIPTION: This tool provides a general interface to perform geo–coordinate
transformations in the forward/inverse directions. In general the tool
requires a projection id, location of input data vectors and the direction of
the conversion. PGSd_UTM projection is a special case for which zone
value is also needed to define a point.

INPUTS:

Table 6-252. PGS_GCT_Init Inputs
Name Description Units Min Max

projId projection code none 1 #defined
projParam projection parms rad, m if latitude

if longitude
-90(PI/180)
-PI

90(PI/180)
PI

directFlag forward/inverse none PGSd_GCT_FORWARD PGSd_GCT_INVERSE

OUTPUTS: None

 6-521 EED2-333-001

RETURNS:

Table 6-253. PGS_GCT_Init Returns
Return Description

PGS_S_SUCCESS
PGSGCT_E_NO_DATA_FILES Data files for state plane could not be found
PGSGCT_E_GCTP_ERROR Error has occurred in the GCTP lib
PGSGCT_E_BAD_INC_ANGLE Invalid inclination angle in the Space Oblique

Mercator (SOM) projection
PGSGCT_E_BAD_RADIUS Invalid radius
PGSGCT_E_BAD_MINOR_AXIS Invalid minor radius
PGSGCT_E_MINOR_GT_MAJOR Minor radius is greater than major radius
PGSGCT_E_BAD_LONGITUDE Invalid longitude
PGSGCT_E_BAD_LATITUDE Invalid latitude
PGSGCT_E_BAD_DIRECTION Invalid direction
PGSGCT_E_INVD_SPCS_SPHEROID Invalid State Plane Coordinates Spheroid

(SPCS)
PGSGCT_E_INVD_PROJECTION Invalid Projection

EXAMPLES: NONE (see example for PGS_GCT_Proj())

NOTES: This routine simply initializes the parameters required by a particular
projection. The user is referred to the following appendices for further
details

 Projection List—Appendix G
Parameter List and Use—Appendix G
Spheroid List—Appendix G (State Plane Projection only)

 Following steps should be taken if a new projection is to be added to the
projection library:

 Step 1—archive new code to the projection library

 Step 2—define projection code for the new projection in proj.h

 Step 3—increment the value of MAXPROJ by one in proj.h

 Step 4—add calls to the forward and inverse initialization routines
at the end of this file.

 Parameters 0 and 1 are reserved for major axis and minor axis respectively

 Parameter 4 is reserved for longitude values only.

 Parameter 5 is reserved for latitude values only.

 Parameters 6 and 7 are reserved for false easting and northing values only.

 6-522 EED2-333-001

 IMPORTANT All blank array elements are set to zero by the user

 Latitude and longitude ranges are as defined in the input section above.
The routine checks the longitude value as -PI <= longitude <= PI and
latitude as -PI/2 <= latitude <=PI/2. The value of PI is defined as
3.141592653589793238 which is available to the user

 State Plane Projection is not available in the Toolkit.
REQUIREMENTS: PGSTK–1500, PGSTK–1502

 6-523 EED2-333-001

Transforms Geographical Coordinates into Cartesian Coordinates
and Vice Versa for the Given Projection

NAME: PGS_GCT_Proj()

SYNOPSIS:
C: #include <PGS_GCT.h>

 PGSt_SMF_status PGS_GCT_Proj(
 PGSt_integer projId,
 PGSt_integer directFlag,
 PGSt_integer nPoints,
 PGSt_double longitude[],
 PGSt_double latitude[],
 PGSt_double mapX[],
 PGSt_double mapY[],
 PGSt_integer zone[]);

FORTRAN: include "PGS_GCT.f"
include "PGS_GCT_12.f"

 integer function pgs_gct_init(projid, directflag, npoints, longitude,
 latitude, mapx, mapy, zone)
 integer projid
 integer directflag
 integer npoints
 double precision longitude(*)
 double precision latitude(*)
 double precision mapx(*)
 double precision mapy(*)
 double precision zone(*)

DESCRIPTION: This tool provides a general interface to perform geo–coordinate
transformations in the forward/inverse directions. In general the tool
requires a projection id, location of input data vectors and the direction of
the conversion. PGSd_UTM projection is a special case for which zone
value is also needed for inverse transformations. Forward PGSd_UTM
transformations return zone values as output.

 6-524 EED2-333-001

INPUTS:

Table 6-254. PGS_GCT_Proj Inputs
Name Description Units Min Max

projId projection code none 1 #defined
directFlag forward/inverse none PGSd_GCT_FORWARD PGSd_GCT_INVERSE
nPoints num. of points none 1 variable
longitude[] longitude values radians -PI +PI
latitude[] latitude values radians -PI +PI
mapX[] x cartesian coordinate

(see notes)
meters variable variable

mapY[] y cartesian coordinate
(see notes)

meters variable variable

zone[] UTM zones (negative
for southern
hemisphere)

none -60 60

OUTPUTS: See description

RETURNS:

Table 6-255. PGS_GCT_Proj Returns
Return Description

PGS_S_SUCCESS Successful return
PGSGCT_E_BAD_ZONE Invalid universal transverse mercator (UTM) zone
PGSGCT_E_BAD_DIRECTION Invalid direction
PGSGCT_E_INVD_PROJECTION Projection doesn't exists
PGSGCT_E_NO_POINTS Number of points less than one
PGSGCT_E_GCTP_ERROR Error in the GCTP library
PGSGCT_E_BAD_LONGITUDE Bad longitude value (out of range)
PGSGCT_E_BAD_LATITUDE Bad latitude value (out of range)
PGSGCT_W_INTP_REGION Interrupted region encountered

EXAMPLES:

C: #include "PGS_GCT.h"

 PGS_SMF_status retValue;
PGSt_double projParam[15] ;
PGSt_double latitude[4];
PGSt_double longitude[4];
PGSt_double mapX[4], mapY[4];

 6-525 EED2-333-001

PGSt_integer ProjId = PGSd_UTM;
PGSt_integer nPoints = 4;
PGSt_integer directFlag, i;
PGSt_integer zone[4] = {0, 0, 0, 0};

 PGSt_integer cucFileId;

 /* All parameters must be initialized to zero */

 for (i = 0; i<15) i++)
{
 projParam[i] = 0;
}

 /* C array starts from 0 */

 for (i = 1; i<5) i++)
{
 longitude[i-1] = PI/i;
 latitude[i-1] = PI/4;
}
cucFileId = 10999;
retValue = PGS_CUC_cons(cucFileId,"CLRK80_MAJOR_AXIS",
&ProjParam[0]);
retValue = PGS_CUC_cons(cucFileId,"CLRK80_MINOR_AXIS",
&ProjParam[1]);
 ProjParam[5] = PI/2;
 ProjParam[6] = 3000000 /*(false easting in meters) */
 ProjParam[7] = 75000000 /* (false northing in meters)
*/

 directFlag = PGSd_GCT_FORWARD;
retValue = PGS_GCT_Init (projId, projParam, directFlag);
retValue = PGS_GCT_Proj(projId, directflag, nPoints,
 latitude, longitude, mapX, mapY, zone);

 directflag = PGSd_GCT_INVERSE; (cartesian to
 geographical)
retValue = PGS_GCT_Init (projId, projParam, directFlag);
retValue = PGS_GCT_Proj(projId, directflag, nPoints,
 latitude, longitude, mapX, mapY, zone);

FORTRAN: implicit none

 include "PGS_GCT.f"
include "PGS_GCT_12"
include "PGS_SMF.f"

 6-526 EED2-333-001

 integer PGS_GCT_Proj
integer retValue
double precision projParam(15)
double precision latitude(4)
double precision longitude(4)
double precision mapX(4), mapY(4)
integer ProjId
integer nPoints
integer directFlag, i
integer zone(4)

 integer cucFileId

 ProjId = PGSd_UTM

 nPoints = 4

 C Projection parameters must be initialized to zero

 do 10 i= 1, 15

 projParam(i) = 0

 10 continue

 C FORTRAN array starts from 1

 do 20 i= 1, 4

 longitude(i) = PI/i
 latitude(i) = PI/4

 20 continue
cucFileId = 10999
pgs_cuc_cons(cucFileId,"CLRK80_MAJOR_AXIS", ProjParam(0));
pgs_cuc_cons(cucFileId,"CLRK80_MINOR_AXIS", ProjParam(1));
ProjParam(5) = PI/2

 C false easting in meters
ProjParam(6) = 3000000

 C false northing in meters
ProjParam(7) = 75000000

 directFlag = PGSd_GCT_FORWARD
retValue = PGS_GCT_Init (projId, projParam, directFlag)
retValue = PGS_GCT_Proj(projId, directflag, nPoint
 latitude, longitude, mapX, mapY, zone)

 C cartesian to geographical

 6-527 EED2-333-001

 directflag = PGSd_GCT_INVERSE
pgs_gct_init (projId, projParam, directFlag)
pgs_gct_proj(projId, directflag, nPoints,
 latitude, longitude, mapX, mapY, zone)

NOTES: The units of output cartesian coordinates essentially depends on the units
used for the Earth's radii, false easting and northing, etc., in the parameters
list. The only requirement is that the units used should be consistent.

 The zones[] parameter is at present only used for UTM transformations.
It's an output parameter in the FORWARD direction and input parameter
in the INVERSE direction.

 All points are processed even if there is an error condition for some points.
If bad point(s) are encountered the routine returns
PGSd_GCT_IN_ERROR in the output vector. The user can find out the
offending input values by searching for the PGSd_GCT_IN_ERROR in
the output vector. For example, if the third point is in error then:

 Input Vector
Longitude 1, 2, 3, 4, 5
latitude 1, 1, 1, 1, 1

 Output Vector
X .01, .02, PGSd_GCT_IN_ERROR, .04, .05
Y .1, .2. PGSd_GCT_IN_ERROR, .4, .5

 For the inverse transformations, two projections, namely Interrupted
Goode and Interrupted Mollweide sometimes encounter a point that is in
an interrupted region. In such cases the tool does not abandon processing
but puts a value PGSd_GCT_IN_BREAK in the output vector. At the end
of processing the tool returns a warning that an Interrupted region was
encountered. The user can find out the offending input values by searching
for the PGSd_GCT_IN_BREAK in the output vector. For example, if the
third point is in the interrupted region:

 Input Vector
X 1, 2, 3, 4, 5
Y 1, 1, 1, 1, 1

 Output Vector
Longitude .01, .02, PGSd_GCT_IN_BREAK, .04, .05
latitude .1, .2. PGSd_GCT_IN_BREAK, .4, .5

REQUIREMENTS: PGSTK–1500, 1502

 6-528 EED2-333-001

6.3.6 Math and Statistical Support Tools

IMSL has been selected to provide a suite of standard mathematical manipulation functions in a
uniform package. This package is available to SCF and DAAC facilities through the EDHS
server. Usage of the functionality supplied by the math package will not be mandatory and user
developed or shareware routines may be included in science processing software. Users will be
responsible for the functionality and long term maintenance of their homegrown software. IMSL
service will be provided gratis.

We note that internal Toolkit software does not depend on IMSL.

6.3.7 Constants and Unit Conversions

6.3.7.1 Introduction

The constants and unit conversion tools provide a means to access commonly used mathematical
and physical constants, and a coherent means to perform unit conversions and parameter
translations.

When the units conversion required is a linear conversion (e.g., degrees to radians) the most
efficient mechanism for the programmer is to be given access to a physical constant that
describes that transformation and then for the programmer to use this as appropriate. Providing a
calling routine to perform the transformation would be inappropriate to most unit conversions
and therefore specific API’s for this are not provided.

6.3.7.2 Requirements Compliance
a. PGSTK–1521 states that the Toolkit shall provide a means of accessing constant values

related to an instrument. Constants that relate to instrument parameters are treated as
ancillary data (static internal and dynamic internal) to the algorithms. The mechanism for
retrieving instrument ancillary data is described elsewhere in section 6.2.1.6; this
requirement is fulfilled by that tool.

b. An external file using some standard parameter=value mechanism will be used to store
the mathematical and physical constants, in a similar way as performed in the ancillary
data access tools. In this way the values are capable of adjustment without recompilation
(requirement PGSTK–1522)

c. PGSTK–1531 states that unit conversion tools shall transform multiple values in a single
call. As described above, the most efficient way for the programmer to perform unit
conversions is to be given access to the conversion factor, which will be provided by the
following tool. This requirement is therefore redundant.

 6-529 EED2-333-001

Obtain a Value for a User Specified Constant

NAME: PGS_CUC_Cons

SYNOPSIS:

C: #include <PGS_CUC.h>

 PGSt_SMF_Status
PGS_CUC_Cons (
 PGSt_integer inpfileid,
 char *inpParameter,
 PGSt_double *outvalue)

FORTRAN: include 'PGS_CUC_11.f'
include 'PGS_SMF_.f'

 integer function PGS_CUC_Cons (inpfileid, inpParameter, outvalue)
 integer inpfileid,
 character inpParameter,
 double precision outvalue)

DESCRIPTION: This routine receives the fileid and the constant name from the user. The
fileid allows more than one input file to be used, thus allowing the user to
implement his or her own specialized input files with constants. The
parameter is a character string representing the constant whose numerical
value is sought by the user. The resulting value is passed back to the user.

INPUTS:

Table 6-256. PGS_CUC_Cons Input
Name Description Units Min Max

fileid file identifier N/A N/A N/A
parameter constant wanted N/A N/A N/A

OUTPUTS:

Table 6-257. PGS_CUC_Cons Output
Name Description Units Min Max

value constant value N/A N/A N/A

 6-530 EED2-333-001

RETURNS:

Table 6-258. PGS_CUC_Cons Returns
Return Description

PGS_S_SUCCESS Successful return
PGSCUC_E__ERROR error in finding the constant value
The following are returned to the error log:
PGSCUC_E_CANT_GET_FILE_ID
PGSCUC_E_CANT_OPEN_INPUT_FILE
PGSCUC_E_AGG_CANT_BE_INSERTED
PGSCUC_E_READLABEL_PARSE_ERROR
PGSCUC_E_PARAMETER_INVALID
PGSCUC_E_FIRST_NODE_NOT_FOUND

EXAMPLES:

C: char parameter[] = {"PI"};
int fileid = 19701;
double result;

 ret_status = PGS_CUC_Cons(parameter, fileid, result);

FORTRAN: implicit none

 include 'PGS_CUC_11.f'
include 'PGS_SMF.f'

 integer pgs_CUC_cons
integer ret_status
integer inpfileid
character*100 inpParameter
double precision outvalue
inpfileid = 10790
inpParameter = 'pi'

 ret_status = pgs_cuc_cons(inpfileid, inpParameter, outvalue)
ret_value = PGS_CUC_get_parameter(“pi”, pi)

NOTES: User defines key word to be searched for within a logical file. User also
defines fileid so that location of file can be found. Tool uses ODL libraries
to conduct a parameter equals value search. For further information see
Constant and Unit Conversions (CUC) Tools Primer, Object Description
Language (ODL) documentation.

REQUIREMENTS: PGSTK–1520, PGSTK–1521, PGSTK–1522, PGSTK–1530

 6-531 EED2-333-001

Obtain Slope and Intercept to Calculate Conversion Between
Specified Units

NAME: PGS_CUC_Conv

SYNOPSIS:

C: #include <PGS_CUC.h>

 PGSt_SMF_Status
PGS_CUC_Conv (
 char inpUnit[],
 char outUnit[],
 PGSt_double *outSlope,
 PGSt_double *outIntercept)

FORTRAN: include 'PGS_CUC_11.f'
include 'PGS_SMF.f'

 integer function PGS_CUC_Conv(inpUnit, outUnit, outSlope,
 outIntercept)
 character*100 inpunit,
 character*100 outunit,
 pgst_double outslope,
 pgst_double outintercept)

DESCRIPTION: This routine receives two character descriptions of Units as inputs. The
first input is the unit that the user has; the second input being the unit the
user wants to transform to. Both Unit descriptions are held in a file, after a
search identifies whether each unit is held within the file the slope and
intercept of the conversion between units is calculated. The resulting
values for slope and intercept are then passed back to the user.

INPUTS:

Table 6-259. PGS_CUC_Conv Inputs
Name Description Units Min Max

inpUnit unit you have N/A N/A N/A
outUnit unit you want N/A N/A N/A

 6-532 EED2-333-001

OUTPUTS:

Table 6-260. PGS_CUC_Conv Outputs
Name Description Units Min Max

outSlope mathematical slope N/A N/A N/A
outIntercept mathematical intercept N/A N/A N/A

RETURNS:

Table 6-261. PGS_CUC_Conv Returns
Return Description

PGS_S_SUCCESS Successful return
PGS_E_CUC_ERROR error in performing conversion match
The following are returned to the error log:
PGSCUC_E_COULDNT_INIT_UDUNITS3
PGSCUC_E_DONT_KNOW_INP_UNIT
PGSCUC_E_DONT_KNOW_OUTP_UNIT
PGSCUC_E_UNITS_ARE_INCOMPATIBLE
PGSCUC_E_A_UNIT_IS_CORRUPTED

EXAMPLES:

C: char inpUnit[] = {"centigrade"};
char outUnit[] = {"fahrenheit"};
double *outSlope;
double *outIntercept;

 ret_status = PGS_CUC_Conv(inpUnit, outUnit, outSlope,
outIntercept);

FORTRAN: implicit none

 include 'PGS_CUC_11.f'
include 'PGS_SMF.f'

 integer PGS_CUC_Conv
integer ret_status
character*100 inpUnit
character*100 outUnit
double precision outSlope
double precision outIntercept
InpUnit = 'metres'
OutUnit = 'feet'
ret_status = pgs_cuc_conv(inpUnit, outUnit, outSlope,
> outIntercept)

 6-533 EED2-333-001

NOTES: For further details on this tool, see Appendix I. Background on library
units used, Units available for conversion and adding own conversion
Units to the file.

REQUIREMENTS: PGSTK–1520, PGSTK–1521, PGSTK–1522, PGSTK–1530

(C) Copyright 1992 UCAR/Unidata

Permission to use, copy, modify, and distribute this software and its documentation for any
purpose without fee is hereby granted, provided that the above copyright notice appears in all
copies, that both that copyright notice and this permission notice appear in supporting
documentation, and that the name of UCAR/Unidata not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. UCAR
makes no representations about the suitability of this software for any purpose. It is provided "as
is" without express or implied warranty. It is provided with no support and without obligation on
the part of UCAR or Unidata, to assist in its use, correction, modification, or enhancement.

 6-534 EED2-333-001

6.3.8 Dynamic Memory Management Tools

Allocate Memory

NAME: PGS_MEM_Malloc()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_Malloc(
 void **addr,
 size_t numBytes);

FORTRAN: None

DESCRIPTION: This tool allocates an arbitrary number of bytes in memory.

INPUTS: numBytes—number of bytes to allocate

OUTPUTS: addr—pointer to beginning of address that has been allocated

RETURNS:

Table 6-262. PGS_MEM_Malloc Returns
Return Description

PGS_S_SUCCESS Success
PGSMEM_E_NO_MEMORY No memory space available for current process
PGSMEM_W_MEMORY_USED Memory address has been allocated previously

EXAMPLES: int i;
int *intPtr = (int *)NULL;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_Malloc((void
 **)&intPtr,sizeof(int)*10);
if (returnStatus == PGS_S_SUCCESS)
{
 for (i=0 ; i < 10 ; i++)
 {
 intPtr[i] = i;
 }
}

 6-535 EED2-333-001

NOTES: This tool will control the amount of memory that may be allocated at any
one time. You should call PGS_MEM_Free() to free the memory
allocated once you are done using it; failure to do so may cause future
memory allocation requests to fail within the same process.

 Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, which have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process

REQUIREMENTS: PGSTK–1240

 6-536 EED2-333-001

Allocate Memory

NAME: PGS_MEM_Calloc()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_Calloc(
 void **addr,
 size_t num_elems,
 size_t elem_size);

FORTRAN: None

DESCRIPTION: This tool allocates an arbitrary number of bytes in memory. All bytes of
the allocated memory will be initialized to zero.

INPUTS: num_elems—number of elements

 elem_size—size of the element in bytes

OUTPUTS: addr—pointer to beginning address of the memory that has been allocated

RETURNS:

Table 6-263. PGS_MEM_Calloc Returns
Return Description

PGS_S_SUCCESS Success
PGSMEM_E_NO_MEMORY No memory space available for current process
PGSMEM_W_MEMORY_USED Memory address has been allocated previously

EXAMPLES: int i;
int *intPtr = (int *)NULL;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_Calloc((void
 **)&intPtr,10,sizeof(int));
if (returnStatus == PGS_S_SUCCESS)
{
 for (i=0 ; i < 10 ; i++)
 {
 intPtr[i] = i;
 }
}

 6-537 EED2-333-001

NOTES: This tool will control the amount of memory that may be allocated at any
one time. You should call PGS_MEM_Free() to free the memory
allocated once you are done with it; failure to do so may cause future
memory allocation requests to fail within the same process.

 Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, that have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process.

REQUIREMENTS: PGSTK–1240, PGSTK–1241

 6-538 EED2-333-001

Re–Allocate Memory

NAME: PGS_MEM_Realloc()

SYNOPSIS:

C: #include <PGS_MEM.h>

 PGSt_SMF_status
PGS_MEM_Realloc(
 void **addr,
 size_t newsize);

FORTRAN: None

DESCRIPTION: This tool reallocates the number of bytes requested.

INPUTS: addr—pointer to the starting address of previously allocated memory

 newsize—new total memory size to reallocate

OUTPUTS: addr—pointer to starting address of newly allocated memory

RETURNS:

Table 6-264. PGS_MEM_Realloc Returns
Return Description

PGS_S_SUCCESS Success
PGSMEM_E_NO_MEMORY No memory space available for current process
PGSMEM_E_ADDR_NOTALLOC Address is not allocated previously

EXAMPLES: int i;
int *intPtr = (int *)NULL;
PGSt_SMF_status returnStatus;

 returnStatus = PGS_MEM_Calloc((void
 **)&intPtr,10,sizeof(int));
if (returnStatus == PGS_S_SUCCESS)
{
 for (i=0 ; i < 10 ; i++)
 {
 intPtr[i] = i;
 }
}

 6-539 EED2-333-001

 returnStatus = PGS_MEM_Realloc((void
 **)&intPtr,sizeof(int)*20);
if (returnStatus == PGS_S_SUCCESS)
{
 # Realloc success #
}

NOTES: This tool will control the amount of memory that needs to be reallocated to
a pointer that has already been used to obtain an initial allocation of
memory through one of the available Toolkit routines. You should call
PGS_MEM_Free() to deallocate the memory once you are done using it;
failure to do so may cause future memory allocation requests to fail within
the same process.

 Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, that have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process.

REQUIREMENTS: PGSTK–1240

 6-540 EED2-333-001

Initialize Memory to Zero

NAME: PGS_MEM_Zero()

SYNOPSIS:

C: #include <PGS_MEM.h>

 void
PGS_MEM_Zero(
 void *addr,
 size_t numBytes);

FORTRAN: None

DESCRIPTION: This tool initializes a memory block or structure to zero.

INPUTS: addr—beginning address of the memory block or structure

 numbytes—number of bytes

OUTPUTS: None

RETURNS: None

EXAMPLES: Typedef struct
{
 int i;
 char c;
 float f;
}TestStruct;

 TestStruct test
int *intptr = (int *)NULL
returnstatus returnstatus

 PGS_MEM_Zero(&test,sizeof(test));
returnstatus = PGS_MEM_Malloc((void
 **)&intPtr,sizeof(int)*10);
if (returnstatus == PGS_S_SUCCESS)
{
 PGS_MEM_Zero(intPtr,sizeof(intPtr)*10)
}

 PGS_MEM_Zero(s, sizeof(longint)*10);

REQUIREMENTS: PGSTK–1240

 6-541 EED2-333-001

De–Allocate Memory

NAME: PGS_MEM_Free()

SYNOPSIS:

C: #include <PGS_MEM.h>

 void
PGS_MEM_Free(
 void *addr);

FORTRAN: None

DESCRIPTION: This tool deallocates memory that was previously allocated through the
use of a Toolkit allocation routine.

INPUTS: addr—address of previously allocated memory

OUTPUTS: None

RETURNS: None

EXAMPLES: int *intPtr = (int *)NULL;
returnStatus returnStatus;

 returnStatus = PGS_MEM_Malloc((void
 **)&intPtr,sizeof(int)*10);
if (returnStatus == PGS_S_SUCCESS)
{
 PGS_MEM_Free(intPtr);
 intPtr = (int *)NULL;
}

NOTE: Because the Toolkit memory functions track memory usage, it is
imperative that pointer variables, which have been freed, be initialized to
NULL prior to re–use. As a reminder, ALL local pointer variables MUST
be initialized to NULL prior to use. Failure to heed these warnings may
result in anomalous behavior within your process.

REQUIREMENTS: PGSTK–1240

 6-542 EED2-333-001

De–Allocate Memory

NAME: PGS_MEM_FreeAll()

SYNOPSIS:

C: #include <PGS_MEM.h>

 void
PGS_MEM_FreeAll(
 void);

FORTRAN: None

DESCRIPTION: Deallocates all memory that was previously allocated through the use of
Toolkit allocation routines, within an executable. Calls to
PGS_MEM_Free() and PGS_MEM_FreeAll() may be interlaced.

INPUTS: None

OUTPUTS: None

RETURNS: None

EXAMPLES: typedef struct
{
 int i;
 char c;
 float f;
}TestStruct;

 TestStruct *test = (TestStruct *)NULL;
int *intPtr = (int *)NULL;

 PGS_MEM_Malloc((void **)&intPtr,sizeof(int)*10);
PGS_MEM_Malloc((void **)&test,sizeof(TestStruct)*10);
PGS_MEM_FreeAll();

 test = (TestStruct *)NULL
intPtr = (int *)NULL

NOTES: This tool should only be called near the end of processing, or when no
further allocation of dynamic memory will be required.

 Due to the comprehensive nature of this tool, all allocated memory
references, that have not yet been freed, will be disposed of. Because the
Toolkit memory functions track memory usage, it is imperative that
pointer variables, which have been freed, be initialized to NULL prior to

 6-543 EED2-333-001

use. Failure to heed these warnings may result in anomalous behavior
within your process.

REQUIREMENTS: PGSTK–1240

6.3.9 Graphics Support Tools

These tools will support the analysis of graphics, quicklook and quality assurance (QA) data
output from science production processes. It is assumed that the exchange format of the data files
will be HDF, although specific graphics formats are TBD at the time of this document. These
tools will contain an image processing capability, which will be used in conjunction with the
math library chosen for the Toolkit (section 6.3.6), or with user supplied math functions. It is
expected that this functionality will be a subset of the data visualization capability supplied by
EOSVIEW, a package being developed to display EOS data structure.

 6-544 EED2-333-001

This page intentionally left blank.

 A-1 EED2-333-001

Appendix A. Assumptions

The following is a list of assumptions made in developing the specification of the routines in the
SDP Toolkit described in section 6.

A.1 SDP Toolkit Tools—Mandatory

A.1.1 File I/O Tools

A.1.1.1 Level 0 Science Data Access Tools

PGS_IO_L0_Open()

PGS_IO_L0_GetHeader()

PGS_IO_L0_GetPacket()

a. Level 0 raw data will be in the form of CCSDS–formatted packets.

b. Level 0 packets will be time–ordered and duplicate packets will have been removed by
EDOS or Pacor/DDF.

c. Level 0 access routines are designed to operate on physical files, which may not be
identical to data granules.

d. Level 0 data files, with associated file attribute metadata, will come through the Science
Data Processing Segment (SDPS) ingest data server and will be pre–staged to a given
PGE.

e. ECS Data Ingest will stage and make available file attribute metadata for each physical
Level 0 data file staged to a PGE.

f. Without changing any physical file data, ECS Data Ingest will perform any
granularization of Level 0 data to a form other than as is received from SDPF or EDOS
(if this does not correspond to the form required by EOS investigators) prior to the
staging of Level 0 data to the PGE.

g. ECS Data Ingest will perform any EOS investigator required subsetting or combination of
Level 0 header and quality information that is necessary as a result of granularizing Level
0 data files prior to the staging of the data to the PGE.

h. ECS Data Ingest will make information on the orbit number corresponding to each
physical Level 0 data file available to the SDP Toolkit through associated metadata.

i. For each SDPF–generated Data Set File staged to a PGE by ECS Data Ingest, the
corresponding SFDU header file will also be staged.

j. Level 0 data files will be staged to a PGE in the machine native format.

 A-2 EED2-333-001

k. For each staged Level 0 data file, the following file attribute metadata parameters, at a
minimum, will be staged and available to a PGE for use in science processing:

1. time tag of 1st packet of staged Level 0

2. time tag of last packet of staged Level 0

3. number of physical Level 0 data files staged

4. start time of Level 0 data as requested by investigators through the planner/scheduler
system

5. end time of Level 0 data as requested by investigators through the planner/scheduler
system

6. APID of each Level 0 data file, if the Level 0 data files are APID–unique

7. orbit number(s) of the staged Level 0 data

A.1.1.2 HDF File Access Tools
a. It is assumed that users will obtain and compile the HDF libraries of the HDF Group on

their own and link with the PGS. (HDF4 and HDF5 distribution is available via
http://www.hdfgroup.org/.)

A.1.1.4 Metadata

PGS_MET_Init()

a. A Metadata Configuration File (MCF) will be built around the 'parameter = value' form to
provide maximum flexibility. Each metadata element will be fully described in the MCF.
This information will be held in memory in a set of linked structures or similar constructs.

b. The core metadata descriptions will be supplied by ECS.

c. It is assumed that only one header will be initiated at any one time during processing.

PGS_MET_Write()

a. It is assumed that the output of the metadata tools will be to an HDF (HDF4 or HDF5)
formatted product. In each case the product/file may be existing or new. It is assumed that
these products/files will be opened and closed using the appropriate tools (e.g.,
open/close generic file); i.e., the _MET_ tools do not perform these functions.

b. It is assumed that further interaction with the inventory is done using other software that
interacts with the metadata file produced by this tool.

 A-3 EED2-333-001

PGS_MET_GetPCAttr()

a. It is assumed that input products are accessed through the PCF and associated tools

b. It is assumed that the metadata in input files is available either 1. in the same form as that
written by PGS_MET_Write or 2. in a simple separate ASCII text file. In both cases, the
metadata file is referenced in the field prescribed by the PCF rules.

PGS_MET_GetConfig ()

a. It is assumed that configuration data is held as prescribed by the PCF rules.

b. It is assumed that configuration data will be accessed using the label field.

A.1.2 Error/Status Reporting Tools
a. It is assumed that only three log files will need to be created by the Toolkit: Status

Message Log, User Status Log and Status Report Log.

b. Every call to a PGS_SMF_Set* routine results in a status message being appended to the
Status Log file.

c. Status Report entries are directed to the Status Report Log file.

d. User Status entries are directed to the User Status Log file.

PGS_SMF_SetHDFMsg()

a. It is assumed that calls to HDF–EOS library routines will set or return an error code and
message that can be retrieved by this function for later recall by other error reporting
tools, or that the HDF–EOS library will incorporate the existing SMF library calls thereby
circumventing the need for this tool.

PGS_SMF_GetActionByCode()

a. It is assumed that the user only requires the specification and retrieval of an action
string, for use in reporting, and not the specification and execution of action methods.

PGS_SMF_CreateMsgTag()

a. Assumption is that this tool will have access to production run id and science software
program id during runtime; thus enabling this routine to generate a unique string based
on product id.

PGS_SMF_GenerateStatusReport()

a. It is assumed that the Toolkit development team has the license to determine the format
of the individual status report entries. The format that we have adopted calls for a
system–defined message tag to precede a user–provided message string; separators will
be inserted between individual report entries for the sake of clarity.

b. It is assumed that the generation of a status report results in the report being entered into a
Status Report Log file created by the Toolkit.

 A-4 EED2-333-001

PGS_SMF_SendRuntimeData()

a. It is assumed that this toolkit will interface to some other toolkit, or Communications and
Systems Management Segment (CSMS) functionality, to effect the transfer of the
selected Runtime files to an intermediate holding location. The same mechanism will
perform the transmission of one or more e–mail notices to alert the interested parties as to
the disposition of the Runtime files.

b. It is also assumed that there will be a defined intermediate holding location for this toolkit
to send the Runtime files at the DAAC site and that there will be an interface to alert the
monitoring authority that these Runtime files have arrived.

A.1.3 Process Control Tools
a. a PGE process control database record will exist as a UNIX file or Database Management

System (DBMS) record for each PGE within the DAAC.

b. A template PGE process control database record will be "seeded" with user–defined
information during the integration and testing process.

c. An instance of the PGE process control database record will be populated with the
appropriate runtime data and if necessary, staged prior to PGE execution.

d. Runtime parameter values may be modified prior to runtime through some as yet
unidentified interface/mechanism.

e. A one–to–many logical–to–physical file relationship may exist for input product, output
product, input support and output support files.

f. The Planning & Data Production System (PDPS) will provide for Toolkit initialization
allowing internal Toolkit structures to become populated.

g. The PDPS will provide for Toolkit termination, allowing the Toolkit to perform
necessary housekeeping and ensuring that important intermediate data gets saved for
future runs of the same PGE.

PGS_PC_GenUniqueID()

a. It is assumed that the Science Software Program ID and the Production Run ID are
system defined values that will be available from the execution environment, or from the
PGE process control database during Toolkit Initialization.

b. The logical Product ID value passed in by the user will be defined by the user, but will
have been mapped to a DAAC–based intermediate identifier during the Integration &
Test phase.

 A-5 EED2-333-001

PGS_PC_GetConfigData()
PGS_PC_GetConfigDataCom

a. Each user–defined logical Runtime Parameter ID passed into this function will be
mapped to an actual runtime parameter during I&T. This will allow the Parameter ID to
be resolved into a default value, or an overriding value at runtime.

PGS_PC_GetReference()

a. It is assumed that users of HDF will utilize this tool to obtain a reference to pass to the
HDF open library call.

PGS_PC_GetNumberOfFiles()
PGS_PC_GetNumberOfFilesCom

a. To satisfy the one–to–many logical–to–physical file relationship, the user, upon retrieving
the number of files per given identifier with this tool, will be able to index to the desired
instance of a file by providing the version number to the appropriate file I/O toolkit
function.

PGS_PC_GetFileAttr()
PGS_PC_GetFileByAttr()
PGS_PC_GetFileAttrCom

a. It is assumed that input product metadata and file attributes will be made directly
available to the Toolkit through the PGE Process Control Database.

b. If available, it is assumed that input support file metadata and file attributes will be made
directly available to the Toolkit through the PGE Process Control Database.

A.1.4 Memory Management Tools

Dynamic Memory Tools

a. It is assumed that all dynamic memory allocated within the user's program is obtained
through the use of these tools.

Shared Memory Tools

a. One basic assumption is that all the executables will be invoked within a shell script (i.e.,
PGE).

b. Additionally, that there will be a shell script that wraps around the main PGE
shell script, allowing an initialization program to create a shared memory segment for
the Toolkit; this will enable the Toolkit to facilitate tracking of all the necessary resources
needed to support shared memory capabilities for the user. That same shell script will
allow a termination program to release all the shared–memory resources used by both the
Toolkit and the user.

c. Modification to the existing shared memory API will be minimal if and when the POSIX
implementation is adopted.

 A-6 EED2-333-001

d. Shared memory segments will be large enough to support the needs of both the user and
the Toolkit.

e. Two segments, one for the user and one for the Toolkit, can be attached concurrently
within the same process.

A.1.5 Bit Manipulation Tools
a. It is assumed that bit–manipulation functionality will be provided inherently by the

language for 'C' and Fortran90, and that users of Fortran77 will use compilers that
conform to MIL STD 1753 in order to obtain these capabilities.

A.1.6 Spacecraft Ephemeris and Attitude Data Access Tools

PGS_EPH_EphemAttit()

a. The specification for reliability of orbit and attitude data is assumed to be provided by
Goddard Space Flight Center (GSFC)/Flight Dynamics Facility (FDF).

b. This tool does not compute instrument attitude.

c. Time is assumed to be input in ASCII time code A or B format.

A.1.7 Time and Date Conversion Tools

PGS_TD_UTCtoTAI()

a. The current leap seconds file must be available.

PGS_TD_TAItoUTC()

a. The current leap seconds file must be available.

PGS_TD_UTCtoGPS()

a. The current leap seconds file must be available.

PGS_TD_GPStoUTC()

a. The current leap seconds file must be available.

PGS_TD_SCtime_to_UTC()

a. The Spacecraft time difference file or coefficients for interpolation must be available. The
current leap seconds file must be available.

PGS_TD_UTC_to_SCtime()

a. The Spacecraft time difference file or coefficients for interpolation must be available. The
current leap seconds file must be available. User responsibility to work with difference
from nearest tick (interpolate between ticks if desired). It is assumed that this requirement
is intended for cross checking of data and that the usual transformation is from Spacecraft
Clock time to other standards, such as UTC. If the user wants to interpolate, they will

 A-7 EED2-333-001

have to take answer back to UTC and find the difference from the original UTC; then go
to next tick on that side and interpolate between the two. It would be possible to rework
this tool to provide the two nearest ticks on either side of the UTC time and interpolation
weights.

PGS_TD_TimeInterval()

a. It is user responsibility to supply TAI times, although GPS times can be used instead. The
two must not be mixed. All the function does is to subtract double precision numbers.

A.2 SDP Toolkit Tools - Optional

A.2.2 Ancillary Data Access and Manipulation Tools

PGS_AA_dcw()

a. It is assumed that for access to areas or multiple points, that the user will provide the
lat/long coordinates to this tool; i.e., the tool does not include the functionality to
calculate other coordinates than those supplied by the user.

PGS_AA_dem()

a. It is assumed that DEMs will be in raster format.

b. All assumptions under PGS_AA_2DRead() and PGS_AA_2Dgeo() apply.

PGS_AA_PeVA()

a. It is assumed that a large number of static files holding data associated with various
algorithms will be in ASCII format. It is further assumed that some of these files will be
in the parameter = value format.

PGS_AA_2DRead() and PGS_AA_2Dgeo()

a. It is assumed that the ancillary data have been prepared into formats suitable for use with
this tool; i.e., they are in 2D grids containing data values organized in a raster format and
describable using a standard set of metadata.

b. It is assumed that the ancillary data files will exist as a series of time specific physical
files with a clear time–tag (e.g., in the file name); i.e., each physical file contains a full set
of the data in spatial terms (e.g., sea ice for one week for the region north of 60 degrees).

c. It is assumed that for most purposes, a 2 dimensional array of sufficient size can be
created to service user requirements.

PGS_AA_3DRead() and PGS_AA_3Dgeo()

a. It is assumed that the ancillary data have been prepared into formats suitable for use with
this tool; i.e., they are in 3D grids containing data values organized in a raster format and
describable using a standard set of metadata.

 A-8 EED2-333-001

b. It is assumed that the ancillary data files will exist as a series of time specific physical
files with a clear time–tag (e.g., in the file name); i.e., each physical file contains a full set
of the data in spatial terms.

c. It is assumed that for most purposes, a 3 dimensional array of sufficient size can be
created to service user requirements.

PGS_AA_INTERP()

This functionality is now part of PGS_AA_2Dgeo. See section D.3.2.3

A.2.3 Celestial Body Position

A.2.3.1 Celestial Body Access Tools

PGS_CBP_Earth_CB_Vector()

a. Sun, moon, and planetary ephemerides are assumed to exist in an external file.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

PGS_CBP_Sat_CB_Vector()

a. Sun, moon, and planetary ephemerides are assumed to exist in an external file.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

c. Spacecraft ephemeris is assumed to be available in an external file.

d. Earth to Celestial Body ECI vector is assumed to be computed using the tool of that
name.

PGS_CBP_SolarTimeCoords()

a. Time is assumed to be input in ASCII time code A or B format.

PGS_CBP_body_inFOV()

a. Sun, moon, and planetary ephemerides are assumed to exist in an external file.

b. Star locations are assumed to be read from the mission star catalog file received from
FDF.

c. A set of vectors defining the FOV in spacecraft coordinates is assumed to be provided by
the user. The vectors must be in sequential order around the FOV periphery.

d. Time is assumed to be input in ASCII time code A or B format.

e. Spacecraft ephemeris is assumed to be available in an external file.

PGS_CBP_BrightStar_positions()

a. Star locations are assumed to be read from the mission star catalog file.

 A-9 EED2-333-001

b. The star catalog is assumed to be created based on a minimum star magnitude TBD by the
project.

c. Time is assumed to be input in ASCII time code A or B format.

A.2.4 Coordinate System Conversion

A.2.4.1 Coordinate System Conversion - Transformation Tools

A.2.4.2 Coordinate System Conversion - Other Tools

PGS_CSC_DayNight()

a. The position of the sun is assumed to be obtained from the sun, moon, and planetary
ephemerides external file.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

PGS_CSC_GreenwichHour()

a. A file of UT1–UTC times is assumed to be present.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

PGS_CSC_SubSatPoint()

a. Time is assumed to be input in CCSDS ASCII time code A or B format.

b. Spacecraft ephemeris is assumed to be available in an external file.

c. Earth oblateness model is assumed to be the same as that used to compute the spacecraft
ephemeris originally.

d. A file of UT1–UTC times and Earth polar motion is assumed to be present.

PGS_CSC_Earthpt_FOV()

a. A set of vectors defining the FOV in spacecraft coordinates is assumed to be provided by
the user. The vectors must be in sequential order around the FOV periphery.

b. Time is assumed to be input in CCSDS ASCII time code A or B format.

c. Spacecraft ephemeris is assumed to be available in an external file.

d. Earth oblateness model is assumed to be the same as that used to compute the spacecraft
ephemeris originally.

e. User must supply one vector inside FOV—preferably near center

A.2.5 Geo–Coordinate Transformation Tools
a. It is assumed that the user has knowledge of the values of the necessary initialization

parameters or uses those from the CUC tools (where available).

 A-10 EED2-333-001

A.2.6 Constants and Unit Conversions
a. It is assumed that the constants in this section are supplied by ESDIS.

 B-1 EED2-333-001

Appendix B. Status Message File (SMF) Creation and
Usage Guidelines

B.1 Note
For a much more simplified explanation about SMF Creation and Usage Guidelines, refer to the
SDP Toolkit Primer. The Primer is available on the World Wide Web (WWW). The Universal
Research Locator (URL) for the ECS Data Handling System (EDHS) home page is:

 http://edhs1.gsfc.nasa.gov/

This appendix provides a more detailed description of how Status Message Files (SMFs) are
created along with some guidelines on their usage within the science software. Additionally,
some examples are provided at the end of this appendix to better illustrate how the software may
be used.

B.2 Description
In EOS, messages to the user should be developed using the Status Message File tool set.
Together, these tools provide the means to store messages in files that are accessed at runtime to
retrieve context–specific message text. Since text messages are stored in runtime files, messages
may be modified without recompiling the program that uses the messages. The basic procedure
for using these tools follows:

• Create a Status Message File (SMF) that maps status message text to a status label.
Additionally, the user may create action message text which maps to the same status
label, though this is optional.

• Compile the SMF using the 'smfcompile' program to generate the runtime message file
and language–specific "include" file. The runtime message file is used to hold the
message/action text. The language–specific "include" file maps the status labels to
numeric status numbers via language–specific constructs.

• Use PGS_SMF_Set* tools to preserve a specific status condition.

• Use PGS_SMF_Get* tools to retrieve messages/actions based on the status labels
returned by previously called functions.

 SMFs require a seed number that is used to generate message/action numbers for
message/action labels. This seed number is the key to determining the proper runtime
message file and must be unique for each message file. Users cannot simply use any seed
number they wish to; they have to be requested and/or assigned by the PGS Toolkit
development team. Currently we can support seed numbers up to (2^19)-1 (i.e., 524287).
To help identify the proper runtime message file, all message files will be located in a

 B-2 EED2-333-001

common message directory, located by the environment variable PGSMSG. This
directory will be created by the Toolkit install facility and updated during an smf make
procedure.

 New updates to this directory may be performed by compiling an SMF text file in the
message directory. A more advisable approach would be to maintain each SMF text file
in the same directory as the code that relies on the messages contained in the SMF text
file. Then compilation of the SMF text file(s) could be setup to precede compilation of
the source code (e.g., make smf; make code).

 Status Message text file names can be of any valid UNIX filename characters; they must
however include a '.t' extension. The generated runtime ASCII message file will be named
as PGS_<seed#>, (e.g., PGS_255). The resulting "include" file follows the convention
PGS_<tool–group>_<seed#>.[haf] (e.g., PGS_IO_1.h & PGS_IO_1.f). The token <tool–
group> is extracted from the 'LABEL' field contained in the SMF text file. For this
reason, it would be advisable to name SMF text files with some portion of this field in
order to maintain some relationship between the original text file and the smf generated
files. To provide a consistent method of status returns, the following procedures should
be followed for all software developed for EOS:

• All functions should return one of the following return codes as defined in
PGS_SMF.h (FORTRAN users refer to PGS_SMF.f) to indicate the status of the
Toolkit operation, unless the function returns a user–defined status as defined in an
SMF, or unless a return is unwarranted altogether as in a simple mathematical
function (e.g., y = sine(x)):

 PGS_S_SUCCESS Successful operation
PGS_E_ECS A general ECS error occurred
PGS_E_TOOLKIT A general TOOLKIT error occurred
PGS_E_UNIX A UNIX error occurred
PGS_E_HDF An HDF–EOS error occurred
PGS_E_DCE A DCE error occurred
PGS_E_ENV A Toolkit environment error was detected

 Note that additional defined return codes will be added for various COTS/modules in
the future should the need arise.

• Before returning a status code, the unit (i.e., routine, function, procedure, etc.,) should
load the specific status information into the static buffer. This is accomplished by
calling one of the PGS_SMF_Set* tools.

• The calling function should check the return status of the called unit. If an error
condition occurred, the specific error data can be retrieved using the PGS_SMF_Get*
tools.

 The tools that set or retrieve status data to/from the static buffer area are listed under PGS
Error/Status Reporting Tools in the Toolkit User's Guide.

 B-3 EED2-333-001

SMF syntax: Syntax for SMF definition is specified in the variant Backus–Naur Form (BNF)
notation that follows:

 BNF notes : [optional item]; { range bounded}; + concatenation [] and space symbols
indicate blank or space character

 allowed_ascii_char ::= { [! " # & ' () % * + , - . /]
 [DIGIT]
 [: ; < = > ? @]
 [UPPER_CASE_LETTER]
 [LOWER_CASE_LETTER]
 [[\] ^ _ ` { | } ~] }
spacing ::= {[\n] [\t] []}
comment_str ::= #
instrument ::= 3{[UPPER_CASE_LETTER]}10
label ::= 3{[UPPER_CASE_LETTER]}10
level ::= S | M | U | N | W | E | F
mnemonic ::=1{[DIGIT][_][UPPER_CASE_LETTER]}31
mnemonic_label ::= label + _ + level + _ + mnemonic
action_label ::= label + _ + A + _ + mnemonic
message_str ::= 1{[] [allowed_ascii_char]}240
action_str ::= message_str
status_definition ::= mnemonic_label + spacing +
 message_str
 [+ :: + action_label]
action_definition ::= action_label + spacing + action_str

 Note on levels:

 S stands for success
 A stands for action (action_label definition only)
 M stands for message
 U stands for user information
 N stands for notice
 W stands for warning
 E stands for error
 F stands for fatal

 It is up to the user to use the appropriate level in their definition of mnemonics that
represent message/action strings. So if an action string is required, use the _A_ sequence
in the action_label; if it is an informational–message string use the _M_ sequence in the
mnemonic_label; if it is a fatal message string use _F_ in the mnemonic_label. Only
action_labels use an action level character; the rest of your mnemonic_label definitions
should use other level characters.

 B-4 EED2-333-001

This page intentionally left blank.

 C-1 EED2-333-001

Appendix C. Process Control Files

NOTE:

The Master Template PCF as delivered with the Toolkit and described in section C.1.4,
MUST be used in its entirety as a template for user PCFs. Please add to it, but do not alter
any entries now in it. This file has been populated with dependency information required
for proper operation of the Toolkit.

For a much more simplified explanation about Process Control Files and usage, refer to the SDP
Toolkit Primer. The Primer is available on the World Wide Web (WWW)
http://newsroom.gsfc.nasa.gov/sdptoolkit/primer/tkprimer.html. The Universal Reference
Locator (URL) for the ECS Data Handling System (EDHS) home page is:

 http://edhs1.gsfc.nasa.gov

This appendix provides a detailed description of how to define and validate Process Control
Files.

C.1 Defining Process Control Files
This section of the appendix discusses the various components of a Process Control File (PCF).
A sample PCF format is provided as well as an example, which contains the actual entries
required to support the Toolkit release 5.2.20

C.1.1 PCF Components
• Subject Fields A process control file MUST contain the following subject fields

 in the order shown:

System Runtime Parameters - unique identifiers used to track instances of
 a PGE run, versions of science software, etc.

Product Input Files - list of ECS standard product data files
 required as input to the PGE

Product Output Files - list of ECS standard product data files
 generated by the PGE

Support Input Files - list of ECS, or Instrument ancillary/support
 data files required as input to the PGE

Support Output Files - list of ECS, or Instrument ancillary/support
 data files generated by the PGE

User Defined Runtime - list of user–defined configuration parameters;
 Parameters to be accessed by the PGE at runtime

 C-2 EED2-333-001

Intermediate Input - list of non–volatile temporary files required
 as input to the PGE

Intermediate Output - list of non–volatile temporary files generated
 by the PGE

Temporary I/O - list of volatile temporary files generated and
 accessed by the PGE at runtime only

End - PCF terminus

• Record Fields Each dependency record MUST contain, in the proper order, all of
 the fields required for the particular type of Subject.

Identifier - Numeric representation of logical identifier
 (range 10,000–10,999 reserved for Toolkit use
 only)

Reference - UNIX file/directory name

Path - UNIX directory path; start paths with '~' to
 specify relative paths from $PGSHOME

Reserved - Placeholder for future use

Universal - Universal Reference identifier - may be any string
 and may contain spaces

Attribute - Full UNIX path to Product Attribute file

Sequence - Number of associated Product Input files to follow
 (inclusive); typically = 1

Description - Annotation for parameter; not used in
 processing

Value - Assignment to be used during processing;
 string representation returned by tools

C.1.2 Format Rules
• All Subject fields are placed in the order shown above

• Each subject field must begin with the question mark token '?'

• The default location entry, for a subject field, must begin with the bang token '!';
there may be only one such entry per subject field and it must immediately follow the
subject field declaration.

• All comments must begin with the pound sign token '#'

• Subject and comment tokens must be placed in column one

• There can be no blank lines in the file

 C-3 EED2-333-001

• All Record entries must begin in column one

• All Record fields must be delimited with a pipe token '|'

• The last line of the file must begin with a subject field token '?'

C.1.3 Format Example

Process Control Information File

The Environment variable PGS_PC_INFO_FILE must point to this file.
Required inputs appear in bold; all delimiters required.
'Path' obtained
from the default location entry unless explicitly defined for the
individual record.

? SYSTEM RUNTIME PARAMETERS
--
Production Run ID - unique production instance identifier (SCF=1)
--
Value
--
Software ID - unique software configuration identifier (SCF=1)
--
Value

? PRODUCT INPUT FILES
! ~/runtime

--
Sequence number must be ordered in a descending fashion
Ex.
100|Instr_Product1A_1.dat|/usr/data||Product1A 1|/usr/data/prod_1A_1.att|3
100|Instr_Product1A_2.dat|/usr/data||Product1A 2|/usr/data/prod_1A_2.att|2
100|Instr_Product1A_3.dat|/usr/data||Product1A 3|/usr/data/prod_1A_3.att|1

Attribute file MUST reside in same directory as Reference file
--
Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

? PRODUCT OUTPUT FILES
! ~/runtime

 C-4 EED2-333-001

--
Sequence number must be ordered in a descending fashion
Attribute file MUST reside in same directory as Reference file
--
Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

? SUPPORT INPUT FILES
! ~/runtime

--
Sequence number = 1;
Attribute file MUST reside in same directory as Reference file
--
Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

? SUPPORT OUTPUT FILES
! ~/runtime

--
Sequence number = 1;
Attribute file MUST reside in same directory as Reference file
--
Identifier|Reference|Path|Reserved|Universal|Attribute|Sequence

? USER DEFINED RUNTIME PARAMETERS

--
Value may contain white-space but must be limited to current line;
Value returned by Toolkit in string representation
--
Identifier|Description|Value

? INTERMEDIATE INPUT
! ~/runtime

--
Sequence number = 1;
Records obtained from INTERMEDIATE OUTPUT field of previous runs
--
Identifier|Reference|Path|Reserved|Universal|Reserved|Sequence

? INTERMEDIATE OUTPUT
! ~/runtime

 C-5 EED2-333-001

--
Sequence number = 1;
Records generated by Toolkit ONLY!
--
Identifier|Reference|Path|Reserved|Universal|Reserved|Sequence

? TEMPORARY I/O
! ~/runtime

--
Sequence number = 1;
Records generated by Toolkit ONLY!
--
Identifier|Reference|Path|Reserved|Reserved|Reserved|Sequence

? END

C.1.4 Master Template:

The following file was delivered along with the Toolkit Installation. To access this file, set the
environment variable PGS_PC_INFO_FILE to '$PGSHOME/runtime/PCF.relA'.

Initially, this file has been populated with dependency information required for proper operation
of the Toolkit. As such, this file should be considered as a MASTER PCF file from which
user PCF files are derived. To safeguard against the possibility of corrupting essential Toolkit
entries, users should use copies of this file as the basis for creating their own. Once a new PCF
file has been created, reset the environment variable PGS_PC_INFO_FILE to point to the new
file. The new file should now contain all the essential User and Toolkit dependency information.
Before using the new PCF, please validate it using the 'pccheck.sh' utility that is located in
$PGSHOME/bin. The effort spent doing so will more than offset the time spent trying to debug
the PCF from the errors received while running your program(s). Refer to Part II of this
Appendix to see an example on the usage of the 'pccheck.sh' PCF validation tool.

filename:

PCF.relB0

description:

Process Control File (PCF)

notes:

 C-6 EED2-333-001

This file supports the Release B version of the toolkit.

It is intended for use with toolkit version "TK_VERSION_STRING".

The logical IDs 10000-10999 (inclusive) are reserved for internal

Toolkit/ECS usage, DO NOT add logical IDs with these values.

Please treat this file as a master template and make copies of it

for your own testing. Note that the Toolkit installation script

sets PGS_PC_INFO_FILE to point to this master file by default.

Remember to reset the environment variable PGS_PC_INFO_FILE to

point to the instance of your PCF.

The toolkit will not interpret environment variables specified

in this file (e.g. ~/database/$OSTYPE/TD is not a valid reference).

The '~' character, however, when appearing in a reference WILL be

replaced with the value of the environment variable PGSHOME.

The PCF file delivered with the toolkit should be taken as a

template. User entries should be added as necessary to this

template. Existing entries may (in some cases should) be altered

but generally should not be commented out or deleted. A few

entries may not be needed by all users and can in some cases

be commented out or deleted. Such entries should be clearly

identified in the comment(s) preceding the entry/entries.

Entries preceded by the comment: (DO NOT REMOVE THIS ENTRY)

are deemed especially critical and should not be removed for

any reason (although the values of the various fields of such an

entry may be configurable).

 C-7 EED2-333-001

? SYSTEM RUNTIME PARAMETERS

This section contains unique identifiers used to track instances of

a PGE run, versions of science software, etc. This section must

contain exactly two entries. These values will be inserted by

ECS just before a PGE is executed. At the SCF the values may be set

to anything but these values are not normally user definable and user

values will be ignored/overwritten at the DAAC.

Production Run ID - unique production instance identifier

(DO NOT REMOVE THIS ENTRY)

1

Software ID - unique software configuration identifier

(DO NOT REMOVE THIS ENTRY)

1

? PRODUCT INPUT FILES

This section is intended for standard product inputs, i.e., major

input files such as Level 0 data files.

 C-8 EED2-333-001

Each logical ID may have several file instances, as given by the

version number in the last field.

Next non-comment line is the default location for PRODUCT INPUT FILES

WARNING! DO NOT MODIFY THIS LINE unless you have relocated these

data set files to the location specified by the new setting.

! ~/runtime

These are actual ancillary data set files - supplied by ECS or the

user. The following are supplied for purposes of tests and as a useful

set of ancillary data. These entries may be removed IF the AA tools

are not being used.

10780|usatile12|AA_DATA_INSTALL_DIR|||10751|12

10780|usatile11|AA_DATA_INSTALL_DIR|||10750|11

10780|usatile10|AA_DATA_INSTALL_DIR|||10749|10

10780|usatile9|AA_DATA_INSTALL_DIR|||10748|9

10780|usatile8|AA_DATA_INSTALL_DIR|||10747|8

10780|usatile7|AA_DATA_INSTALL_DIR|||10746|7

10780|usatile6|AA_DATA_INSTALL_DIR|||10745|6

10780|usatile5|AA_DATA_INSTALL_DIR|||10744|5

10780|usatile4|AA_DATA_INSTALL_DIR|||10743|4

10780|usatile3|AA_DATA_INSTALL_DIR|||10742|3

10780|usatile2|AA_DATA_INSTALL_DIR|||10741|2

10780|usatile1|AA_DATA_INSTALL_DIR|||10740|1

10951|mowe13a.img|AA_DATA_INSTALL_DIR||||1

10952|owe13a.img|AA_DATA_INSTALL_DIR||||1

 C-9 EED2-333-001

10953|owe14d.img|AA_DATA_INSTALL_DIR||||1

10954|owe14dr.img|AA_DATA_INSTALL_DIR||||1

10955|etop05.dat|AA_DATA_INSTALL_DIR||||1

10956|fnocazm.img|AA_DATA_INSTALL_DIR||||1

10957|fnococm.img|AA_DATA_INSTALL_DIR||||1

10958|fnocpt.img|AA_DATA_INSTALL_DIR||||1

10959|fnocrdg.img|AA_DATA_INSTALL_DIR||||1

10960|fnocst.img|AA_DATA_INSTALL_DIR||||1

10961|fnocurb.img|AA_DATA_INSTALL_DIR||||1

10962|fnocwat.img|AA_DATA_INSTALL_DIR||||1

10963|fnocmax.imgs|AA_DATA_INSTALL_DIR||||1

10964|fnocmin.imgs|AA_DATA_INSTALL_DIR||||1

10965|fnocmod.imgs|AA_DATA_INSTALL_DIR||||1

10966|srzarea.img|AA_DATA_INSTALL_DIR||||1

10967|srzcode.img|AA_DATA_INSTALL_DIR||||1

10968|srzphas.img|AA_DATA_INSTALL_DIR||||1

10969|srzslop.img|AA_DATA_INSTALL_DIR||||1

10970|srzsoil.img|AA_DATA_INSTALL_DIR||||1

10971|srztext.img|AA_DATA_INSTALL_DIR||||1

10972|nmcRucPotPres.datrepack|AA_DATA_INSTALL_DIR||||1

10973|tbase.bin|AA_DATA_INSTALL_DIR|||10915|1

10974|tbase.br|AA_DATA_INSTALL_DIR|||10919|4

10974|tbase.bl|AA_DATA_INSTALL_DIR|||10918|3

10974|tbase.tr|AA_DATA_INSTALL_DIR|||10917|2

10974|tbase.tl|AA_DATA_INSTALL_DIR|||10916|1

10975|geoid.dat|AA_DATA_INSTALL_DIR||||1

The following are for the PGS_GCT tool only. The IDs are #defined in

the PGS_GCT.h file. These entries are essential for the State Plane

 C-10 EED2-333-001

Projection but can otherwise be deleted or commented out.

10200|nad27sp|~/database/common/GCT||||1

10201|nad83sp|~/database/common/GCT||||1

The following are for the PGS_AA_DCW tool only.

The IDs are #defined in the PGS_AA_DCW.h file.

These entries may be deleted or commented out IF the AA tools are not

being used.

10990|eurnasia/|AA_DATA_INSTALL_DIR||||1

10991|noamer/|AA_DATA_INSTALL_DIR||||1

10992|soamafr/|AA_DATA_INSTALL_DIR||||1

10993|sasaus/|AA_DATA_INSTALL_DIR||||1

file for Constant & Unit Conversion (CUC) tools

IMPORTANT NOTE: THIS FILE WILL BE SUPPLIED AFTER TK4 DELIVERY!

10999|PGS_CUC_maths_parameters|~/database/common/CUC||||1

#--

Metadata Configuration File (MCF) is a template to be filled in by the

Instrument teams. MCFWrite.temp is a scratch file used to dump the MCF

prior to writing to the hdf file. GetAttr.temp is similarly used to

dump metadata from the hdf attributes and is used by PGS_MET_GetPCAttr.

(DO NOT REMOVE THESE ENTRIES)

#--

10250|MCF|||||1

 C-11 EED2-333-001

10252|GetAttr.temp|||||1

10254|MCFWrite.temp|||||1

10260|XMLstylesheet.temp|||||1

Ephemeris and Attitude files logical IDs.

Emphemeris files will be accessed via the logical ID 10501.

Attitude files will be accessed via the logical ID 10502.

Use file versions to allow for multiple physical ephemeris

or attitude files.

10501|INSERT_EPHEMERIS_FILES_HERE|||||1

10502|INSERT_ATTITUDE_FILES_HERE|||||1

10503|INSERT_EPHEMERIS_HDF_FILES_HERE|||||1

10504|INSERT_ATTITUDE_HDF_FILES_HERE|||||1

#--

Datasets for PGS_DEM tools.

A dataset of a given resolution is accessed via a single logical ID,

therefore all physical files comprising a data set must be accessed

via the same logical ID. Use file versions to allow for multiple

physical files within a single data set.

Data files of 30 arc-sec resolution will be accessed via the

logical ID 10650.

Data files of 3 arc-sec resolution will be accessed via the

logical ID 10653.

NOTE: The file names in each entry must also appear in the attribute

column of the entry (this is a requirement of the metadata tools).

 C-12 EED2-333-001

The entries given below are "template" entries and should be

replaced with actual file name/location data before attempting

to use the DEM tools.

#--

10650|DEM30ARC_NAME.hdf|DEM_LOCATION|||DEM30ARC_NAME.hdf|1

10653|DEM3ARC_NAME.hdf|DEM_LOCATION|||DEM3ARC_NAME.hdf|1

? PRODUCT OUTPUT FILES

This section is intended for standard product outputs, i.e., HDF-EOS

files generated by this PGE.

Each logical ID may have several file instances, as given by the

version number in the last field.

Next line is the default location for PRODUCT OUTPUT FILES

! ~/runtime

#--

This file is created when PGS_MET_Write is used with an intention

to write an ASCII representation of the MCF in memory. The user is

allowed to change the name and path if required.

NOTE: THIS IS OBSOLETE, THIS ENTRY IS ONLY HERE FOR BACKWARD

COMPATIBILITY WITH PREVIOUS VERSIONS OF THE TOOLKIT.

THE LOGICAL ID 10255 SHOULD BE MOVED DOWN TO THE RUNTIME

 C-13 EED2-333-001

PARAMETERS SECTION OF THIS FILE AND GIVEN A VALUE OF:

<logical_id>:<version_number> WHERE THOSE VALUES REFLECT THE

ACTUAL VALUES FOR THE NON-HDF OUTPUT PRODUCT FOR WHICH THE

ASCII METADATA IS BEING WRITTEN. e.g.:

10255|reference output product|100:2

#--

10255|asciidump|||||1

? SUPPORT INPUT FILES

This section is intended for minor input files, e.g., calibration

files.

Each logical ID may have several file instances, as given by the

version number in the last field.

Next line is the default location for SUPPORT INPUT FILES

! ~/runtime

This ID is #defined in PGS_AA_Tools.h

This file contains the IDs for all support and format files (listed

below). This entry may be deleted or commented out if the AA tools are

not being used.

 C-14 EED2-333-001

10900|indexFile|~/database/common/AA||||1

These are support files for the data set files - to be created by user

(not necessarily a one-to-one relationship).

The IDs must correspond to the logical IDs in the index file (above).

These entries may be deleted or commented out if the AA tools are not

being used.

10901|mowe13aSupport|~/database/common/AA||||1

10902|owe13aSupport|~/database/common/AA||||1

10903|owe14Support|~/database/common/AA||||1

10904|etop05Support|~/database/common/AA||||1

10905|fnoc1Support|~/database/common/AA||||1

10906|fnoc2Support|~/database/common/AA||||1

10907|zobler1Support|~/database/common/AA||||1

10908|zobler2Support|~/database/common/AA||||1

10909|nmcRucSupport|~/database/common/AA||||1

10915|tbaseSupport|~/database/common/AA||||1

10916|tbase1Support|~/database/common/AA||||1

10917|tbase2Support|~/database/common/AA||||1

10918|tbase3Support|~/database/common/AA||||1

10919|tbase4Support|~/database/common/AA||||1

10740|usatile1Support|~/database/common/AA||||1

10741|usatile2Support|~/database/common/AA||||1

10742|usatile3Support|~/database/common/AA||||1

10743|usatile4Support|~/database/common/AA||||1

10744|usatile5Support|~/database/common/AA||||1

10745|usatile6Support|~/database/common/AA||||1

 C-15 EED2-333-001

10746|usatile7Support|~/database/common/AA||||1

10747|usatile8Support|~/database/common/AA||||1

10748|usatile9Support|~/database/common/AA||||1

10749|usatile10Support|~/database/common/AA||||1

10750|usatile11Support|~/database/common/AA||||1

10751|usatile12Support|~/database/common/AA||||1

10948|geoidSupport|~/database/common/AA||||1

The following are format files for each data set file (not necessarily

a one-to-one relationship). # The IDs must correspond to the logical

IDs in the index file (10900, above).

These entries may be deleted or commented out if the AA tools are not

being used.

10920|mowe13a.bfm|~/database/common/AA||||1

10921|owe13a.bfm|~/database/common/AA||||1

10922|owe14d.bfm|~/database/common/AA||||1

10923|owe14dr.bfm|~/database/common/AA||||1

10924|etop05.bfm|~/database/common/AA||||1

10925|fnocAzm.bfm|~/database/common/AA||||1

10926|fnocOcm.bfm|~/database/common/AA||||1

10927|fnocPt.bfm|~/database/common/AA||||1

10928|fnocRdg.bfm|~/database/common/AA||||1

10929|fnocSt.bfm|~/database/common/AA||||1

10930|fnocUrb.bfm|~/database/common/AA||||1

10931|fnocWat.bfm|~/database/common/AA||||1

10932|fnocMax.bfm|~/database/common/AA||||1

10933|fnocMin.bfm|~/database/common/AA||||1

10934|fnocMod.bfm|~/database/common/AA||||1

 C-16 EED2-333-001

10935|srzArea.bfm|~/database/common/AA||||1

10936|srzCode.bfm|~/database/common/AA||||1

10937|srzPhas.bfm|~/database/common/AA||||1

10938|srzSlop.bfm|~/database/common/AA||||1

10939|srzSoil.bfm|~/database/common/AA||||1

10940|srzText.bfm|~/database/common/AA||||1

10941|nmcRucSigPotPres.bfm|~/database/common/AA||||1

10942|tbase.bfm|~/database/common/AA||||1

10943|tbase1.bfm|~/database/common/AA||||1

10944|tbase2.bfm|~/database/common/AA||||1

10945|tbase3.bfm|~/database/common/AA||||1

10946|tbase4.bfm|~/database/common/AA||||1

10700|usatile1.bfm|~/database/common/AA||||1

10701|usatile2.bfm|~/database/common/AA||||1

10702|usatile3.bfm|~/database/common/AA||||1

10703|usatile4.bfm|~/database/common/AA||||1

10704|usatile5.bfm|~/database/common/AA||||1

10705|usatile6.bfm|~/database/common/AA||||1

10706|usatile7.bfm|~/database/common/AA||||1

10707|usatile8.bfm|~/database/common/AA||||1

10708|usatile9.bfm|~/database/common/AA||||1

10709|usatile10.bfm|~/database/common/AA||||1

10710|usatile11.bfm|~/database/common/AA||||1

10711|usatile12.bfm|~/database/common/AA||||1

10947|geoid.bfm|~/database/common/AA||||1

leap seconds (TAI-UTC) file (DO NOT REMOVE THIS ENTRY)

 C-17 EED2-333-001

10301|leapsec.dat|~/database/common/TD||||1

polar motion and UTC-UT1 file (DO NOT REMOVE THIS ENTRY)

10401|utcpole.dat|~/database/common/CSC||||1

earth model tags file (DO NOT REMOVE THIS ENTRY)

10402|earthfigure.dat|~/database/common/CSC||||1

JPL planetary ephemeris file (binary form) (DO NOT REMOVE THIS ENTRY)

10601|de200.eos|~/database/$BRAND/CBP||||1

spacecraft tag definition file (DO NOT REMOVE THIS ENTRY)

10801|sc_tags.dat|~/database/common/EPH||||1

units conversion definition file (DO NOT REMOVE THIS ENTRY)

10302|udunits.dat|~/database/common/CUC||||1

Style Sheet for XML INVENTORY Metadata (DO NOT REMOVE THIS ENTRY)

 C-18 EED2-333-001

10303|science.xsl|~/database/common/MET||||1

? SUPPORT OUTPUT FILES

This section is intended for minor output files, e.g., log files.

Each logical ID may have several file instances, as given by the

version number in the last field.

Next line is default location for SUPPORT OUTPUT FILES

! ~/runtime

These files support the SMF log functionality. Each run will cause

status information to be written to 1 or more of the Log files. To

simulate DAAC operations, remove the 3 Logfiles between test runs.

Remember: all executables within a PGE will contribute status data to

the same batch of log files. (DO NOT REMOVE THESE ENTRIES)

10100|LogStatus|||||1

10101|LogReport|||||1

10102|LogUser|||||1

10103|TmpStatus|||||1

10104|TmpReport|||||1

10105|TmpUser|||||1

 C-19 EED2-333-001

10110|MailFile|||||1

ASCII file which stores pointers to runtime SMF files in lieu of

loading them to shared memory, which is a TK5 enhancement.

(DO NOT REMOVE THIS ENTRY)

10111|ShmMem|||||1

? USER DEFINED RUNTIME PARAMETERS

This section is intended for parameters used as PGE input.

Note: these parameters may NOT be changed dynamically.

These parameters are required to support the PGS_SMF_Send...() tools.

If the first parameter (TransmitFlag) is disabled, then none of the

other parameters need to be set. By default, this functionality has been

disabled. To enable, set TransmitFlag to 1 and supply the other 3

parameters with local information. (DO NOT REMOVE THESE ENTRIES)

10109|TransmitFlag; 1=transmit,0=disable|0

10106|RemoteHost|sandcrab

10107|RemotePath|/usr/kwan/test/PC/data

 C-20 EED2-333-001

10108|EmailAddresses|kwan@eos.hitc.com

The following runtime parameters define various logging options.

Parameters described as lists should be space (i.e. ' ') separated.

The logical IDs 10117, 10118, 10119 listed below are for OPTIONAL

control of SMF logging. Any of these logical IDs which is unused by a

PGE may be safely commented out (e.g. if logging is not disabled for

any status level, then the line beginning 10117 may be commented out).

10114|Logging Control; 0=disable logging, 1=enable logging|1

10115|Trace Control; 0=no trace, 1=error trace, 2=full trace|0

10116|Process ID logging; 0=don't log PID, 1=log PID|0

10117|Disabled status level list (e.g. W S F)|

10118|Disabled seed list|

10119|Disabled status code list|

Toolkit version for which this PCF was intended.

DO NOT REMOVE THIS VERSION ENTRY!

10220|Toolkit version string|TK_VERSION_STRING

The following parameters define the ADEOS-II TMDF values (all values

are assumed to be floating point types). The ground reference time

should be in TAI93 format (SI seconds since 12 AM UTC 1993-01-01).

These formats are only prototypes and are subject to change when

the ADEOS-II TMDF values are clearly defined. PGEs that do not access

ADEOS-II L0 data files do not require these parameters. In this case

 C-21 EED2-333-001

they may be safely commented out, otherwise appropriate values should

be supplied.

10120|ADEOS-II s/c reference time|

10121|ADEOS-II ground reference time|

10122|ADEOS-II s/c clock period|

The following parameter defines the TRMM UTCF value (the value is

assumed to be a floating point type). PGEs that do not access TRMM

data of any sort do not require this parameter. In this case it may be

safely commented out, otherwise an appropriate value should be

supplied.

10123|TRMM UTCF value|

The following parameter defines the Epoch date to be used for the

interpretation (conversion) of NASA PB5C times (the Epoch date should

be specified here in CCSDS ASCII format--A or B) (reserved for future

use--this quantity is not referenced in TK 5.2). This entry may be

safely commented out or deleted.

10124|NASA PB5C time Epoch date (ASCII UTC)|

The following parameter is a "mask" for the ephemeris data quality

flag. The value should be specified as an unsigned integer

specifying those bits of the ephemeris data quality flag that

should be considered fatal (i.e. the ephemeris data associated

 C-22 EED2-333-001

with the quality flag should be REJECTED/IGNORED).

10507|ephemeris data quality flag mask|65536

The following parameter is a "mask" for the attitude data quality

flag. The value should be specified as an unsigned integer

specifying those bits of the attitude data quality flag that

should be considered fatal (i.e. the attitude data associated

with the quality flag should be REJECTED/IGNORED).

10508|attitude data quality flag mask|65536

ECS DPS trigger for PGE debug runs

NOTICE TO PGE DEVELOPERS: PGEs which have a debug mode

need to examine this parameter to evaluate activation rule

(DO NOT REMOVE THIS ENTRY)

10911|ECS DEBUG; 0=normal, 1=debug|0

The following runtime parameters defines generation of XML metadata during

the production of .met file for the INVENTORY Metadata. If the flag is

set to 0 only ASCII .met file will be created besides writing metadata into

HDF file.If the flag is set to 1 then a .xml file will also be created

in addition to ASCII .met file and metadata that is put into the HDF file.

10256|XML METADATA GENERATION FLAG; 0=no, 1=yes|0

 C-23 EED2-333-001

This entry defines the IP address of the processing host and is used

by the Toolkit when generating unique Intermediate and Temporary file

names. The Toolkit no longer relies on the PGS_HOST_PATH environment

variable to otain this information. (DO NOT REMOVE THIS ENTRY)

10099|Local IP Address of 'ether'|155.157.31.87

? INTERMEDIATE INPUT

This section is intended for intermediate input files, i.e., files

which are output by an earlier PGE but which are not standard

products.

Each logical ID may have only one file instance.

Last field on the line is ignored.

Next line is default location for INTERMEDIATE INPUT FILES

! ~/runtime

? INTERMEDIATE OUTPUT

This section is intended for intermediate output files, i.e., files

which are to be input to later PGEs, but which are not standard

 C-24 EED2-333-001

products.

Each logical ID may have only one file instance.

Last field on the line is ignored.

Next line is default location for INTERMEDIATE OUTPUT FILES

! ~/runtime

? TEMPORARY I/O

This section is intended for temporary files, i.e., files

which are generated during a PGE run and deleted at PGE termination.

Entries in this section are generated internally by the Toolkit.

DO NOT MAKE MANUAL ENTRIES IN THIS SECTION.

Next line is default location for TEMPORARY FILES

! ~/runtime

? END

 C-25 EED2-333-001

C.2 Validating Process Control Files

C.2.1 DESCRIPTION

The Process Control Information File Check Program is a program that checks the file containing
the Process Control Status Information. This program is an aid to determine if the input file
necessary for the Process Control Tools is in the proper format and contains the minimum
amount of information for a valid run. The program is run by entering the program name
followed by the file name to be checked. For example, "pccheck.sh -i userpcf.dat" will run the
check program and check the file userpcf.dat located in the current directory. The -i flag needs to
be followed by the name of the input file. Upon checking the file, a list of errors and warnings
will be displayed to the user. Each error or warning will have a brief description, the line number,
and the line itself. When the checking process has completed, a message appears stating that the
check process is finished and the number of warnings and errors found are displayed. With this
program, errors are defined as something in the file that, during execution of the Process Control
Tools, the return will not be PGS_S_SUCCESS. A warning is defined as something that,
although the Process Control Tools will return a PGS_S_SUCCESS, a problem could arise later.
An example of this is the file name "file one.dat" is stored in the Process Control Information
file. Upon execution, the Process Control Tools will return the name of this file and
PGS_S_SUCCESS as the function type return value. When the program tries to open this file
however, a file access error will occur.

C.2.2 INPUT

• Program name, -i flag, and file to be checked. An example of this would be:

pccheck.sh -i userpcf.dat

This will initiate the check program and check the file userpcf.dat in the current directory.

• Program name, -i flag, file to be checked, -o flag, and an output file name.

pccheck.sh -i userpcf.dat -o userpcf.out

This will initiate the check program and check the file userpcf.dat in the current directory and
create an output file "outpct.fil" that will be an exact copy of userpcf.dat except the output file
will contain line numbers.

• Program name, -h flag.

pccheck.sh -h

This will display a usage help message.

• Program name, -i flag, file to be checked, -c flag, and a template file name.

 pccheck.sh -i userpcf.dat -c $PGSHOME/runtime/PCF.v3

This will list all errors and warnings in the file userpcf.dat and perform a comparison. The -c flag
will initiate a comparison with a template file and determine if any of the Product ID's reserved

 C-26 EED2-333-001

by the PGS Toolkit (range 10,000 .. 10,999) differ in userpcf.dat and
$PGSHOME/runtime/PCF.v3. This will only list the differences and will not perform any
corrections.

• Program name, -i flag, file to be checked, -c flag, and a template file name, -s flag, to
suppress output.

 pccheck.sh -i userpcf.dat -c $PGSHOME/runtime/PCF.v3 -s

The -s flag will suppress all output except that output received when using the -c flag. The -s flag
is designed to be used only when the -c flag is used.

C.2.3 OUTPUT

List of errors and warnings are followed by a summary of the number of errors and warnings. See
the EXAMPLES section for detailed listings of program output. Using the -o flag will also allow
the user to output a file that is an exact copy of the input file with line numbers in the file. This
output option is provided as a convenience to the user; the output file is not intended to be used
as the input Process Control Information File. Using the -c flag followed by a template file will
allow the user to determine what reserved Logical Identifiers have been edited from the template
file.

C.2.4 ERRORS

The following is a list of possible errors followed by a brief description.

• "Unable to open input file: <file name>"—unable to open input file name passed in as a
command line argument

• "Incorrect number of command line arguments"—the number of command line
arguments did not match the number expected

• "Unexpectedly reached EOF"—the end of file was encountered before the correct number
of dividers (?) were reached

• "Invalid number of system configuration parameters"—the number of system
configuration parameters encountered did not match the number expected

• "Invalid index value in user defined configuration parameters"—an invalid index value
was found

• "Problem with user defined configuration parameter"—user defined configuration
parameter contains a problem (i.e., incorrect number of delimiters (|), or a value of all
blanks)

• "Configuration value length too long"—user defined configuration value exceeds
PGSd_PC_VALUE_LENGTH_MAX characters

• "Invalid index value involving file information"—an invalid index value was found in
one of the sections that contains file information

 C-27 EED2-333-001

• "Invalid number of delimiters involving file information"—line containing file
information contains incorrect number of delimiters (|)

• "No validity flag present in input file information"—validity flag is mandatory for input
file information

• "File name length too long"—file name exceeds PGSd_PC_FILE_NAME_MAX
characters

• "Path length too long"—path exceeds PGSd_PC_PATH_LENGTH_MAX characters

• "problem with version number in Standard input file information"—missing or
unexpected sequence number

• "Default file location marker contains no data."

• "Default file location length too long."

• "Default file location not found."

• "Universal Reference length too long." - universal reference identifier exceeds
PGSd_PC_UREF_LENGTH_MAX characters

• “File name does not exist.” - File name data field is empty.

C.2.5 WARNINGS

The following is a list of all possible warnings followed by a brief description.

• "Warning—Possible problem with system configuration value"—configuration parameter
contains all blank characters

• "Warning—Repeat index number in user defined configuration parameters"—index value
used twice in user defined configuration parameters

• "Warning—extra delimiters in user defined configuration parameters"—remaining
delimiters will be returned as part of the value in user defined configuration parameters.

• "Warning—Repeat index number in file information"—index value illegally used
multiple times in file information

• "Warning—possible problem in path or file name"—path or file name contains blank
characters

• "Warning—information beyond final divider will be ignored"—anything after the last
counted divider (?) will be ignored

• "Warning—possible problem in default file location."

• "Warning—Default file location not after divider."

 C-28 EED2-333-001

C.2.6 EXAMPLES

Three examples are provided below. Each example contains the input file used, the command
entered and the corresponding output. The first example contains no errors or warnings. The
second example contains several warnings and errors. The third example is an example of using
the -c flag.

C.2.6.1 EXAMPLE 1

INPUT FILE: userpcf.dat

Process Control File

? SYSTEM RUNTIME PARAMETERS
--
Production Run ID - unique production instance identifier
--
1
--
Software ID - unique software configuration identifier
--
1

? PRODUCT INPUT FILES
[Default file location indicated by '!']
! ~/runtime

1000|temp.dat|/usr/atm/data||Optional Universal Reference|temp.att|1
1001|humid.dat|/usr/atm/data||Humidity Data|humid.att|1
600|wind_1.dat||||wind_1.att|2
600|wind_2.dat||||wind_2.att|1
--
polar motion and UTC-UT1 file
--
10401|utcpole.dat|~/lib/database/CSC||||1
--
earth model tags file
--
10402|earthfigure.dat|~/lib/database/CSC||||1
--
JPL planetary ephemeris file (binary form)
--
10601|de200.eos|/usr/lib/database/CBP||||1
10964|fnocmin.imgswitched|||||1

 C-29 EED2-333-001

10965|fnocmod.imgswitched|||||1
10966|srzarea.img|||||1
10967|srzcode.img|||||1
10968|srzphas.img|||||1
10969|srzslop.img|||||1
10970|srzsoil.img|||||1
10971|srztext.img|||||1

--
The following are for the PGS_AA_dcw tool only.
The IDs are #defined in the PGS_AA_dcw.h file
--
10990|eurnasia/|||||1
10991|noamer/|||||1
10992|soamafr/|||||1
10993|sasaus/|||||1

? PRODUCT OUTPUT FILES
[Default file location indicated by '!']
! ~/runtime

1002|temp_lev3.hdf|||||1
1003|humid_lev3.hdf|||||1
601|wind_lev3.hdf|||||1

? SUPPORT INPUT FILES
[Default file location indicated by '!']
! ~/runtime

31|Wind_insitu.dat|/usr/wind/data||||1

--
This ID is #defined in PGS_AA_Tools.h
This file contains the IDs for all support and format files shown
above
--
10900|indexFile|~/runtime||||1

--
These are support files for the data set files - to be created by user
(not necessarily a one-to-one relationship)
The IDs must correspond to the logical IDs in the index file

 C-30 EED2-333-001

--
10901|mowe13aSupport|~/runtime||||1
10902|owe13aSupport|~/runtime||||1
10903|owe14Support|~/runtime||||1
10904|etop05Support|~/runtime||||1
10905|fnoc1Support|~/runtime||||1
10906|fnoc2Support|~/runtime||||1
10907|zobler1Support|~/runtime||||1
10908|zobler2Support|~/runtime||||1

--
The following are format files for each data set file
(not necessarily a one-to-one relationship)
The IDs must correspond to the logical IDs in the index file
--
10920|mowe13a.bfm|~/runtime||||1
10921|owe13a.bfm|~/runtime||||1
10922|owe14d.bfm|~/runtime||||1
10923|owe14dr.bfm|~/runtime||||1
10924|etop05.bfm|~/runtime||||1
10925|fnocAzm.bfm|~/runtime||||1
10926|fnocOcm.bfm|~/runtime||||1
10927|fnocPt.bfm|~/runtime||||1
10928|fnocRdg.bfm|~/runtime||||1
10929|fnocSt.bfm|~/runtime||||1
10930|fnocUrb.bfm|~/runtime||||1
10931|fnocWat.bfm|~/runtime||||1
10932|fnocMax.bfm|~/runtime||||1
10933|fnocMin.bfm|~/runtime||||1
10934|fnocMod.bfm|~/runtime||||1
10935|srzArea.bfm|~/runtime||||1
10936|srzCode.bfm|~/runtime||||1
10937|srzPhas.bfm|~/runtime||||1
10938|srzSlop.bfm|~/runtime||||1
10939|srzSoil.bfm|~/runtime||||1
10940|srzText.bfm|~/runtime||||1

? SUPPORT OUTPUT FILES
[Default file location indicated by '!']
! ~/runtime

51|Wind_qlook.dat|/usr/wind/data||||1

 C-31 EED2-333-001

--
These files support the SMF log functionality. Each run will cause
status information to be written to 1 or more of the Log files. To
simulate DAAC operations, remove the 3 Logfiles between test runs.
Remember: all executables within a PGE will contribute status data to
the same batch of log files.
--
10100|LogStatus|~/runtime||||1
10101|LogReport|~/runtime||||1
10102|LogUser|~/runtime||||1
10103|TmpStatus|~/runtime||||1
10104|TmpReport|~/runtime||||1
10105|TmpUser|~/runtime||||1
10110|MailFile|~/runtime||||1

? USER DEFINED RUNTIME PARAMETERS
3000|Humidity Instrument Calibration|0.34423772
3001|Temperature Instrument Calibration|1.87864
3002|Wind Instrument Calibration|0.992
3003|Atmospheric Algorithm|NIGHT
3004|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

--
These parameters are required to support the PGS_SMF_Send...() tools.
If the first parameter (TransmitFlag) is disabled, then none of the
other parameters need to be set. By default, this functionality has
been disabled. To enable, set TransmitFlag to 1 and supply the other 3
parameters with local information.
--
10109|TransmitFlag; 1=transmit,0=disable|0
10106|RemoteHost|anyhost
10107|RemotePath|/usr/anyuser/anypath/data
10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

? INTERMEDIATE INPUT
[Default file location indicated by '!']
! ~/runtime

? INTERMEDIATE OUTPUT
[Default file location indicated by '!']
! ~/runtime

 C-32 EED2-333-001

? TEMPORARY IO
[Default file location indicated by '!']
! ~/runtime

? END
UNIX COMMAND LINE:
pccheck.sh -i userpcf.dat

Check of userpcf.dat completed
Errors found: 0
Warnings found: 0

C.2.6.2 EXAMPLE 2

INPUT FILE: userpcf.dat

Process Control File

? SYSTEM RUNTIME PARAMETERS
--
Production Run ID - unique production instance identifier
--
1
#****ONLY ONE SYSTEM CONFIGURATION PARAMETER****

? PRODUCT INPUT FILES
[Default file location marked by '!']
! ~/runtime

1000|temp.dat|/usr/atm/data|||temp.att|
^ No version number****
1)01|humid.dat|/usr/atm/data|||humid.att|1
#^Illegal character in index number****
600|wind_1.dat||||wind_1.att|2
600|wind_2.dat|||wind_2.att|1
Line only contains five delimiters****

--
polar motion and UTC-UT1 file
--

 C-33 EED2-333-001

10401|utcpole.dat|~/lib/database/CSC||||1
--
earth model tags file
--
10402|earthfigure.dat|~/lib/database/CSC||||1
--
JPL planetary ephemeris file (binary form)
--
10601|de200.eos|/usr/lib/database/CBP||||1
10964|fnocmin.imgswitched|||||1
10965|fnocmod.imgswitched|||||1
10966|srzarea.img|||||1
10967|srzcode.img|||||1
10968|srzphas.img|||||1
10969|srzslop.img|||||1
10970|srzsoil.img|||||1
10971|srztext.img|||||1

--
The following are for the PGS_AA_dcw tool only.
The IDs are #defined in the PGS_AA_dcw.h file
--
10990|eurnasia/|||||1
10991|noamer/|||||1
10992|soamafr/|||||1
10993|sasaus/|||||1

? PRODUCT OUTPUT FILES

^^^^ No default file location listed before first file name****
1002|temp_lev3.hdf|||||1
1003|humid_lev3.hdf|||||1
601|wind_lev3.hdf|||||1

? SUPPORT INPUT FILES
[Default file location marked by '!']
! ~/runtime

31|Wind_insitu .dat|/usr/wind/data||||1
^ Blank character in file name****

--

 C-34 EED2-333-001

This ID is #defined in PGS_AA_Tools.h
This file contains the IDs for all support and format files shown
above
--
10900|indexFile|~/runtime||||1

--
These are support files for the data set files - to be created by user
(not necessarily a one-to-one relationship)
The IDs must correspond to the logical IDs in the index file
--
10901|mowe13aSupport|~/runtime||||1
10902|owe13aSupport|~/runtime||||1
10903|owe14Support|~/runtime||||1
10904|etop05Support|~/runtime||||1
10905|fnoc1Support|~/runtime||||1
10906|fnoc2Support|~/runtime||||1
10907|zobler1Support|~/runtime||||1
10908|zobler2Support|~/runtime||||1

--
The following are format files for each data set file
(not necessarily a one-to-one relationship)
The IDs must correspond to the logical IDs in the index file
--
10920|mowe13a.bfm|~/runtime||||1
10921|owe13a.bfm|~/runtime||||1
10922|owe14d.bfm|~/runtime||||1
10923|owe14dr.bfm|~/runtime||||1
10924|etop05.bfm|~/runtime||||1
10925|fnocAzm.bfm|~/runtime||||1
10926|fnocOcm.bfm|~/runtime||||1
10927|fnocPt.bfm|~/runtime||||1
10928|fnocRdg.bfm|~/runtime||||1
10929|fnocSt.bfm|~/runtime||||1
10930|fnocUrb.bfm|~/runtime||||1
10931|fnocWat.bfm|~/runtime||||1
10932|fnocMax.bfm|~/runtime||||1
10933|fnocMin.bfm|~/runtime||||1
10934|fnocMod.bfm|~/runtime||||1
10935|srzArea.bfm|~/runtime||||1
10936|srzCode.bfm|~/runtime||||1
10937|srzPhas.bfm|~/runtime||||1
10938|srzSlop.bfm|~/runtime||||1
10939|srzSoil.bfm|~/runtime||||1

 C-35 EED2-333-001

10940|srzText.bfm|~/runtime||||1

? SUPPORT OUTPUT FILES
[Default file location marked by '!']
! ~/runtime

51|Wind_qlook.dat|/usr/wind/data||||1

--
These files support the SMF log functionality. Each run will cause
status information to be written to 1 or more of the Log files. To
simulate DAAC operations, remove the 3 Logfiles between test runs.
Remember: all executables within a PGE will contribute status data to
the same batch of log files.
--
10100|LogStatus|~/runtime||||1
10101|LogReport|~/runtime||||1
10102|LogUser|~/runtime||||1
10103|TmpStatus|~/runtime||||1
10104|TmpReport|~/runtime||||1
10105|TmpUser|~/runtime||||1
10110|MailFile|~/runtime||||1

? USER DEFINED RUNTIME PARAMETERS
3000|Humidity Instrument Calibration|0.34423772
3001|
^ Incomplete line****
3002|Wind Instrument Calibration|0.992|
^ Extra delimiter****
3003|Atmospheric Algorithm|NIGHT
3001|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2
Index number used six lines above****

--
These parameters are required to support the PGS_SMF_Send...() tools.
If the first parameter (TransmitFlag) is disabled, then none of the
other parameters need to be set. By default, this functionality has
been disabled. To enable, set TransmitFlag to 1 and supply the other 3
parameters with local information.
--

 C-36 EED2-333-001

10109|TransmitFlag; 1=transmit,0=disable|0
10106|RemoteHost|anyhost
10107|RemotePath|/usr/anyuser/anypath/data
10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

? INTERMEDIATE INPUT
[Default file location marked by '!']
! ~/runtime

? INTERMEDIATE OUTPUT
[Default file location marked by '!']
! ~/runtime

? TEMPORARY IO
[Default file location marked by '!']
! ~/runtime

? END
We just passed the last divider****

UNIX COMMAND LINE:

pccheck.sh -i userpcf.dat -o userpcf.out
Error - Invalid number of system configuration parameters.
Found: 1
Expected: 2

Error - problem with version number in Standard input or output file
information.
Line number: 16
Line: 1000|temp.dat|/usr/atm/data|||temp.att|

Error - Invalid identifier number involving file information.
Line number: 18
Line: 1)01|humid.dat|/usr/atm/data|||humid.att|1

Error - Invalid number of delimiters involving file information.
Line number: 21
Line: 600|wind_2.dat|||wind_2.att|1

 C-37 EED2-333-001

Error - Default file location not found.
Line number: 58
Line: 1002|temp_lev3.hdf|||||1

Warning - possible problem in path or file name.
Line number: 67
Line: 31|Wind_insitu .dat|/usr/wind/data||||1

Error - Problem with user defined configuration parameter.
Line number: 146
Line: 3001|

Warning - extra delimiters in user defined configuration parameters.
Line number: 148
Line: 3002|Wind Instrument Calibration|0.992|

Warning - Repeat index number in user defined configuration parameters.
Line number: 151
Line: 3001|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

Warning - information beyond final divider will be ignored.
line number: 185
Number of dividers read: 10
Number of dividers expected: 10

Check of usrpcf.dat completed
Errors found: 6
Warnings found: 4

OUTPUT FILE: userpcf.out

 1:#

 2:# Process Control File
 3:#
 4:#
 5:? SYSTEM RUNTIME PARAMETERS
 6:# --
 7:# Production Run ID - unique production instance identifier
 8:# --
 9:1
 10:#****ONLY ONE SYSTEM CONFIGURATION PARAMETER****
 11:#
 12:? PRODUCT INPUT FILES
 13:# [Default file location marked by '!']

 C-38 EED2-333-001

 14:! ~/runtime
 15:#
 16:1000|temp.dat|/usr/atm/data|||temp.att|
 17:# ^ No version number****
 18:1)01|humid.dat|/usr/atm/data|||humid.att|1
 19:#^Illegal character in index number****
 20:600|wind_1.dat||||wind_1.att|2
 21:600|wind_2.dat|||wind_2.att|1
 22:# Line only contains five delimiters****
 23:#
 24:# --
 25:# polar motion and UTC-UT1 file
 26:# --
 27:10401|utcpole.dat|~/lib/database/CSC||||1
 28:# --
 29:# earth model tags file
 30:# --
 31:10402|earthfigure.dat|~/lib/database/CSC||||1
 32:# --
 33:# JPL planetary ephemeris file (binary form)
 34:# --
 35:10601|de200.eos|/usr/lib/database/CBP||||1
 36:10964|fnocmin.imgswitched|||||1
 37:10965|fnocmod.imgswitched|||||1
 38:10966|srzarea.img|||||1
 39:10967|srzcode.img|||||1
 40:10968|srzphas.img|||||1
 41:10969|srzslop.img|||||1
 42:10970|srzsoil.img|||||1
 43:10971|srztext.img|||||1
 44:#
 45:# --
 46:# The following are for the PGS_AA_dcw tool only.
 47:# The IDs are #defined in the PGS_AA_dcw.h file
 48:# --
 49:10990|eurnasia/|||||1
 50:10991|noamer/|||||1
 51:10992|soamafr/|||||1
 52:10993|sasaus/|||||1
 53:#
 54:#
 55:? PRODUCT OUTPUT FILES
 56:#
 57:# ^^^^ No default file location listed before first file name****
 58:1002|temp_lev3.hdf|||||1

 C-39 EED2-333-001

 59:1003|humid_lev3.hdf|||||1
 60:601|wind_lev3.hdf|||||1
 61:#
 62:#
 63:? SUPPORT INPUT FILES
 64:# [Default file location marked by '!']
 65:! ~/runtime
 66:#
 67:31|Wind_insitu .dat|/usr/wind/data||||1
 68:# ^ Blank character in file name****
 69:#
 70:#
 71:# --
 72:# This ID is #defined in PGS_AA_Tools.h
 73:# This file contains the IDs for all support and format files shown
 74:# above
 75:# --
 76:10900|indexFile|~/runtime||||1
 77:#
 78:# --
 79:# These are support files for the data set files - to be created by user
 80:# (not necessarily a one-to-one relationship)
 81:# The IDs must correspond to the logical IDs in the index file
 82:# --
 83:10901|mowe13aSupport|~/runtime||||1
 84:10902|owe13aSupport|~/runtime||||1
 85:10903|owe14Support|~/runtime||||1
 86:10904|etop05Support|~/runtime||||1
 87:10905|fnoc1Support|~/runtime||||1
 88:10906|fnoc2Support|~/runtime||||1
 89:10907|zobler1Support|~/runtime||||1
 90:10908|zobler2Support|~/runtime||||1
 91:#
 92:# --
 93:# The following are format files for each data set file
 94:# (not necessarily a one-to-one relationship)
 95:# The IDs must correspond to the logical IDs in the index file
 96:# --
 97:10920|mowe13a.bfm|~/runtime||||1
 98:10921|owe13a.bfm|~/runtime||||1
 99:10922|owe14d.bfm|~/runtime||||1
100:10923|owe14dr.bfm|~/runtime||||1
101:10924|etop05.bfm|~/runtime||||1
102:10925|fnocAzm.bfm|~/runtime||||1
103:10926|fnocOcm.bfm|~/runtime||||1

 C-40 EED2-333-001

104:10927|fnocPt.bfm|~/runtime||||1
105:10928|fnocRdg.bfm|~/runtime||||1
106:10929|fnocSt.bfm|~/runtime||||1
107:10930|fnocUrb.bfm|~/runtime||||1
108:10931|fnocWat.bfm|~/runtime||||1
109:10932|fnocMax.bfm|~/runtime||||1
110:10933|fnocMin.bfm|~/runtime||||1
111:10934|fnocMod.bfm|~/runtime||||1
112:10935|srzArea.bfm|~/runtime||||1
113:10936|srzCode.bfm|~/runtime||||1
114:10937|srzPhas.bfm|~/runtime||||1
115:10938|srzSlop.bfm|~/runtime||||1
116:10939|srzSoil.bfm|~/runtime||||1
117:10940|srzText.bfm|~/runtime||||1
118:#
119:#
120:? SUPPORT OUTPUT FILES
121:# [Default file location marked by '!']
122:! ~/runtime
123:#
124:#
125:#
126:51|Wind_qlook.dat|/usr/wind/data||||1
127:#
128:# --
129:# These files support the SMF log functionality. Each run will cause
130:# status information to be written to 1 or more of the Log files. To
131:# simulate DAAC operations, remove the 3 Logfiles between test runs.
132:# Remember: all executables within a PGE will contribute status data to
133:# the same batch of log files.
134:# --
135:10100|LogStatus|~/runtime||||1
136:10101|LogReport|~/runtime||||1
137:10102|LogUser|~/runtime||||1
138:10103|TmpStatus|~/runtime||||1
139:10104|TmpReport|~/runtime||||1
140:10105|TmpUser|~/runtime||||1
141:10110|MailFile|~/runtime||||1
142:#
143:#
144:? USER DEFINED RUNTIME PARAMETERS
145:3000|Humidity Instrument Calibration|0.34423772
146:3001|
147:# ^ Incomplete line****
148:3002|Wind Instrument Calibration|0.992|

 C-41 EED2-333-001

149:# ^ Extra delimiter****
150:3003|Atmospheric Algorithm|NIGHT
151:3001|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2
152:# Index number used six lines above****
153:#
154:#
155:# --
156:# These parameters are required to support the PGS_SMF_Send...() tools.
157:# If the first parameter (TransmitFlag) is disabled, then none of the
158:# other parameters need to be set. By default, this functionality has
159:# been disabled. To enable, set TransmitFlag to 1 and supply the other 3
160:# parameters with local information.
161:# --
162:10109|TransmitFlag; 1=transmit,0=disable|0
163:10106|RemoteHost|anyhost
164:10107|RemotePath|/usr/anyuser/anypath/data
165:10108|EmailAddresses|anyuser@anysystem.anyaddress.gov
166:#
167:#
168:? INTERMEDIATE INPUT
169:# [Default file location marked by '!']
170:! ~/runtime
171:#
172:#
173:#
174:? INTERMEDIATE OUTPUT
175:# [Default file location marked by '!']
176:! ~/runtime
177:#
178:#
179:? TEMPORARY IO
180:# [Default file location marked by '!']
181:! ~/runtime
182:#
183:#
184:? END
185:# We just passed the last divider****

C.2.6.3 EXAMPLE 3

INPUT FILE: userpcf.dat

Process Control File

 C-42 EED2-333-001

? SYSTEM RUNTIME PARAMETERS
--
Production Run ID - unique production instance identifier
--
1
--
Software ID - unique software configuration identifier
--
1

? PRODUCT INPUT FILES
[Default file location marked by '!']
! ~/runtime

These are actual ancillary data set files - supplied by ECS or the user
the following are supplied for purposes of tests and as a useful set of
ancillary data.

10780|usatile12||||10751|12
10780|usatile11||||10750|11
10780|usatile10||||10749|10
10780|usatile9||||10748|9
10780|usatile8||||10747|8
10780|usatile7||||10746|7
10780|usatile6||||10745|6
10780|usatile5||||10744|5
10780|usatile4||||10743|4
10780|usatile3||||10742|3
10780|usatile2||||10741|2
10780|usatile1||||10740|1
10951|mowe13a.img|||||1
10952|owe13a.img|||||1
10953|owe14d.img|||||1
10954|owe14dr.img|||||1
10955|etop05.dat|||||1
10956|fnocazm.img|||||1
10957|fnococm.img|||||1
10958|fnocpt.img|||||1
10959|fnocrdg.img|||||1
10960|fnocst.img|||||1
10961|fnocurb.img|||||1
10962|fnocwat.img|||||1
10963|fnocmax.imgs|||||1
10964|fnocmin.imgs|||||1

 C-43 EED2-333-001

10965|fnocmod.imgs|||||1
10966|srzarea.img|||||1
10967|srzcode.img|||||1
10968|srzphas.img|||||1
10969|srzslop.img|||||1
10970|srzsoil.img|||||1
10971|srztext.img|||||1
10972|nmcRucPotPres.datrepack|||||1
10973|tbase.bin||||10915|1
10974|tbase.br||||10919|4
10974|tbase.bl||||10918|3
10974|tbase.tr||||10917|2
10974|tbase.tl||||10916|1
10975|geoid.dat|||||1

The following are for the PGS_GCT tool only.
The IDs are #defined in the PGS_GCT.h file

10200|nad27sp|~/runtime||||1
10201|nad83sp|~/runtime||||1

The following are for the PGS_AA_DCW tool only.
The IDs are #defined in the PGS_AA_DCW.h file

10990|eurnasia/|||||1
10991|noamer/|||||1
10992|soamafr/|||||1
10993|sasaus/|||||1

1000|temp.dat|/usr/atm/data|||temp.att|1
1001|humid.dat|/usr/atm/data|||humid.att|1
600|wind_1.dat||||wind_1.att|2
600|wind_2.dat||||wind_2.att|1
--
polar motion and UTC-UT1 file
--
10401|utcpole.dat|~/lib/database/CSC||||1
--
earth model tags file
--
10402|earthfigure.dat|~/lib/database/CSC||||1
--
JPL planetary ephemeris file (binary form)
--

 C-44 EED2-333-001

10601|de200.eos|/usr/lib/database/CBP||||1

? PRODUCT OUTPUT FILES
[Default file location marked by '!']
! ~/runtime

1002|temp_lev3.hdf|||||1
1003|humid_lev3.hdf|||||1
601|wind_lev3.hdf|||||1

? SUPPORT INPUT FILES
[Default file location marked by '!']
! ~/runtime

31|Wind_insitu.dat|/usr/wind/data||||1

--
This ID is #defined in PGS_AA_Tools.h
This file contains the IDs for all support and format files shown
above
--
10900|indexFile|~/runtime||||1

--
These are support files for the data set files - to be created by user
(not necessarily a one-to-one relationship)
The IDs must correspond to the logical IDs in the index file
--
10901|mowe13aSupport|~/runtime||||1
10902|owe13aSupport|~/runtime||||1
10903|owe14Support|~/runtime||||1
10904|etop05Support|~/runtime||||1
10905|fnoc1Support|~/runtime||||1
10906|fnoc2Support|~/runtime||||1
10907|zobler1Support|~/runtime||||1
10908|zobler2Support|~/runtime||||1
10909|nmcRucSupport|~/runtime||||1
10915|tbaseSupport|~/runtime||||1
10916|tbase1Support|~/runtime||||1
10917|tbase2Support|~/runtime||||1
10918|tbase3Support|~/runtime||||1
10919|tbase4Support|~/runtime||||1

 C-45 EED2-333-001

10740|usatile1Support|~/runtime||||1
10741|usatile2Support|~/runtime||||1
10742|usatile3Support|~/runtime||||1
10743|usatile4Support|~/runtime||||1
10744|usatile5Support|~/runtime||||1
10745|usatile6Support|~/runtime||||1
10746|usatile7Support|~/runtime||||1
10747|usatile8Support|~/runtime||||1
10748|usatile9Support|~/runtime||||1
10749|usatile10Support|~/runtime||||1
10750|usatile11Support|~/runtime||||1
10751|usatile12Support|~/runtime||||1
10948|geoidSupport|~/runtime||||1

--
The following are format files for each data set file
(not necessarily a one-to-one relationship)
The IDs must correspond to the logical IDs in the index file
--
10920|mowe13a.bfm|~/runtime||||1
10921|owe13a.bfm|~/runtime||||1
10922|owe14d.bfm|~/runtime||||1
10923|owe14dr.bfm|~/runtime||||1
10924|etop05.bfm|~/runtime||||1
10925|fnocAzm.bfm|~/runtime||||1
10926|fnocOcm.bfm|~/runtime||||1
10927|fnocPt.bfm|~/runtime||||1
10928|fnocRdg.bfm|~/runtime||||1
10929|fnocSt.bfm|~/runtime||||1
10930|fnocUrb.bfm|~/runtime||||1
10931|fnocWat.bfm|~/runtime||||1
10932|fnocMax.bfm|~/runtime||||1
10933|fnocMin.bfm|~/runtime||||1
10934|fnocMod.bfm|~/runtime||||1
10935|srzArea.bfm|~/runtime||||1
10936|srzCode.bfm|~/runtime||||1
10937|srzPhas.bfm|~/runtime||||1
10938|srzSlop.bfm|~/runtime||||1
10939|srzSoil.bfm|~/runtime||||1
10940|srzText.bfm|~/runtime||||1

? SUPPORT OUTPUT FILES
[Default file location marked by '!']
! ~/runtime

 C-46 EED2-333-001

51|Wind_qlook.dat|/usr/wind/data||||1

--
These files support the SMF log functionality. Each run will cause
status information to be written to 1 or more of the Log files. To
simulate DAAC operations, remove the 3 Logfiles between test runs.
Remember: all executables within a PGE will contribute status data to
the same batch of log files.
--
10100|LogStatus|~/runtime||||1
10101|LogReport|~/runtime||||1
10102|LogUser|~/runtime||||1
10103|TmpStatus|~/runtime||||1
10104|TmpReport|~/runtime||||1
10105|TmpUser|~/runtime||||1
10110|MailFile|~/runtime||||1

? USER DEFINED RUNTIME PARAMETERS
3000|Humidity Instrument Calibration|0.34423772
3001|Temperature Instrument Calibration|1.87864
3002|Wind Instrument Calibration|0.992
3003|Atmospheric Algorithm|NIGHT
3004|Status Report Title|INSTRUMENT STATUS REPORT FOR LEVEL 2

--
These parameters are required to support the PGS_SMF_Send...() tools.
If the first parameter (TransmitFlag) is disabled, then none of the
other parameters need to be set. By default, this functionality has
been disabled. To enable, set TransmitFlag to 1 and supply the other 3
parameters with local information.
--
10109|TransmitFlag; 1=transmit,0=disable|0
10106|RemoteHost|anyhost
10107|RemotePath|/usr/anyuser/anypath/data
10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

? INTERMEDIATE INPUT
[Default file location marked by '!']
! ~/runtime

 C-47 EED2-333-001

? INTERMEDIATE OUTPUT
[Default file location marked by '!']
! ~/runtime

? TEMPORARY IO
[Default file location marked by '!']
! ~/runtime

? END

COMPARISON FILE: PCF.testmaster

filename:
PCF.testmaster

description:
Process Control File (PCF)

notes:

This file supports the IR-1 version of the toolkit.

Please treat this file as a master template and make copies of it
for your own testing. Note that the Toolkit installation script sets
PGS_PC_INFO_FILE to point to this master file by default. Remember
to reset the environment variable PGS_PC_INFO_FILE to point to the
instance of your PCF.

? SYSTEM RUNTIME PARAMETERS

Production Run ID - unique production instance identifier

1

Software ID - unique software configuration identifier

1

? PRODUCT INPUT FILES

 C-48 EED2-333-001

Next non-comment line is the default location for PRODUCT INPUT FILES
WARNING! DO NOT MODIFY THIS LINE unless you have relocated these
data set files to the location specified by the new setting.
! ~/runtime

These are actual ancillary data set files - supplied by ECS or the user
the following are supplied for purposes of tests and as a useful set of
ancillary data.

10780|usatile12||||10751|12
10780|usatile11||||10750|11
10780|usatile10||||10749|10
10780|usatile9||||10748|9
10780|usatile8||||10747|8
10780|usatile7||||10746|7
10780|usatile6||||10745|6
10780|usatile5||||10744|5
10780|usatile4||||10743|4
10780|usatile3||||10742|3
10780|usatile2||||10741|2
10780|usatile1||||10740|1
10951|mowe13a.img|||||1
10952|owe13a.img|||||1
10953|owe14d.img|||||1
10954|owe14dr.img|||||1
10955|etop05.dat|||||1
10956|fnocazm.img|||||1
10957|fnococm.img|||||1
10958|fnocpt.img|||||1
10959|fnocrdg.img|||||1
10960|fnocst.img|||||1
10961|fnocurb.img|||||1
10962|fnocwat.img|||||1
10963|fnocmax.imgs|||||1
10964|fnocmin.imgs|||||1
10965|fnocmod.imgs|||||1
10966|srzarea.img|||||1
10967|srzcode.img|||||1
10968|srzphas.img|||||1
10969|srzslop.img|||||1
10970|srzsoil.img|||||1
10971|srztext.img|||||1
10972|nmcRucPotPres.datrepack|||||1
10973|tbase.bin||||10915|1

 C-49 EED2-333-001

10974|tbase.br||||10919|4
10974|tbase.bl||||10918|3
10974|tbase.tr||||10917|2
10974|tbase.tl||||10916|1
10975|geoid.dat|||||1

The following are for the PGS_GCT tool only.
The IDs are #defined in the PGS_GCT.h file

10200|nad27sp|~/runtime||||1
10201|nad83sp|~/runtime||||1

The following are for the PGS_AA_DCW tool only.
The IDs are #defined in the PGS_AA_DCW.h file

10990|eurnasia/|||||1
10991|noamer/|||||1
10992|soamafr/|||||1
10993|sasaus/|||||1

? PRODUCT OUTPUT FILES
Next line is the default location for PRODUCT OUTPUT FILES
! ~/runtime

? SUPPORT INPUT FILES
Next line is the default location for SUPPORT INPUT FILES
! ~/runtime

This ID is #defined in PGS_AA_Tools.h
This file contains the IDs for all support and format files shown above

10900|indexFile|~/runtime||||1

These are support files for the data set files - to be created by user
(not necessary
The IDs must correspond to the logical IDs in the index file

10901|mowe13aSupport|~/runtime||||1
10902|owe13aSupport|~/runtime||||1

 C-50 EED2-333-001

10903|owe14Support|~/runtime||||1
10904|etop05Support|~/runtime||||1
10905|fnoc1Support|~/runtime||||1
10906|fnoc2Support|~/runtime||||1
10907|zobler1Support|~/runtime||||1
10908|zobler2Support|~/runtime||||1
10909|nmcRucSupport|~/runtime||||1
10915|tbaseSupport|~/runtime||||1
10916|tbase1Support|~/runtime||||1
10917|tbase2Support|~/runtime||||1
10918|tbase3Support|~/runtime||||1
10919|tbase4Support|~/runtime||||1
10740|usatile1Support|~/runtime||||1
10741|usatile2Support|~/runtime||||1
10742|usatile3Support|~/runtime||||1
10743|usatile4Support|~/runtime||||1
10744|usatile5Support|~/runtime||||1
10745|usatile6Support|~/runtime||||1
10746|usatile7Support|~/runtime||||1
10747|usatile8Support|~/runtime||||1
10748|usatile9Support|~/runtime||||1
10749|usatile10Support|~/runtime||||1
10750|usatile11Support|~/runtime||||1
10751|usatile12Support|~/runtime||||1
10948|geoidSupport|~/runtime||||1

The following are format files for each data set file
(not necessarily a one-to-one relationship)
The IDs must correspond to the logical IDs in the index file

10920|mowe13a.bfm|~/runtime||||1
10921|owe13a.bfm|~/runtime||||1
10922|owe14d.bfm|~/runtime||||1
10923|owe14dr.bfm|~/runtime||||1
10924|etop05.bfm|~/runtime||||1
10925|fnocAzm.bfm|~/runtime||||1
10926|fnocOcm.bfm|~/runtime||||1
10927|fnocPt.bfm|~/runtime||||1
10928|fnocRdg.bfm|~/runtime||||1
10929|fnocSt.bfm|~/runtime||||1
10930|fnocUrb.bfm|~/runtime||||1
10931|fnocWat.bfm|~/runtime||||1
10932|fnocMax.bfm|~/runtime||||1
10933|fnocMin.bfm|~/runtime||||1

 C-51 EED2-333-001

10934|fnocMod.bfm|~/runtime||||1
10935|srzArea.bfm|~/runtime||||1
10936|srzCode.bfm|~/runtime||||1
10937|srzPhas.bfm|~/runtime||||1
10938|srzSlop.bfm|~/runtime||||1
10939|srzSoil.bfm|~/runtime||||1
10940|srzText.bfm|~/runtime||||1
10704|usatile5.bfm|~/runtime||||1
10705|usatile6.bfm|~/runtime||||1
10706|usatile7.bfm|~/runtime||||1
10707|usatile8.bfm|~/runtime||||1
10708|usatile9.bfm|~/runtime||||1
10709|usatile10.bfm|~/runtime||||1
10710|usatile11.bfm|~/runtime||||1
10711|usatile12.bfm|~/runtime||||1
10947|geoidbfm|~/runtime||||1

leap seconds (TAI-UTC) file

10301|leapsec.dat|~/database/sun5/TD||||1

polar motion and UTC-UT1 file

10401|utcpole.dat|~/database/sun5/CSC||||1

earth model tags file

10402|earthfigure.dat|~/database/sun5/CSC||||1

directory where spacecraft ephemeris files are located
NOTE: This line is used to specify a directory only!
The "file" field should not be altered.

10501|.|~/database/sun5/EPH||||1

JPL planetary ephemeris file (binary form)

10601|de200.eos|~/database/sun5/CBP||||1

 C-52 EED2-333-001

? SUPPORT OUTPUT FILES
Next line is default location for SUPPORT OUTPUT FILES
! ~/runtime

These files support the SMF log functionality. Each run will cause
status information to be written to 1 or more of the Log files. To
simulate DAAC operations, remove the 3 Logfiles between test runs.
Remember: all executables within a PGE will contribute status data to
the same batch of log files.

10100|LogStatus|||||1
10101|LogReport|||||1
10102|LogUser|||||1
10103|TmpStatus|||||1
10104|TmpReport|||||1
10105|TmpUser|||||1
10110|MailFile|||||1

This parameter controls the Event Logger connection from the Toolkit.

10113|eventLogger.log|||||1

ASCII file which stores pointers to runtime SMF files in lieu of
loading them to shared memory, which is a TK5 enhancement.

10111|ShmMem|||||1

? USER DEFINED RUNTIME PARAMETERS

These parameters are required to support the PGS_SMF_Send...() tools.
If the first parameter (TransmitFlag) is disabled, then none of the
other parameters need to be set. By default, this functionality has been
disabled. To enable, set TransmitFlag to 1 and supply the other 3
parameters with local information.

10109|TransmitFlag; 1=transmit,0=disable|0
10106|RemoteHost|sandcrab

 C-53 EED2-333-001

10107|RemotePath|/usr/kwan/test/PC/data
10108|EmailAddresses|kwan@eos.hitc.com

This parameter controls the Event Logger connection from the Toolkit.

10112|Event Logging Flag; 1=connect,0=disconnect|1

This entry defines the IP address of the processing host and is used
by the Toolkit when generating unique Intermediate and Temporary file
names. The Toolkit no longer relies on the PGS_HOST_PATH environment
variable to obtain this information.

10099|Local IP Address of 'ether'|155.157.31.87

? INTERMEDIATE INPUT
Next line is default location for INTERMEDIATE INPUT FILES
! ~/runtime

? INTERMEDIATE OUTPUT
Next line is default location for INTERMEDIATE OUTPUT FILES
! ~/runtime

? TEMPORARY I/O
Next line is default location for TEMPORARY FILES
! ~/runtime

? END

UNIX COMMAND LINE:

pccheck.sh -i userpcf.dat -c PCF.testmaster -s
The following lines were listed in the template file: PCF.testmaster
and have been altered or deleted from the input file.

> 10704|usatile5.bfm|~/runtime||||1
> 10705|usatile6.bfm|~/runtime||||1
> 10706|usatile7.bfm|~/runtime||||1
> 10707|usatile8.bfm|~/runtime||||1
> 10708|usatile9.bfm|~/runtime||||1
> 10709|usatile10.bfm|~/runtime||||1

 C-54 EED2-333-001

> 10710|usatile11.bfm|~/runtime||||1
> 10711|usatile12.bfm|~/runtime||||1
> 10947|geoidbfm|~/runtime||||1
> 10301|leapsec.dat|~/database/sun5/TD||||1
> 10401|utcpole.dat|~/database/sun5/CSC||||1
> 10402|earthfigure.dat|~/database/sun5/CSC||||1
> 10501|.|~/database/sun5/EPH||||1
> 10601|de200.eos|~/database/sun5/CBP||||1
> 10100|LogStatus|||||1
> 10101|LogReport|||||1
> 10102|LogUser|||||1
> 10103|TmpStatus|||||1
> 10104|TmpReport|||||1
> 10105|TmpUser|||||1
> 10110|MailFile|||||1
> 10113|eventLogger.log|||||1
> 10111|ShmMem|||||1
> 10106|RemoteHost|sandcrab
> 10107|RemotePath|/usr/kwan/test/PC/data
> 10108|EmailAddresses|kwan@eos.hitc.com
> 10112|Event Logging Flag; 1=connect,0=disconnect|1
> 10099|Local IP Address of 'ether'|155.157.31.87

These are the lines in the input file: usrpcf.dat
that differ from the template file.
< 10401|utcpole.dat|~/lib/database/CSC||||1
< 10402|earthfigure.dat|~/lib/database/CSC||||1
< 10601|de200.eos|/usr/lib/database/CBP||||1
< 10100|LogStatus|~/runtime||||1
< 10101|LogReport|~/runtime||||1
< 10102|LogUser|~/runtime||||1
< 10103|TmpStatus|~/runtime||||1
< 10104|TmpReport|~/runtime||||1
< 10105|TmpUser|~/runtime||||1
< 10110|MailFile|~/runtime||||1
< 10106|RemoteHost|anyhost
< 10107|RemotePath|/usr/anyuser/anypath/data
< 10108|EmailAddresses|anyuser@anysystem.anyaddress.gov

C.2.7 BENEFITS
Due to the fact that the Process Control Information file must currently be entered by hand, errors
can easily be introduced. Many errors are not obvious and may not be detected by the Process
Control Tools. By adopting the practice of using this utility to check your PCF after each
modification, the number of runtime errors can be greatly reduced.

 D-1 EED2-333-001

Appendix D. Ancillary Data Access Tools

This appendix deals with the use of the ancillary data access tools:

PGS_AA_dcw

PGS_AA_dem

PGS_AA_2DRead

PGS_AA_2Dgeo

PGS_AA_3DRead

PGS_AA_3Dgeo

PGS_AA_PeVA

The first section below describes how the tools are conceived. Each tool is then described in
terms of

• the data set(s) to which it is designed to give access including its accuracy and precision
• an outline of the means by which the tool achieves access and any options available

through the calling sequence.
• how the user can call the tool to optimize resource efficiency
• upgrade possibilities

The DCW tool is described in the second section; while the DEM, 2 and 3 D tools, being closely
allied in functional terms are described together in the third section. The fourth section describes
the Parameter = Value tool that is a support tool for the other tools but can also be used directly
by science users in algorithms.

This information is additional to that in the main User Guide pages and calling sequence details
are not repeated here.

D.1 Introduction
The ancillary data tools are optional for use in science algorithms. There is a wide range of
ancillary data sets and these tools have been designed to provide useful access functionality only
for those data sets for which generic functionality can be provided centrally.

Users could utilize language standard input/output functions or the HDF tools to access the
ancillary data. However, a suite of higher level tools is required for four reasons:

a. to enable data from locations specified by the user to be returned to the user thus avoiding
having to know the internal structure of the file.

 D-2 EED2-333-001

b. to shield the user from having to know details of parameter source or source format or to
track changes in either, although sources changes will be agreed with the user.

c. to provide for certain additional manipulations of extracted data.

For this final point (c), only those data sets that have been specifically identified as requiring
particular manipulations will be serviced; i.e., the ancillary tools do not intend to provide a
general manipulation service for all types of data. However, the tools which 'extract from
location' (a) will be sufficiently generic to allow additional data sets of a similar type to be used.

Access to the information will be in response to an algorithm request in the form of pointers to
parameters and locations in a data file. These pointers take the form of a latitude and longitude or
a similar two dimensional or three dimensional pointer.

It has been assumed that users require to access single or multiple point locations for one or more
parameters and that these values will be returned in arrays to the user. This is in sharp contrast to
the other major use of various ancillary data that are used for display purposes on screens. It is
further assumed that the user requires multiple extractions made in user defined loops; very often
driven by the systematic examination of time ordered source packets along or orthogonal to the
sub–satellite track.

D.2 PGS_AA_dcw

D.2.1 Data Sets Accessed

PGS_AA_dcw is an ancillary data tool to be used to access the Digital Chart of the World
database (DCW). The tool can only be used for accessing DCW.

A subset of the DCW database subset is delivered with the tool. For descriptions of data sets and
file structure see Digital Chart of the World—Final DCW Product Specification MIL–D–
89009 December 7, 1991.

DCW is a general purpose digital global database designed for Geographical Information
Systems (GIS) applications. It utilizes a vector based, thematically layered data set available on
four CD–ROM's at a comprehensive scale of 1:1,000,000. It consists of geographic, attribute, and
textual data, stored in Vector Product Format or VPF. VPF is described in Vector Product
Format (MIL–STD–600006).

The data provided with the tool is exactly as found in the product, therefore any errors are a result
of the database and not the tool. The DCW content is based primarily on the feature content of
the 1:1,000,000–scale DMA Operational Navigational Chart (ONC) series. The 270 ONC sheets
are supplemented with six 1:2,000,000–scale Jet Navigation Charts (JNC's) in the Antarctic
region where ONC coverage is not available.

The absolute horizontal accuracy of the DCW for all features derived from ONC's is < 2040
meters (<6700 feet) rounded to the nearest 5 meters at 90% Circular Error (CE), World Geodetic
System (PGSD_WGS84). The absolute horizontal accuracy for all features derived from JNC's is
<4270 meters (<14000 feet) at 90% CE.

 D-4 EED2-333-001

D.2.2 Outline Functionality

D.2.2.1 Outline

As the tool design is at present, the inputs needed to extract land/sea cover flags are as follows.

a. The parameter name - at present only PO (Political / Oceans)

b. The number of parameters - at present only 1

c. The longitude of the point(s) - in the form +/- 180.0000; e.g. 134.2234

d. The latitude of the point(s) - in the form +/- 90.0000 e.g. 87.8945

e. The number of points - 1 or more

f. A results array already specified by the user. (This will be filled up by the tool)

 E.G.

 PGS_AA_dcw ('po', 1, 34.222, 87.8923, 1, [100][10]);

The tool looks at each long/lat pair in turn, and searches the database. The first hurdle the tool
encounters is the set up of the DCW database. The world has been divided into four areas:

• Europe and northern Asia

• South America, Africa and Antarctica

• North America

• Southern Asia and Australia

To find the relevant location; and extract the data base value; the tool works in the following
way.

a. Locate within which continent the search point lies

b. Locate the table containing the search point.

NOTE: There may be cases within the Database where the point lies on the junction
of two edges; and because of machine accuracy and scale issues, the database will
provide no return to the search. If this happens the search is performed again with the
addition of a value that will not alter the search due to scalar issues, but will move the
point away from the junction so a value can be extracted.

c. Open the relevant table.

d. Locate the search point within the table.

e. Extract the value pertaining to that search point.

f. Close the table.

g. Return the result of the search.

h. Perform another search using the next input coordinate pair.

 D-5 EED2-333-001

D.2.3 Optimal Operation

Optimal operation for extraction of data from the data base is accomplished at present by running
the tool as stated above. The tool can be run in two modes. The first is calling the tool with one
point at a time, the second being calling the tool once with all the points needed as inputs. Of the
two the latter is the fastest.

D.2.4 Upgrades

D.2.4.1 Access Speed

At present the tool goes through the above process for every location, provided by the user, as
can be expected this will slow down the search process and tool performance. There is a
mechanism by which the tool can be speeded up - which may be implemented at a later date, and
involves using the file headers in a more constructive fashion. Within the header, there is
information about the adjoining tiles. Since most users will be using this tool in a swath based
format, the tool will become more time efficient by staying down at the table level, and utilizing
code to extract adjoining tile identifiers - rather than performing the search criterion for every
single search location.

D.2.4.2 Additional Coverages

The tool has been developed in such a way, that if requirements for other coverages i.e.,
vegetation, drainage, hypsography are needed - all that is needed is for the data to be supplied,
and an additional small code change made to facilitate the new parameters. The results array will
then be filled up with integer values representing the vegetation, drainage, etc., type to found at
the location provided by the user.

D.3 PGS_AA_dem, PGS_AA_2DRead, PGS_AA_2Dgeo,
 PGS_AA_3DRead, PGS_AA_3Dgeo

D.3.1 Data Sets Accessed

D.3.1.1 Introduction

These tools are designed to give access to a wide range of data sets all having all of the following
characteristics

• gridded (i.e. raster or cell structured), with parameter value or values associated with each
cell constituting the substance of the data set.

• rectangular, having 2 or 3 dimensions

• formatted in simple binary or ASCII with (in C terms) char, float or double, short or long
integers aligned to byte boundaries.

• the physical data set is sufficiently small to be loaded into machine memory.

 D-6 EED2-333-001

The latter two of these points are involved with pre–processing and implementation issues
respectively and are dealt with later (3.3.3.).

Several data sets have been delivered with the toolset. These data sets were considered useful for
testing purposes and may also satisfy some science team requirements. They were obtained from
NOAA's National Geophysical Data Center in Boulder, Colorado. They are described in outline
below. Further details are found in the delivered format and support files (described below). Full
details are found in the National Geophysical Data Center (NGDC) publications:

Global Ecosystems Database Version 1.0 (on CD–ROM) User's Guide EPA/600/R–92/194a

Global Ecosystems Database Version 1.0 (on CD–ROM) Documentation Manual (Disc–A)
EPA/600/R–92/194b

Global View 4 CD–ROM set. United States Department of Commerce (USDC), National
Oceanographic and Atmospheric Administration (NOAA), National Environmental
Satellite Data and Information Service (NESDIS), National Geophysical Data Center
(NGDC), Boulder Colorado.

Table D-1. Data Included in Toolkit 3/4/5 (1 of 2)
Data Set Units Cell size File

Olson World Ecosystems v1.3a 30 cats 30 arc min owe13a.img
Olson World Ecosystems v1.4d 74 cats 10 arc min owe14d.img
Olson World Ecosystems v1.4dr 3 cats 10 arc min owe14dr.img
Olson (Madagascar) Ecosystems v1.3a 29 cats 30 arc min mowe13a.img
Federal Naval Operations Center (FNOC) modal
elevation

Meters 10 arc min fnocmod.imgs

FNOC maximum elevation Meters 10 arc min fnocmax.imgs
FNOC minimum elevation Meters 10 arc min fnocmin.imgs
FNOC modal elevation Meters 10 arc min fnocmod.img_dec
FNOC maximum elevation Meters 10 arc min fnocmax.img_dec
FNOC minimum elevation Meters 10 arc min fnocmin.img_dec
FNOC primary & 2ndary surface types 10 cats 10 arc min fnocpt.img
FNOC ocean/land mask 2 cats 10 arc min fnococm.img
FNOC number of ridges Count 10 arc min fnocrdg.img
FNOC direction of ridges Degrees 10 arc min fnocazm.img
FNOC water & urban cover Percent 10 arc min fnocwat.img
Zobler Soil types 108 cats 60 arc min srzsoil.img
Zobler associated and included soil units 279 cats 60 arc min srzsubs.img

 D-7 EED2-333-001

Table D-1. Data Included in Toolkit 3/4/5 (2 of 2)
Data Set Units Cell size File

Zobler associated and included soil units 279 cats 60 arc min srzsubs.img_dec
Zobler near surface soil texture 10 cats 60 arc min srztex.img
Zobler surface slope 10 cats 60 arc min srzslop.img
Zobler soil phase 87 cats 60 arc mins srzphas.img
Zobler special codes 12 cats 60 arc mins srzcode.img
Zobler world areas 9 cats 60 arc mins srzarea.img
Etop05 surface elevation meters 5 arc mins etop05.dat
Etop05 surface elevation meters 5 arc mins etop05.dat_dec
DMA conterminous USA meters 30 arc secs usatile.bin tiles (3)
Terrainbase global DEM (etop05 based) meters 5 arc mins tbase.bin
Terrainbase global DEM (etop05 based) meters 5 arc mins tbase .bin tiles (3)
Geoid cm 15 arc mins geoid.dat

Note 1. The _dec files are byte swapped to allow operation on DEC machines.
 PGS_AA_dem has a byte swapping utility built in which comes into operation
 on DEC machines.

Note 2. The table in section 3.2.2. Specifies the parameters names recognized by the
 tools.

Note 3. The tiled files are subdivided in order to reduce physical file size.

 There is no loss of data. Access to the tiles will yield the same result as to the
 original whole data set.

These data sets are samples only. Other data sets may be delivered with later versions of the tool
kit or the user may use his/her own data sets from other sources.

D.3.1.2 Support and Format Files

Support and format files are required for each data set. There is one format file per data set but
there is not necessarily a one–to–one mapping between data sets and support files since the same
support file can be used for similar data sets. The association between these files is specified
operationally in the indexFile see section 3.2.2.

The support files for the delivered data sets have been created by the tool developers although in
the longer term it is anticipated that users will create their own data sets and support data. These
files are simple label = value ASCII files containing a set of values required by the tools.

Format files use the Freeform data description language to describe data file formats. A subset of
possible descriptions is accepted by the tool. Full details of Freeform, including format
specifications can be found in the Freeform Tutorial accessible on the ftp server
ftp.ngdc.noaa.gov under /pub. Freeform is also a component of the software of the tools. An
outline of Freeform data description applicable to the ancillary tools is found below.

 D-8 EED2-333-001

D.3.1.2.1 Support File

The support file is constructed using a label = value format and read using the PGS_AA_PeV
tool described elsewhere. It contains various values which define the format of the output buffer
containing parameter values returned to the user. For 2 and 3 dimensional data sets, there are
mandatory fields that must exist in the support file. These are described below with an
explanation of how each is derived.

cacheFormat1 the data type of the output to be produced by the tool (short, long, double
or float). On machines (e.g. sgi IRIX64, dec_alpha) 'long' datatype is eight
bytes long. In such cases instead of using 'long', 'int64' must be used.

cacheFormat2 the number of decimal places in the output to be produced by the tool
(applicable to double and float only)

cacheFormatBytes the number of bytes represented by the data type of the output

parmMemoryCache the size in bytes of the parameter requested once changed to the output
type. The volume of the parameter from the whole data set.

dataType the data type of the output to be produced by the tool (short, long, double
or float).

autoOperation a composite integer value made up of operations that must be applied to
the data during access (see section 3.2.3)

fileMemoryCache the size in bytes of the data set file in its input format (see format file
below)

maxLat maximum latitude of data set

minLat minimum latitude of data set

maxLong maximum longitude of data set

minLong minimum longitude of data set

xCells the number of data set cells in the X (fastest changing) dimension

yCells the number of data set cells in the Y (slower changing) dimension

zCells the number of data set cells in the Z (slowest changing) dimension

 (set 0 for 2d data sets)

funcIndex index for the interpolation routine to be used. Currently only linear
interpolation is supported for which the index is 0.

swapBytes 'yes' to indicate byte swapping is required on the result buffer else 'no'.
Used only by the PGS_AA_dem tool on dec machines for cases where the
data files have originated on foreign machines.

note 1. parmMemoryCache and fileMemoryCache must be => the appropriate size
in bytes

 D-9 EED2-333-001

note 2. The dimensions (Cells) must be matched with the storage form of the data
set in terms of dimension ordering.

For some data sets, additional support information may be required. The tools will currently deal
with the National Meteorological Center (NMC) Rapid Update Cycle (RUC) model products that
are in a polar stereographic projection. Thus the following must be present in the support file.

lowerLeftLat of the grid origin

lowerLeftLong of the grid origin (in E coordinates)

meshLength length in meters of the cell

gridOrientation in E coordinates

D.3.1.2.2 Freeform Data Description

Freeform is able to deal with a number of format types. The data sets delivered with the tool kit
are all have relatively simple binary formats described in the '.bfm' files.

 e.g. fnocMod 1 2 short 0

• the first item is the parameter name as requested by the user

• the second and third values are the start and stop byte positions of the parameter

• the data type. On machines (e.g. sgi IRIX64, dec_alpha) 'long' datatype is eight bytes
long. In such cases instead of using 'long', 'int64' must be used.

• the number of values after the decimal point for float/doubles

These files describe the input format of the data set; i.e., the format of the data set; c.f. the
output format described in the support file that is the format of the buffer delivered to the user
through the tool.

The parameter is described once and Freeform assumes the same byte pattern throughout the data
file, whatever its size. A data set file may contain multiple parameters with different data types.
However, Freeform does not allow multiple parameters to be band interleaved; i.e., multiple
parameters must have values individually interleaved, e.g. the format file:

fnocMod 1 2 short 0

another_parm 3 6 float 1

will allow Freeform to ingest a data set having binary data (when viewed)

34 45.3 33 46.1 45 712.3etc.

The extension .bfm tells Freeform that the file is in binary format. Other extensions are contents
are available in Freeform although the ancillary tools will not deal with them at this release.

 D-10 EED2-333-001

D.3.2 Functionality and Operation

D.3.2.1 Outline Functionality

The tools are designed to be called by the user using a parameter name; a file i.d.; an operation; a
version number; and either geographic coordinates or file structure coordinates.

The tool takes the parameter name and matches it to a list in the indexFile. If found, the file i.d.s
of the support and format files are ingested from the indexFile. The format and support files are
then interrogated by the tool for relevant information. The file i.d. and version number provide
the full identification for the data set file containing the parameter and must be known by the user
from the process control environment (see 3.2.4.).

The operation is an integer comprising the sum of operations required by the user to be applied
to the data during extraction through the tool. Section 3.2.3 specifies the available operations.

The geographic coordinates (input to PGS_AA_2Dgeo, PGS_AA_3Dgeo) are simple latitude/
longitude as double values in the range +/- 180.000 (longitude) and +/-90.000 (latitude). The file
structure coordinates (x,y and z) (input to PGS_AA_2DRead, PGS_AA_3DRead) are defined
in respect to the ordering of the data in the data set file. The calling sequence expects the 'x'
dimension to be the fastest changing dimension followed by 'y' and (for 3 D data sets) 'z'. This
means that the user must understand the nature of the ordering of dimensions in the data set file
and this should also be reflected in the support file.

Example:

The Olson World Ecosystem Data sets supplied with the tool are ordered with lines of
latitude first (i.e., the cells in the binary file start at +90.00, -180.00 and proceed to
+90.00, +180.00 before starting the next line of latitude). Thus the value of longitude of
each cell changes fastest and so longitude is the x dimension and latitude the y dimension.

Both GEO tools assume that longitude is associated with the fastest changing (x) dimension and
perform calculations on this basis. This means the support file xCells value represents the
longitude range of the data set. If a data set is oriented with latitude changing fastest then xCells
must be set to the number of cells in latitude, and the latitude and longitude input arguments to
the calling sequence must be used reversed in meaning; i.e., input user latitude into the longitude
argument etc.

PGS_AA_dem operates in a very similar way to PGS_AA_2Dgeo that it utilizes. The value
added in the DEM tool is that it selects parameter values from the same logical data set where the
data are physically separated into tiles. The DEM tool makes the selection on the basis of the
maxLat, maxLong, minLat, and minLong attributes found in the Support files.

D.3.2.2 Parameters and the indexFile

The AA tools have been delivered with a sample set of data files. These files contain one
parameter only per data file, although the tools will operate with files having multiple parameters
(with a limit currently set to 4). The indexFile currently contains parameters found in the sample

 D-11 EED2-333-001

data sets. The parameter names in the indexFile are those which must be used in the calling
sequences. When the user wishes to add new data sets, the indexFile must be updated with
suitable names for the parameter(s) contained in the data sets plus the i.d.s of the support and
format files (i.d.s should cross reference with process control table).

The current indexFile appears as follows:

Table D-2. Current Index File
Parameter

21 (Number Of Records)
Support File I.D. Format File I.D.

OlsonMadegascarEcosystems1.3a 10901 10920
OlsonWorldEcosystems1.3a 10902 10921
OlsonWorldEcosystems1.4d 10903 10922
OlsonWorldEcosystems1.4dr 10903 10923
etop05SeaLevelElevM 10904 10924
fnocAzm 10905 10925
fnocOcm 10905 10926
fnocPt 10905 10927
fnocRdg 10905 10928
fnocSt 10905 10929
fnocUrb 10905 10930
fnocWat 10905 10931
fnocMax 10906 10932
fnocMin 10906 10933
fnocMod 10906 10934
srzArea 10907 10935
srzCode 10907 10936
srzPhas 10907 10937
srzSlop 10907 10938
srzSoil 10907 10939
srzText 10907 10940
nmcRucSigPres 10909 10941
nmcRucSigPot 10909 10941
usadmaelevation 10740 - 10751 10700 - 10711 (2)
tbaseElevationWorld 10915 10942
tbaseElevation 10916 - 10919 10943- 10946(2)
geoid data 10948 10947

Note 1: The nmc file contains 2 parameters of many from a model run for a test period.
 They are included for test purposes only and are not generally applicable.

Note 2: These elevation parameters cover multiple physical files that are accessed
 automatically by the DEM tool.

D.3.2.3 Use of User Specified and Auto–Operations

To account for the variability of data sets, two types of 'operation' have been enabled within the
tools; user and auto–operations. The user operation, the last argument in the calling sequence,

 D-12 EED2-333-001

specifies which additional functions the user wishes to apply to the data. The currently available
operations are:

Operation: PGS_AA_NEARESTCELL

Argument value: 1

Applicable to: PGS_AA_2Dgeo, PGS_AA_3Dgeo

Function:

The geographic coordinates are translated to a column and row coordinate pair.
The translation provides a floating point number. Obviously the cell coordinate
is an integer. This operation allows the user to specify the nearest cell by
rounding the floating point numbers up (using the C 'ceil' function).

Operation: PGS_AA_OP_NINTCELL

Argument value: 2

Applicable to: PGS_AA_3Dgeo

Function:

This operation is specific to the polar stereographic auto–operation the output
from which is unclear at the boundary. This user operation is used to round
geocoordinate values in a very similar way to PGS_AA_NEARESTCELL but
with allowance for uncertain boundary calculations.

Operation: PGS_AA_INTERP2BY2

Argument value: 4

Applicable to: PGS_AA_2Dgeo

Function:

This operation conducts interpolation on a 2x2 grid (i.e. nearest 4 points) and
returns the interpolated value. The type of interpolation is controlled by
funcIndex defined in the support file. Currently only bilinear interpolation is
supported with funcIndex = 0. The interpolation routine was taken from
Numerical Recipes in C by William H. Press et al., pages 90 and 106.

Operation: PGS_AA_INTERP3BY3

Argument value: 8

Applicable to: PGS_AA_2Dgeo

 D-13 EED2-333-001

Function:

This operation conducts interpolation on a 3x3 grid (i.e. nearest 9 points) and
returns the interpolated value. The type of interpolation is controlled by
funcIndex defined in the support file. Currently only bilinear interpolation is
supported with funcIndex = 0. The interpolation routine was taken from
Numerical Recipes in C by William H. Press et al., pages 90 and 106.

Other more complex operations can be conceived although none have been implemented at this
time.

Auto–operations are those functions that must be applied in order to extract the correct values.
The auto–operation is specified in the support file and applied automatically on each run. The
currently available auto–operations are:

 Operation: PGS_AA_AOP_PLATTECARRE
Support file value: 1
Applicable to: PGS_AA_2Dgeo, PGS_AA_3Dgeo, PGS_AA_dem
Function:

 This auto–operation calculates the column row cell coordinates from geographic
coordinates assuming a Platte Carre projection

 Operation: PGS_AA_AOP_POLARSTEREO
Support file value: 2
Applicable to: PGS_AA_3Dgeo
Function:

 This auto–operation calculates the column row cell coordinates from geographic
coordinates assuming an NMC RUC model polar stereographic projection.

 Operation: PGS_AA_AOP_GREENWICHSTART
Support file value: 4
Applicable to: PGS_AA_2DRead, PGS_AA_3DRead, PGS_AA_2Dgeo,
 PGS_AA_3Dgeo, PGS_AA_dem
Function:

 This auto–operation recalculates the geographic coordinates assuming a longitude 0
value at Greenwich.

 Operation: PGS_AA_AOP_IDLSTART
Support file value: 8
Applicable to: PGS_AA_2DRead, PGS_AA_3DRead, PGS_AA_2Dgeo,
 PGS_AA_3Dgeo, PGS_AA_dem
Function:

 This auto–operation recalculates the geographic coordinates assuming a longitude 0
value at the Interactive Data Language (IDL).

 D-14 EED2-333-001

Auto–operations are generally applied before user operations.

Both types of operation are additive; e.g., an auto–operation of value 9 will results in the
functions PGS_AA_AOP_IDLSTART and PGS_AA_AOP_PLATTECARRE being applied to
input geo–coordinates in that order.

D.3.2.4 Operational Environment

The file set i.d. and version number must be provided by the user to the ancillary tool. For a static
data set, only the i.d. is relevant, the version number should be set to 1. The i.d. is set up in the
process control table during Algorithm Integration and Test (AI&T) of the algorithm and should
be known to the user.

For dynamically changing data sets, a version number is required which specifies the exact data
file out of a number staged for the processing run (e.g., for a set of times). These are obtained
from the process control tools PGS_PC_GetNumberOfFiles and PGS_PC_GetAttributes
(described elsewhere in this document). The sequence from calling these tools to obtain a version
number is:

PGS_PC_GetNumberOfFiles gets number of versions for a particular i.d.
LOOP FOR number of version with same file i.d.
PGS_PC_GetAttributes of each file version

test of attributes using user criterion
ENDLOOP
PGS_AA_tool call using i.d. and selected version number

This series of calls is the basis of the PGS_AA_dem tool that selects the correct tiles using
geographic coverage attributes. DEMs or other 2 dimensional data sets that are physically too
large to be ingested into RAM in one go, can be 'tiled' into smaller coverages. These are then
entered into the PCF having the same fileId but different version numbers. The PGS_AA_dem
tool makes the selection and fills the results buffer for the user.

D.3.3 Optimal Operation

D.3.3.1 Buffering

The tools ingest the whole data file into a buffer and then extracts the parameter required into a
further parameter buffer. The area requested is then extracted and returned in the output/results
buffer. The parameter buffer is "free'd" before exiting the tool. This leaves the file buffer in
memory. Subsequent calls requesting parameter values from the same file are serviced from this
buffer while parameters from other files obviously cause the new file to be buffered. There is a
user configurable number of file buffers which can be held by each tool. It should be set by the
user according to the memory limitation of the host machine and the need for rapid access.
Obviously, the greater the number of files held, the quicker different parameter calls will be

 D-15 EED2-333-001

serviced, but at the expense of tying up memory. The #define is currently set to 4 in PGS_AA.h
(FORTRAN version is PGS_AA.f):

#define PGSd_AA_MAXNOCACHES 4

D.3.3.2 Multiple calls

The GEO tools can be used with single coordinate pairs repeatedly; e.g., calling the tool in a loop
with changing lat/longs. The tools can also accept arrays of coordinate pairs. Using the tools in
this way will illicit a much faster response from the tool since the setup functions called during
each tool call are used only once.

D.3.3.3 Pre-processing, formats and file sizes

The static data files delivered with release 1 are in the format provided by the vendor. This
format is compatible with Freeform since data set and Freeform development were associated at
NGDC. Most of the files are of relatively small size and can readily be loaded into memory.
Etop05 is somewhat larger (18 Mbytes) and especially when used with the FORTRAN interface,
may demand memory that is not available (or only with virtual swapping).

The FORTRAN problem arises from the fact that only integers of type PGSt_integer which is
equivalent to an Integer*4 are permitted. Thus PGS_AA_2DRead is forced to allocate, e.g., 36
Mbytes memory to extract the elevation data during a tool call. This is the principal reason
behind tiling larger data sets such as the DEMs.

The ability of Freeform to deal with a range of formats means that pre–processing of many data
sets should be minimal. However, data sets that are have a complex internal structure may
require more extensive pre–processing. In particular, NMC data sets are multi–dimensional. It is
not yet clear whether further tools will need to be developed to deal with these.

D.3.4 Setting up new/user data sets

Users can and are expected to use their own data sets. Below is a check list of the actions that
need to be taken when introducing new data sets.

• Check that the data file conforms to the constraints outlined in 3.1.1.

• Construct a Freeform format file and a support file (3.1.2). Check that suitable operations
are available and set the auto–operation.

• Edit a suitable file i.d. into the process control table for the data set, the format file and
the support file. The latter 2 files must be in the support file section while the data set file
i.d. must be in the product input section.

• Edit the indexFile to include a suitable parameter name for parameters in the data set
(3.2.2). Include the file i.d.s of the format and support files related to the data set file and
as inserted into the process control table.

• Place the data set file in the product input directory and the format and support files in the
~/runtime directory (or equivalent)

 D-16 EED2-333-001

D.3.5 Upgrades

D.3.5.1 Interaction with HDF files

Where ancillary inputs are other EOS products, then the format from which the requested data
must be extracted may be HDF. Further ancillary tools using HDF libraries may be developed to
deal with this scenario.

D.3.5.2 Other format types for user files

Data sets that cannot be dealt with by the current tools may be due to having non–raster (e.g.,
vector) formats which may necessitate new tools; although possibly continuing to use Freeform.
HDF libraries and formats may also be a means of accessing these formats.

D.3.5.3 New Operations

New data sets provided by ECS or the user may require new operations (user and/or auto). Where
these are clearly defined and common to several processing chains, then the current tools may be
upgraded to include new operations.

D.4 PGS_AA_PeVA

D.4.1 Data Sets accessed

PGS_AA_PeVA is an ancillary tool to be used for performing a parameter equals value
extraction. There are three types of extraction that the tool can perform: a string, integer and a
real from a parameter input.

The tool will only do this extraction from an ASCII file which the user constructs. An example of
a file, is as follows:

CACHEFORMAT1 = long

CACHEFORMAT2 = 0

CACHEFORMATBYTES = 4

PARMMEMORYCACHE = 1036800

DATATYPE = long

DATARATE = static

ANEXAMPLEARRAY = (9,5,3,7)

D.4.2 Outline Functionality

The tool is designed to be called by the user, using a logical input, a parameter input and
returning a value. The logical is an integer whose value is supplied through the PC environment,
which gives the i.d. of the file to be acted upon by the PGS_AA_PeVA tool. The parameter is a

 D-17 EED2-333-001

data set dependent character string produced by the user, and the value returned by the tool is the
result of the mapping from the character string to its value.

Example of calling sequence to extract a string called MY_STRING from the logical file 10992,
and return the resulting string in MY_STRING_VALUE.

PGS_AA_PeVA_string (10992, "MY_STRING", MY_STRING_VALUE);

The PGS_AA_PeVA tool operates in exactly the same way but allows for arrays to be extracted
(see Main User Guide section)

D.4.3 Optimal Operation

There are some restrictions on the format of the data file. All parameter names must be in upper
cases. Arrays must be formatted as shown in the example.

The PeV tool is based on Freeform, while the PeVA tool is based on ODL and will therefore
produce different types of error conditions.

D.4.4 Upgrades

None anticipated.

 D-18 EED2-333-001

This page intentionally left blank.

 E-1 EED2-333-001

Appendix E. Example of Level 0 Access Tool Usage

This Appendix gives an end–to–end example of how Level 0 access tools might be used in
science software.

As an example, we use CERES processing. The source document for TRMM formats is
"Interface Control Document between the Sensor Data Processing Facility (SDPF) and the
Tropical Rainfall Measuring Mission (TRMM) Customers,” NASA Mission Operations and Data
Systems Directorate, Draft, Nov. 1994. We assume that the TRMM mission specific parameters
given in section 10 of that document apply to CERES.

A single normal CERES production run consists of 24 hours of data. For Level 0 processing,
there is a single main instrument–specific science dataset, namely science telemetry (Application
ID 54). There is also a "housekeeping" file, consisting of various APIDs, which is common to all
TRMM instruments. All science data for one 24 hour period is contained in a single file; all other
data, including calibration, diagnostic and housekeeping data are contained in a second file. In
addition each of these datasets has an associated Detached SFDU (Standard Formatted Data
Unit) Header file, which consists of TRMM file metadata.

E.1 Preparing Simulated CERES L0 Files
At the SCF, you must first prepare the input Level 0 data files. You may decide to customize
your files by using function PGS_IO_L0_File_Sim in a C or FORTRAN program that you code
yourself; alternatively you may choose to use the supplied interactive executable driver L0sim.
The latter method is shown here. The sample given is for creating a science APID file. The
housekeeping file generation inputs are slightly different

In the example,

data that you type is given like this;

data generated by program L0sim is given like this,

comments and explanations are given like this.

The line

-->

means that you typed a carriage return, so using the default value.

unix% is the UNIX system prompt.

 E-2 EED2-333-001

E.1.1 Sample Session

unix% $PGSRUN/L0sim

 * ------O--------- *

 * ___/__/_______ *

 * __/ \/ ______ *

 * / ________ *

 * / *

 * ^^^^^^^^^^^^^^^^ *

 * ^^^^^^^^^^^^^^^^ *

 * ^^^^^^^^^^^^^^^^ *

 * =EOS= *

 ECS L0 FILE SIMULATOR

Enter <return> at a prompt to select the default
option (indicated by []). Enter '?' at any prompt
for additional information. Enter 'q' at any prompt
to quit.

enter spacecraft ID (TRMM, EOS_AM, EOS_AURA, EOS_PM_GIIS, EOS_PM_GIRD)
[TRMM]:
-->

enter start date in CCSDS ASCII (format A or B)
 A) YYYY–MM–DDThh:mm:ss
 B) YYYY–DDDThh:mm:ss

enter start date:
-->1997–12–01
enter stop date:
-->1997–12–02T00:00:00
You may leave out the entire time, minutes and seconds, or seconds if desired.

enter time interval in seconds [6.600000 sec]:
-->

enter the desired number of files [1]:
-->

 E-3 EED2-333-001

TRMM always has only one file per APID (or housekeeping): EOS AM, PM and AURA
may have more. Note that you must rerun program L0sim for each virtual data set you
want, i.e., each "science" APID (or housekeeping); this prompt is asking how many files
you want for a given virtual data set.

is this Housekeeping data (y/[n]):
-->

Housekeeping files are special in that they may have many APIDs. If you enter y here, you
are prompted for the number of APIDs, then APID no. and data length for each APID. In
this prototype, APIDs are written APID 1, APID 2, ..., APID n, APID 1, APID 2, ... until the
stop time you requested is reached.

is this Quicklook data (y/[n]):
-->

For TRMM, the only effect of this input is to set a byte in the file header. For EOS AM, PM
and AURA, there is no Quicklook data.

enter the Application ID [0]:
-->54

The APID is stamped on each packet. It is also written to the TRMM file header.

enter the Application Data Length [0]:
-->7118

This is the actual length of the packet application data in bytes. It does not include the
packet header. All packets for a given APID have the same length.

read in Application Data from file [<none>]:
-->

If you type in the name of a file here, the simulator reads data from this file and writes it
into the packet as application data. Here bytes 1–7118 of this file would be written to
packet #1, bytes 7119–14238 to packet #2, etc.

specify processing options (y/[n]):

-->

This is for simulating some miscellaneous data in the TRMM file header. It is meant to
indicate options applied during SDPF processing, before it gets to ECS.

start date: 1997–12–01T00:00:00
stop date: 1997–12–02T00:00:00
time interval: 6.6000 seconds

This will create approximately 94.65 MB of data.
accept ([y]/n)?
-->
Writing packets out to 1 file:

 E-4 EED2-333-001

– start time of next file: 1997–12–01T00:00:00.000000Z
– number of packets in next file: 13091

– writing file: TRMM_G001_1997–12–01T00:00:00Z_V01.DATASET_01 ...
– writing files: TRMM_G001_1997–12–01T00:00:00Z_V01.DATASET_01 ...
 TRMM_G001_1997–12–01T00:00:00Z_V01.SFDU_01

The SFDU file is only created for TRMM.

unix%

E.2 CERES Level 0 processing code using the SDP Toolkit
In this section is given an abbreviated example of what CERES L0 processing code might look
like. It is assumed here that the datasets will be opened and processed one–at–a–time; this may
not be the case in the actual CERES processing. No processing of packet, header or footer data
returned is done in this example.

E.2.1 Notes

The examples show one way of retrieving simulated ephemeris and attitude data corresponding
to packet times. For the science file (APID 54), the time of each packet is saved, then later used
as input to the Toolkit ephemeris/attitude retrieval tool. To do this, a simulated ephemeris file
must have been prepared beforehand. See the Toolkit Primer (Section 7) or Users Guide (Section
6.2.6) for details. (In the production system, this file is assumed to have been created in
preprocessing from either Flight Dynamics Facility (FDF) files or from S/C ephemeris packets.)

In the interests of brevity, Detached SFDU Header file processing is completely omitted from the
examples, as it is not clear what the information would be used for. Reading and accessing these
files would involve use of the tools PGS_PC_GetFileAttr and PGS_PC_GetFileByAttr; see the
Toolkit Primer (Section 4) for explanations of these.

Also, to keep things short, no error processing is shown.

The example code is given for illustrative purposes only, and is adapted from an unofficial unit
test driver. The code given here has not actually been compiled and tested.

Because there is exactly one physical file per APID (or housekeeping) per day in TRMM L0 data,
a virtual data set in Toolkit L0 functions corresponds to a single physical TRMM L0 file. For
EOS AM, PM and AURA, there may be more than one physical file per given APID; in that case,
this code would change, in that one must loop around the GetHeader and GetPacket calls until all
physical files are read. There is an example of this in the tool descriptions for these two tools in
section 6.2.1.1.

The examples assume the following exists in the PRODUCT INPUT FILES section of the
Process Control File (PCF) at the SCF:

 1|TRMM_G0001_1997-12-01T00:00:00Z_V01.dataset_01||||
 TRMM_G0001_1997-12-01T00:00:00Z_V01.sfdu_01|1

 E-5 EED2-333-001

54|TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset_01||||
 TRMM_G0088_1997-12-01T00:00:00Z_V01.sfdu_01|1

(Note: each entry must appear on one line in the actual PCF, and not be broken into two lines as
shown here.)

C code example

#include <PGS_IO.h>
#include <PGS_TD.h>

/* File logicals corresponding to PCF entries
 arbitrarily use APID as file logical, or 1 for housekeeping */
#define HOUSEKEEPING 1
#define SCIENCE 54

 /* PACKET_BUFFER_MAX is the maximum possible size of a telemetry packet,
 including packet header. Note that the input to L0sim corresponding to
 this is "Application Data Length"; however, the latter does *not* include
 packet header. Since the packet header is 14 bytes for TRMM, we used the
 value 7118 for the "Application Data Length" field in constructing the
 simulated files above. */
#define PACKET_BUFFER_MAX 7132

/* HEADER_BUFFER_MAX is the maximum possible size of the TRMM file header.
 This number is 26 for EOS AM, PM and AURA, since those file headers have
 no variable length part. */
#define HEADER_BUFFER_MAX 556

/* FOOTER_BUFFER_MAX is the maximum possible size of the TRMM file "footer,”
 which consists of Quality and Accounting Capsule (QAC) and optionally
 Missing Data Unit List (MDUL). This number is a wild guess. */
#define FOOTER_BUFFER_MAX 100000

/* NUM_DATASETS is the number of virtual datasets to process.
 This includes the housekeeping file and the science file. */
#define NUM_DATASETS 2

/* MAX_PKTS is the maximum number of packets.
 Used for saving packet times and for ephemeris and attitude retrieval */
#define MAX_PKTS 14000

main()

{
PGSt_PC_Logical file_logical[NUM_DATASETS];
 /* Logical file ID for PCF */

PGSt_SMF_status returnStatus; /* Toolkit function return value */

 E-6 EED2-333-001

PGSt_integer i; /* Virtual data set loop index */

PGSt_IO_L0_VirtualDataSet
 virtual_file; /* Virtual file handle */
PGSt_double start_time; /* Virtual data set start time */
PGSt_double stop_time; /* Virtual data set stop time */

char asciiUTC_A[28]; /* time in UTC CCSDS ASCII A format */

PGSt_IO_L0_Header header_buffer[HEADER_BUFFER_MAX];
 /* Buffer for receiving header data */
PGSt_IO_L0_Header footer_buffer[FOOTER_BUFFER_MAX];
 /* Buffer for receiving footer data */

PGSt_integer j; /* Index */
PGSt_integer offset; /* Offset byte of packet time */

PGSt_scTime file_time[2][8]; /* File time in PB5 format */
PGSt_double jdUTC[2]; /* Time in UTC -- Julian date format */
PGSt_boolean onLeap; /* Leap second flag */

PGSt_integer packet_count; /* No. packets in this file */

PGSt_integer qac_size; /* Size of QAC data in bytes */
PGSt_integer mdul_size; /* Size of MDUL data in bytes */

PGSt_integer p; /* Packets read counter */
PGSt_integer packet_loop_flag;
 /* Flag for controlling packet read loop */

PGSt_IO_L0_Packet packet_buf[PACKET_BUFFER_MAX];
 /* Buffer for receiving packet data */

PGSt_integer appID; /* Application ID of this packet */
PGSt_integer pkt_seq_count; /* Sequence number of this packet */
PGSt_integer pkt_len; /* Length in bytes of this packet */

PGSt_scTime pkt_time[MAX_PKTS][8];
 /* Packet time stamps */
PGSt_double UTC_offset[MAX_PKTS];
 /* packet UTC offset in seconds */

char asciiUTC_A_eph_start[28];
 /* start time of ephemeris data in UTC CCSDS ASCII A format */
PGSt_double positionECI[MAX_PKTS][3];
 /* ECI position vectors (m) */
PGSt_double velocityECI[MAX_PKTS][3];
 /* ECI velocity vectors (m/s) */
PGSt_double ypr[MAX_PKTS][3]; /* Euler angles (yaw/pitch/roll) (rad) */
PGSt_double yprRate[MAX_PKTS][3];

 E-7 EED2-333-001

 /* Euler angle rates (rad/sec) */
PGSt_double attitQuat[MAX_PKTS][4];
 /* Attitude quaternions */

/**/
/* For each data set (housekeeping or "science" APID)
/**/

file_logical[0] = HOUSEKEEPING;
file_logical[1] = SCIENCE;

for(i=0; i<NUM_DATASETS; i++)
{

/**/
/* Call PGS_IO_L0_Open to get a virtual file handle,
/* start and stop times of the available data
/**/

 returnStatus = PGS_IO_L0_Open(file_logical[i], TRMM,
 &virtual_file, &start_time, &stop_time);

/**/
/* Translate times to ASCII in case you want to print them out or do
/* something similar
/**/

 returnStatus = PGS_TD_TAItoUTC(start_time,asciiUTC_A);
 returnStatus = PGS_TD_TAItoUTC(stop_time,asciiUTC_A);

/**/
/* Call PGS_IO_L0_SetStart to position the file pointer at 20 minutes after
/* data start
/**/

 returnStatus = PGS_IO_L0_SetStart(virtual_file, start_time+1200.);

/**/
/* Call PGS_IO_L0_GetHeader to retrieve header and footer
/* information from the physical file
/**/

 returnStatus = PGS_IO_L0_GetHeader(virtual_file,
 HEADER_BUFFER_MAX, header_buffer,
 FOOTER_BUFFER_MAX, footer_buffer);

/**/
/* Unpack and/or save or process header data here
/**/

 E-8 EED2-333-001

/*
 Header buffer contents:
 Bytes 1- 2 : 6 bits spare, 10 bits S/C ID
 Bytes 3-11 : S/C clock start time (PB5 format)
 Byte 12 : spare
 Bytes 13-21 : S/C clock stop time (PB5 format)
 Byte 22 : spare
 Bytes 23-26 : No. packets in file
*/

/*
 Convert S/C time to ASCII, in case you want to print it
*/

 for(j=0;j<8;j++)
 {
 file_time[0][j] = header_buffer[2+j]; /* start */
 file_time[1][j] = header_buffer[12+j]; /* stop */
 }
 for(j=0;j<2;j++)
 {
 returnStatus = PGS_TD_PB5toUTCjd(file_time[j], jdUTC);
 if(returnStatus == PGSTD_N_LEAP_SEC_IGNORED)
 {
 onLeap = PGS_TRUE;
 }
 else
 {
 onLeap = PGS_FALSE;
 }
 PGS_TD_UTCjdtoUTC(jdUTC, onLeap, asciiUTC_A);
 }

/* Special notes for EOS AM, PM and AURA:
 (1) 9th byte of file header time is not used in EOS AM or PM or AURA time
 conversions in this prototype
 /*
 Convert no. packets in file to integer
*/

packet_count =
 header_buffer[25] + 256 * (
 header_buffer[24] + 256 * (
 header_buffer[23] + 256 * (
 header_buffer[22])));

 E-9 EED2-333-001

/**/
/* Convert footer sizes to integer: quality (QAC) and missing (MDUL) data
/* (TRMM only)
/**/

 qac_size =
 footer_buffer[3] + 256 * (
 footer_buffer[2] + 256 * (
 footer_buffer[1] + 256 * (
 footer_buffer[0])));
 mdul_size =
 footer_buffer[4+qac_size+3] + 256 * (
 footer_buffer[4+qac_size+2] + 256 * (
 footer_buffer[4+qac_size+1] + 256 * (
 footer_buffer[4+qac_size])));

/**/
/* Note: the simulator does *not* simulate the internal structure of the QAC
/* and MDUL data
/**/

/**/
/* While still packets to process in this file
/**/

 p = 0;
 packet_loop_flag = 1;
 while(packet_loop_flag)
 {

/**/
/* Call PGS_IO_L0_GetPacket to read a single L0 packet
/* If reached end of file, set flag to exit loop
/**/

 returnStatus = PGS_IO_L0_GetPacket(
 virtual_file, PACKET_BUFFER_MAX, packet_buf);
 if ((returnStatus == PGSIO_M_L0_HEADER_CHANGED)
 || (returnStatus == PGSIO_W_L0_END_OF_VIRTUAL_DS))
 {
 packet_loop_flag = 0;
 }

/**/
/* Unpack and/or save or process packet data
/**/

 E-10 EED2-333-001

/*
 Packet buffer contents -- "unused" means not written by simulator
 Bytes 1- 2 : packetID bits 0-2: Version Number -- unused
 bit 3: Type -- unused
 bit 4: Secondary Header Flag -- unused
 bits 5-15: Application Process ID
 Bytes 3- 4 : pktSeqCntl bits 0-1: Sequence Flags -- unused
 bits 2-15: Packet Sequence Count
 Bytes 5 -6 : pktLength Packet Length
 Bytes 7-14 : timeStamp packet S/C time stamp
*/

 appID = packet_buf[1] + 256 * packet_buf[0];
 pkt_seq_count = packet_buf[3] + 256 * packet_buf[2];
 pkt_len = packet_buf[5] + 256 * packet_buf[4];

/* If currently processing the science file (APID 54),

Store time stamps for later retrieval of spacecraft ephemeris

 NOTE: Packet time format is spacecraft platform dependent */

 offset = 6; /* 6 for EOS_AM, 7 for EOS_PM */
 if(i == 1)
 {
 for(j=0;j<8;j++)
 {
 pkt_time[p][j] = packet_buf[offset+j];
 }
 }

 p++;
 } /* End while (packet_Loop_flag) */

/**/
/* Call PGS_IO_L0_Close to close the virtual data set
/**/

 returnStatus = PGS_IO_L0_Close(virtual_file);
/**/
/* If currently processing the science file (APID 54),
/* Retrieve simulated S/C ephemeris and attitude at packet times
/* from previously prepared ephemeris file
/**/

 if(i == 1)
 {
 returnStatus = PGS_TD_SCtime_to_UTC(TRMM, pkt_time, p, asciiUTC_A,
UTC_offset);

 E-11 EED2-333-001

 returnStatus = PGS_EPH_EphemAttit(TRMM, asciiUTC_A, UTC_offset,
 PGS_TRUE, PGS_TRUE, asciiUTC_A_eph_start,
 positionECI, velocityECI, ypr, yprRate, attitQuat);
 }

/**/
/* End for (each data set)
/**/

}

}

FORTRAN code example

 implicit none

 INCLUDE 'PGS_SMF.f'
INCLUDE 'PGS_PC.f'
INCLUDE 'PGS_PC_9.f'
INCLUDE 'PGS_TD.f'
INCLUDE 'PGS_IO.f'
INCLUDE 'PGS_IO_1.f'

 integer NUM_DATASETS
parameter (NUM_DATASETS=2)

 integer pgs_mem_calloc
integer pgs_io_l0_open
integer pgs_td_taitoutc
integer pgs_io_l0_setstart
integer pgs_io_l0_getheader
integer pgs_td_pb5toutcjd
integer pgs_td_utcjdtoutc
integer pgs_io_l0_getpacket
integer pgs_io_l0_close
integer pgs_td_sctime_to_utc
integer pgs_eph_ephemattit

 integer file_logical(2)
integer i

 integer returnstatus
integer virtual_file
double precision start_time
double precision stop_time

 character*27 asciiutc_a

 E-12 EED2-333-001

 character*556 header_buffer
character*100000 footer_buffer

 integer j
character*8 file_time(2)
double precision jdutc(2)
integer onleap

 integer packet_count

 integer qac_size
integer mdul_size

 integer packet_loop_flag

 character*7132 packet_buf

 integer appid
integer pkt_seq_count
integer pkt_len
integer offset

 character*8 pkt_time(14000)
double precision utc_offset(14000)

 character*27 asciiutc_a_eph_start

 double precision eciposition(3,14000)
double precision ecivelocity(3,14000)
double precision ypr(3,14000)
double precision yprrate(3,14000)
double precision attitquat(4,14000)

C ***/
C For each data set (housekeeping or science APID)
C ***/

 file_logical(1) = 1
file_logical(2) = 54

 do 10 i=1,NUM_DATASETS

C ***/
C Call pgs_io_l0_open to get a virtual file handle,
C start and stop times of the available data
C ***/

 returnstatus = pgs_io_l0_open(file_logical(i), TRMM, virtual_file,
 start_time,
 stop_time)

 E-13 EED2-333-001

C ***/
C Translate times to ASCII in case you want to print them out or do something
C similar
C ***/

 returnstatus = pgs_td_taitoutc(start_time,asciiutc_a)
 returnstatus = pgs_td_taitoutc(stop_time,asciiutc_a)

C ***/
C Call pgs_io_l0_setstart to position the file pointer at 20 minutes after
C data start
C ***/

 returnstatus = pgs_io_l0_setstart(virtual_file, start_time+1200.)

C ***/
C Call pgs_io_l0_getheader to retrieve header and footer
C information from the physical file
C ***/

 returnstatus = pgs_io_l0_getheader(virtual_file, 556, header_buffer,
 100000, footer_buffer)

C ***/
C Unpack and/or save or process header data here
C ***/

C
C Header buffer contents:
C Bytes 1- 2 : 6 bits spare, 10 bits S/C ID
C Bytes 3-11 : S/C clock start time (PB5 format)
C Byte 12 : spare
C Bytes 13-21 : S/C clock stop time (PB5 format)
C Byte 22 : spare
C Bytes 23-26 : No. packets in file
C

C Convert S/C start and stop time to ASCII, in case you want to print it

 do 20 j=1,8
 file_time[1] = header_buffer(3:11)
 file_time[2] = header_buffer(13:21)
20 continue

 do 30 j=1,2
 returnstatus = pgs_td_pb5toutcjd(file_time(j), jdutc)
 if(returnstatus .eq. PGSTD_N_LEAP_SEC_IGNORED) then
 onLeap = PGS_TRUE
 else

 E-14 EED2-333-001

 onLeap = PGS_FALSE
 end if
 pgs_td_utcjdtoutc(jdutc, onleap, asciiutc_a)
30 continue

C Special notes for EOS AM, PM and AURA:
C (1) 9th byte of file header time is not used in EOS AM or PM or AURA time
C conversions in this prototype
C
C Convert no. packets in file to integer
C

 packet_count =
 . header_buffer(26) + 256 * (
 . header_buffer(25) + 256 * (
 . header_buffer(24) + 256 * (
 . header_buffer(23))))

C ***/
C Unpack footer sizes: quality (QAC) and missing (MDUL) data (TRMM only)
C ***/

 qac_size =
 . footer_buffer(4) + 256 * (
 . footer_buffer(3) + 256 * (
 . footer_buffer(2) + 256 * (
 . footer_buffer(1))))
 mdul_size =
 . footer_buffer(4+qac_size+4) + 256 * (
 . footer_buffer(4+qac_size+3) + 256 * (
 . footer_buffer(4+qac_size+2) + 256 * (
 . footer_buffer(4+qac_size+1))))

C ***/
C Note: the simulator does *not* simulate the internal structure of the QAC
C and MDUL data
C ***/

C ***/
C While still packets to process in this file
C ***/

 p = 1
 packet_loop_flag = 1

 do while(packet_loop_flag .eq. 1)

C ***/
C Call PGS_IO_L0_GetPacket to read a single L0 packet

 E-15 EED2-333-001

C If reached end of file, set flag to exit loop
C ***/

 returnStatus = pgs_io_l0_getpacket(virtual_file, 7132, packet_buf
)

 if ((returnStatus .eq. PGSIO_M_L0_HEADER_CHANGED)
 . .or. (returnStatus .eq. PGSIO_W_L0_END_OF_VIRTUAL_DS))
then
 packet_loop_flag = 0
 end if

C ***/
C Unpack and/or save or process packet data
C ***/

C
C Packet buffer contents -- "unused" means not written by simulator
C Bytes 1- 2 : packetID bits 0-2: Version Number -- unused
C bit 3: Type -- unused
C bit 4: Secondary Header Flag -- unused
C bits 5-15: Application Process ID
C Bytes 3- 4 : pktSeqCntl bits 0-1: Sequence Flags -- unused
C bits 2-15: Packet Sequence Count
C Bytes 5 -6 : pktLength Packet Length
C Bytes 7-14 : timeStamp packet S/C time stamp
C

 appID = packet_buf(2) + 256 * packet_buf(1)
 pkt_seq_count = packet_buf(4) + 256 * packet_buf(3)
 pkt_len = packet_buf(6) + 256 * packet_buf(5)

C If currently processing the science file (APID 54),

C Store time stamps for later retrieval of spacecraft ephemeris

C NOTE: Packet time format is spacecraft platform dependent

 if(i .eq. 2) then
 offset = 7
 pkt_time(p) = packet_buf(offset:14)
40 offset
 end if

 p = p + 1

C End while (packet_loop_flag)

 end do

 E-16 EED2-333-001

C ***/
C Call PGS_IO_L0_Close to close the virtual data set
C ***/

 returnstatus = pgs_io_l0_close(virtual_file)

C ***/
C If currently processing the science file (APID 54),
C Retrieve simulated S/C ephemeris and attitude at packet times
C from previously prepared ephemeris file
C ***/

 if(i .eq. 2) then
 returnstatus = pgs_td_sctime_to_utc(TRMM, pkt_time, p,
 asciiutc_a, utc_offset)

 returnstatus = pgs_eph_ephemattit(TRMM, asciiutc_a, utc_offset,
 . PGS_TRUE, PGS_TRUE, asciiutc_a_eph_start,
 . positioneci, velocityeci, ypr, yprrate, attitquat)
 end if

C ***/
C End for (each data set)
C ***/

10 continue

 F-1 EED2-333-001

Appendix F. Level 0 File Formats

This Appendix gives the definition of file formats assumed in construction of the Level 0 access
tools, PGS_IO_L0_*, and the file simulator L0sim. See section 6.2.1.1.

Notes on table entries:

-- "Y" in the SIM? Column means that this value is simulated by the L0sim software; no
entry means that the value is either 0 or garbage in the simulated file.

-- No entry in the BIT column means bits 1_8.

F.1 Tropical Rainfall Measuring Mission (TRMM) File Formats
The source document for the TRMM file format is "Interface Control Document between the
Sensor Data Processing Facility (SDPF) and the Tropical Rainfall Measuring Mission (TRMM)
Customers,” NASA Mission Operations and Data Systems Directorate, Draft, Nov. 1994. We
assume that the TRMM mission specific parameters given in section 10 of that document apply
to CERES and LIS.

TRMM has 2 files associated with each "science" APID or housekeeping file; a detached SFDU
header file, an ASCII text file consisting of file metadata, and the main data file.

F.1.1 TRMM Files Schematic

DETACHED SFDU FILE

FILE HEADER

PACKETS

FILE FOOTER (QAC and/or MDUL)

Figure F-1. TRMM Files Schematic

 F-2 EED2-333-001

There is one pair of these files for each "science" APID, plus one pair for housekeeping. CERES
has 3 "science" APIDs, thus will have 4 pairs of these files per day; LIS has one "science" APID,
so will have 2 pairs per day.

F.1.2 Detached SFDU File

This is an ASCII text file containing file metadata. The format of this file is defined in the source
document "Interface Control Document between the Sensor Data Processing Facility (SDPF) and
the Tropical Rainfall Measuring Mission (TRMM) Customers,” NASA Mission Operations and
Data Systems Directorate, Draft, Nov. 1994, section 3.2.2.

Note: The Spacecraft Clock time format used in the file header is different from the format used
for the packet Time Stamp.

F.1.3 TRMM File Header

Table F-1. TRMM File Header
Byte Bit Parameter Sim?

1 1–6 (reserved)
 7–8 Spacecraft ID
2 Spacecraft ID Y
3–11 Spacecraft Clock - first packet (PB5, microsec accuracy) Y
12 (spare)
13–21 Spacecraft Clock - last packet (PB5, microsec accuracy) Y
22 (spare)
23–26 Number of packets in file Y
27 Processing Options Y
28 Data Type Flag Y
29–35 Time of Receipt at Originating Node (PB5, msec accuracy) Y
36–38 (spare)
39 Select Options Y
40 Number of APIDs Y
41–42 APID Y
43 (spare)
44 Number of QAC lists in File Y
45–48 Offset to QAC list Y

Byte numbers are shown for a "science" file.
Byte 2, Spacecraft ID, is always 6b (hex).
Byte 27, Processing Options:

 F-3 EED2-333-001

 bit 3 on, Redundant Data Deleted
bit 6 on, Data Merging
bit 7 in, RS Decoding

Byte 28, Data Type Flag:

 =1, Routine Production Data
=2, Quicklook Data

Note: Routine production and quicklook files have the same format.

Bytes 29–35, Time of Receipt at Originating Node, is arbitrarily set to be equal to

Spacecraft Clock - last packet (without microseconds).

Byte 39, Select Options, is always 2, to indicate data organized by APID
Byte 40, Number of APIDs

 =1, "Science" file
>1, Housekeeping file

Bytes 41–42 are repeated for each APID in a housekeeping file.
Byte 44, Number of QAC lists in File, is always 1.
Bytes 45–48, Offset to QAC list, is measured in bytes from the last byte of this

 field to the QAC footer start. Equal to the total number of bytes
in the packet data.

F.1.4 TRMM Packet Data

The source document for the TRMM packet data format is "Tropical Rainfall Measuring Mission
(TRMM) Telemetry and Command Handbook,Ó TRMM_490_137, February 21, 1994.

Bytes 1–6 are known as the Primary Packet Header; bytes 7–14 are called the Secondary Packet
Header.

Table F-2. TRMM Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y
 4 Type Y
 5 Secondary Header Flag Y
 6–8 Application Process ID (APID) Y
2 Application Process ID (APID) Y
3 1–2 Sequence Flags
 3–8 Packet Sequence Count Y
4 Packet Sequence Count Y
5–6 Packet Length in bytes (=p) Y
7–14 Time Stamp Y
15-p+14 Application Data Y

 F-4 EED2-333-001

Byte 1, bits 1–3, Version Number, is always 000.
Byte 1, bit 4, Type, is always 0.
Byte 1, bit 5, Secondary Header Flag, is always 1.
Bytes 5–6, Packet Length, is defined as "the length of the entire packet, in bytes,

 less the length of the primary packet header [6 bytes],
less one byte.” This is equivalent to the length of the secondary packet
header (8 for TRMM) + the length of the application data - 1,

F.1.5 TRMM File Footer

Table F-3. TRMM File Footer Table
Byte Bit Parameter Sim?

1–4 QAC List Length in bytes (=q) Y
5-q+4 QAC entries
q+5-q+8 Missing Data Unit List Length in bytes (=m) Y
q+9-q+m+8 Missing Data Unit (MDU) entries

QAC and MDU entries are neither simulated nor read in this prototype.

There is no Missing Data Unit List (MDUL) in housekeeping files.

F.2 EOS AM File Formats

F.2.1 EOS AM File Schematic

HEADER FILE

PACKETS FILE

.
.
.

PACKETS FILE

Figure F-2. EOS AM File Schematic

 F-5 EED2-333-001

F.2.2 EOS AM File Header

EOS AM L0 data is contained in two or more files: a single header file (Construction Record)
and one or more files containing packet data. The actual packet data files have no file header.

For a full description of the EOS AM file header see Interface Control Document Between The
Earth Observing System (EOS) Data and Operations System (EDOS) ant the EOS Ground
System (EGS) Elements (510-ICD-EDOS/EGS, CDRL B301), Mission Operations and Data
Systems Directorate, Goddard Space Flight Center, November 5, 1999.

F.2.3 EOS AM Packet Data

Bytes 1–6 are known as the Primary Packet Header; bytes 7–15 are called the Secondary Packet
Header.

Table F-4. EOS AM Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y
 4 Type Y
 5 Secondary Header Flag Y
 6–8 Application Process ID (APID) Y
2 Application Process ID (APID) Y
3 1–2 Sequence Flags
 3–8 Packet Sequence Count Y
4 Packet Sequence Count Y
5–6 Packet Length in bytes (=p) Y
7 1 Secondary Header ID Flag Y
7 2–8 Time Stamp Y
8–14 Time Stamp Y
15 1 Quicklook Flag
15 2–8 User Flags
16-p+15 Application Data Y

Byte 1, bits 1–3, Version Number, is always 000.
Byte 1, bit 4, Type, is always 0.
Byte 1, bit 5, Secondary Header Flag, is always 1.
Bytes 5–6, Packet Length, is defined as "the length of the entire packet, in bytes,

 less the length of the primary packet header [6 bytes],
less one byte". This is equivalent to the length of the secondary packet
header (9 for EOS AM) + the length of the application data - 1,

Byte 7, bit 1, Secondary header ID Flag, is always 0.
Byte 15, bit 1, Quicklook flag: EOS AM quicklook data has been eliminated by NASA.

 F-6 EED2-333-001

There is no footer in EOS AM files.

F.3 EOS PM File Formats

F.3.1 EOS PM File Schematic

HEADER FILE

PACKETS FILE

.
.
.

PACKETS FILE

Figure F-3. EOS PM File Schematic

F.3.2 EOS PM File Header

EOS PM L0 data is contained in two or more files: a single header file (Construction Record) and
one or more files containing packet data. The actual packet data files have no file header.

EOS PM file header for both GIRD and GIIS time formats is the same as the file header for EOS
AM.

For a full description of the EOS PM file header see Interface Control Document Between The
Earth Observing System (EOS) Data and Operations System (EDOS) ant the EOS Ground
System (EGS) Elements (510-ICD-EDOS/EGS, CDRL B301), Mission Operations and Data
Systems Directorate, Goddard Space Flight Center, November 5, 1999.

F.3.3 EOS PM Packet Data for GIIS Time Format

Bytes 1–6 are known as the Primary Packet Header; bytes 7–15 are called the Secondary Packet
Header.

 F-7 EED2-333-001

Table F-5. EOS PM GIIS Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y
 4 Type Y
 5 Secondary Header Flag Y
 6–8 Application Process ID (APID) Y
2 Application Process ID (APID) Y
3 1–2 Sequence Flags
 3–8 Packet Sequence Count Y
4 Packet Sequence Count Y
5–6 Packet Length in bytes (=p) Y
7 1 Secondary Header ID Flag Y
7 2–8 Time Stamp Y
8–14 Time Stamp Y
15 1 Quicklook Flag
15 2–8 User Flags
16-p+15 Application Data Y

Byte 1, bits 1–3, Version Number, is always 000.
Byte 1, bit 4, Type, is always 0.
Byte 1, bit 5, Secondary Header Flag, is always 1.
Bytes 5–6, Packet Length, is defined as "the length of the entire packet, in bytes,

 less the length of the primary packet header [6 bytes],
less one byte". This is equivalent to the length of the secondary packet
header (9 for EOS PM) + the length of the application data - 1,

Byte 7, bit 1, Secondary header ID Flag, is always 0.
Byte 15, bit 1, Quicklook flag: EOS PM quicklook data has been eliminated by NASA.

There is no footer in EOS PM files.

F.3.4 EOS PM Packet Data for GIRD Time Format

The source document for the EOS PM packe t data format is the Interface Control Document
Between the Earth Observing System (EOS) Data and Operation System (EDOS) and the EOS
Ground System (EGS) Elements (510-ICD-EDOS/EGS, CDPL B301), Mission Operations and
Data System Directorate, Goddard Space Flight Center, November 5, 1999.

Bytes 1–6 are known as the Primary Packet Header; bytes 7–15 are called the Secondary Packet
Header.

 F-8 EED2-333-001

Table F-6. EOS PM GIRD Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y
 4 Type Y
 5 Secondary Header Flag Y
 6–8 Application Process ID (APID) Y
2 Application Process ID (APID) Y
3 1–2 Sequence Flags
 3–8 Packet Sequence Count Y
4 Packet Sequence Count Y
5–6 Packet Length in bytes (=p) Y
7 1 Secondary Header ID Flag
7 2 Quicklook Flag
7 3–8 User Flags
8–15 Time Stamp Y
16-p+15 Application Data Y

Byte 1, bits 1–3, Version Number, is always 000.

Byte 1, bit 4, Type, is always 0.

Byte 1, bit 5, Secondary Header Flag, is always 1.

Byte 3, bits 1-2, Sequence Count = 11 (unsegmented).

Bytes 5-6 is Packet Data length = Number of Octets in the Data Zone minus 1.

Byte 7, bit 1, Secondary header ID Flag, is always 0.

Byte 7, bit 2, Quicklook flag, is always 0.

Byte 7, bits 3-8, User Flag is reserved for future instrument use.

Time Stamp = Expressed in CCSDS Unsegmented Time Code (CUC) where:

p-field = Bit 0 = second octet is present

Bits 1-3 = 010 = Epoch Time = Jan. 1, 1958

Bits 4-5 = 11 = 4 Octets Coarse Time Present

Bits 6-7 = 10 = 2 Octets Fine Time Present

p-field Extension = Bit 0 = 0 = No extension present

Bits 1-7 = Number of seconds to convert TAI to UTC.

T-field, Coarse = Bits 0-31 = Number of seconds since Jan. 1, 1958

T-field, Fine = Bits 0-15 = Sub-seconds time (LSB = 15.2 microseconds)

Bits 16-23 = fill bits (all zeros).

 F-9 EED2-333-001

There is no footer in EOS PM files.

F.4 ADEOS-II File Formats

F.4.1 ADEOS-II File Schematic

FILE HEADER

PACKETS

Figure F-4. ADEOS-II File Schematic

F.4.2 ADEOS-II File Header

Header format for ADEOS-II L0 files is unknown at this writing (Feb. 1995).

Arbitrarily we have taken the first 26 bytes of the TRMM file header as the EOS PM file header.
Also, since the format of the Spacecraft Clock time in the file header is undefined, we arbitrarily
take it as identical to the packet time stamp format.

Table F-7. ADEOS-II File Header
Byte Bit Parameter Sim?

1 1–6 (reserved)
 7–8 Spacecraft ID
2 Spacecraft ID
3–11 Spacecraft Clock - first packet Y
12 (spare)
13–21 Spacecraft Clock - last packet Y
22 (spare)
23–26 Number of packets in file Y

F.4.3 ADEOS-II Packet Data

The ADEOS-II Packet Data format is preliminary and subject to change (as of 5/15/96).

The CHEM packet data format is the same as EOS PM GIRD Packet data format. Please refer to
Section F.3. There is no ICD for this yet.

 F-10 EED2-333-001

Bytes 1–6 are known as the Primary Packet Header; bytes 7–15 are called the Secondary Packet
Header.

Table F-8. ADEOS-II Packet Data
Byte Bit Parameter Sim?

1 1–3 Version Number Y
 4 Type Y
 5 Secondary Header Flag Y
 6–8 Application Process ID (APID) Y
2 Application Process ID (APID) Y
3 1–2 Sequence Flags
 3–8 Packet Sequence Count Y
4 Packet Sequence Count Y
5–6 Packet Length in bytes (=p) Y
7-10 Instrument Time Y
11 Pulse Time Y
12-15 Orbit Time Y
16-p+15 Application Data Y

There is no footer in ADEOS-II files.

F.5 EOS AURA File Formats
The EOS AURA packet data format is the same as EOS PM GIRD packet data format. Please
refer to Section F.3. There is no ICD at this time.

 G-1 EED2-333-001

Appendix G. PGS_GCT Information Relating To
Interface Specification

G.1 Projection Id's
PGSd_UTM (Universal Transverse Mercator)
PGSd_ALBERS (Albers Conical Equal Area)
PGSd_LAMCC (Lambert Conformal Conic)
PGSd_MERCAT (Mercator)
PGSd_PS (Polar Stereographic)
PGSd_POLYC (Polyconic)
PGSd_EQUIDC (Equidistant Conic)
PGSd_TM (Transverse Mercator)
PGSd_STEREO (Stereographic)
PGSd_LAMAZ (Lambert Azimuthal Equal Area)
PGSd_AZMEQD (Azimuthal Equidistant)
PGSd_GNOMON (Gnomonic)
PGSd_ORTHO (Orthographic)
PGSd_GVNSP (General Vertical Near–Side Perspective)
PGSd_SNSOID (Sinusoidal)
PGSd_EQRECT (Equirectangular)
PGSd_MILLER (Miller Cylindrical)
PGSd_VGRINT (Van der Grinten)
PGSd_HOM (Hotine Oblique Mercator--HOM)
PGSd_ROBIN (Robinson)
PGSd_SOM (Space Oblique Mercator--SOM)
PGSd_ALASKA (Modified Stereographic Conformal-- Alaska)
PGSd_GOOD (Interrupted Goode Homolosine)
PGSd_MOLL (Mollweide)
PGSd_IMOLL (Interrupted Mollweide)
PGSd_HAMMER (Hammer)
PGSd_WAGIV (Wagner IV)
PGSd_WAGVII (Wagner VII)
PGSd_OBLEQA (Oblated Equal Area)
PGSd_ISINUS and PGSd_ISINUS1 (Integerized Sinusoidal Grid)
PGSd_BCEA, PGSd_CEA (Cylindrical Equal_Area) (See Notes in section G.2.1)

G.1.1 NOTES

There have been some discrepancies in the output for SOM projection when used for satellites
other than LANDSAT. Further investigations led us to the conclusion that the discrepancies were

 G-2 EED2-333-001

due to a parameter called LANDSAT_RATIO used by the routines. It seemed that the gctpc
routines were specifically designed to work for the Landsat satellites.

The documentation of GCTP software says that Landsat Ratio can be an input from the user
through projection parameter. But, in fact in the GCTP source code this ratio has been hard
coded for Landsat satellite which is 0.5201613.

This ratio causes the grid values to start near the North Pole instead of starting at equator at the
ascending node. The explanation for this is as follows:

Landsat ratio 0.5201613 comes from the Landsat Scene calculations. It seems, in Landsat they
divide each orbit into 248 Scenes. They want the starting point to be somewhere at the North
Pole and they want it to start at Scene number 64.5 from the ascending node. This number when
divided by the number of scenes for half of the globe which is 124 gives you 0.52016129. So by
changing this ratio you are changing the start scene for the grid. Setting it to zero makes the grid
values to start lets on the equator at the ascending node.

The LANDSAT_RATIO has been renames as satellite_ratio and the gctpc source code have been
modified so that a user can now input the satellite ratio value through the projection parameters.
For SOM option B, the satellite ratio is automatically set to 0.5201613.

G.2 GCTP Error Messages
If there is an error in the GCTP freeware library, the tools simply return
PGSGCT_E_GCTP_ERROR. However, the actual errors are reported to the LogStatus file using
the SMF interface. The list of possible GCTP errors are as follows:

Table G-1. GCTP Error Messages
Return Description

PGSGCT_E_STD_PARALLEL Equal latitudes for St. Parallels on opposite sides of equator
PGSGCT_E_ITER_EXCEEDED Too many iterations in inverse
PGSGCT_E_POINT_PROJECT Point projects into a circle of radius 2 * PI * radius_major
PGSGCT_E_INPUT_DATA_ERROR Input data error
PGSGCT_E_STD_PARALLEL_OPP Standard Parallels on opposite sides of equator
PGSGCT_E_INFINITE Point projects into infinity
PGSGCT_E_ITER_FAILED Iteration failed to converge
PGSGCT_E_PROJECT_FAILED Point cannot be projected
PGSGCT_E_POINTS_ON_POLES Transformation cannot be computed at the poles
PGSGCT_E_ITER_SOM 50 iterations without conv
PGSGCT_E_SPCS_ZONE Illegal zone for the given spheroid
PGSGCT_E_SPCS_FILE Error opening State Plane parameter file
PGSGCT_E_CONV_ERROR Convergence Error
PGSGCT_E_LAT_15 Latitude failed to converge after 15 iterations
PGSGCT_E_LAT_CONVERGE Latitude failed to converge

 G-3 EED2-333-001

Table G-2. Projection Transformation Package Projection Parameters (1 of 2)
 Array Element

Code & Projection Id 1 2 3 4 5 6 7 8
1 PGSd UTM Smajor Sminor
2 PGSd_SPCS Spheroid Zone
3 PGSd_ALBERS Smajor Sminor STDPR1 STDPR2 CentMer OriginLat FE FN
4 PGSd LAMCC Smajor Sminor STDPR1 STDPR2 CentMer OriginLat FE FN
5 PGSd MERCAT Smajor Sminor CentMer LtrueScale FE FN
6 PGSd_PS Smajor Sminor LongPol LtrueScale FE FN
7 PGSd_POLYC Smajor Sminor CentMer OriginLat FE FN
8 PGSd EQUIDC (A) Smajor Sminor STDPAR CentMer OriginLat FE FN
 PGSd_EQUIDC (B) Smajor Sminor STDPR1 STDPR2 CentMer OriginLat FE FN
9 PGSd_TM Smajor Sminor Factor CentMer OriginLat FE FN
10 PGSd_STEREO Sphere CentLon CenterLat FE FN
11 PGSd LAMAZ** Smajor Sminor CentLon CenterLat FE FN
 PGSd_LAMAZ Sphere CentLon CenterLat FE FN
12 PGSd_AZMEQD Sphere CentLon CenterLat FE FN
13 PGSd GNOMON Sphere entLon CenterLat FE FN
14 PGSd_ORTHO Sphere CentLon CenterLat FE FN
15 PGSd_GVNSP Sphere Height CentLon CenterLat FE FN
16 PGSd_SNSOID** Smajor Sminor CentMer FE FN
 PGSd SNSOID Sphere CentMer FE FN
17 PGSd_EQRECT Sphere CentMer LtrueScale FE FN
18 PGSd_MILLER Sphere CentMer FE FN
19 PGSd VGRINT Sphere CentMer OriginLat FE FN
20 PGSd_HOM (a) Smajor Sminor Factor OriginLat FE FN
 PGSd_HOM (b) Smajor Sminor Factor AziAng AzmthPt OriginLat FE FN
21 PGSd_ROBIN Sphere CentMer FE FN
22 PGSd SOM (a) Smajor Sminor IncAng AscLong FE FN
 PGSd_SOM (b) Smajor Sminor Satnum Path FE FN
23 PGSd_ALASKA Smajor Sminor FE FN
24 PGSd GOOD Sphere
25 PGSd MOLL Sphere CentMer FE FN
26 PGSd_IMOLL Sphere
27 PGSd_HAMMER Sphere CentMer FE FN
28 PGSd WAGlV Sphere CentMer FE FN
29 PGSd_WAGVII Sphere CentMer FE FN
30 PGSd_OBEQA Sphere Shapem Shapen CentLon CenterLat FE FN
31 PGSd_ISINUS1 Sphere CentMer
99 PGSd ISINUS Sphere CentMer
97 PGSd_CEA Smajor Sminor CentMer LtrueScale FE FN
98 PGSd_BCEA Smajor Sminor CentMer LtrueScale FE FN
** With 5.2.19 release LAMAZ was generalized to support WGS84 ellipsoid in addition to the spherical Earth model. With
5.2.20 the same was applied to SINUSOIDAL projection.

 G-4 EED2-333-001

Table G-2. Projection Transformation Package Projection Parameters (2 of 2)

 Array Element

Code & Projection Id 9 10 11 12 13
1 PGSd_UTM
2 PGSd_SPCS
3 PGSd_ALBERS
4 PGSd_LAMCC
5 PGSd_MERCAT
6 PGSd_PS
7 PGSd_POLYC
8 PGSd_EQUIDC (A) zero
 PGSd_EQUIDC (B) one
9 PGSd_TM
10 PGSd_STEREO
11 PGSd_LAMAZ
 PGSd_LAMAZ
12 PGSd_AZMEQD
13 PGSd_GNOMON
14 PGSd_ORTHO
15 PGSd_GVNSP
16 PGSd_SNSOID
17 PGSd_EQRECT
18 PGSd_MILLER
19 PGSd_VGRINT
20 PGSd_HOM (a) Long1 Lat1 Long2 Lat2 zero
 PGSd_HOM (b) one
21 PGSd_ROBIN
22 PGSd_SOM (a) PSRev LRat PFlag zero
 PGSd_SOM (b) one
23 PGSd_ALASKA
24 PGSd_GOOD
25 PGSd_MOLL
26 PGSd_IMOLL
27 PGSd_HAMMER
28 PGSd_WAGlV
29 PGSd_WAGVII
30 PGSd_OBEQA Angle
31 PGSd_ISINUS1 NZone RFlag
99 PGSd_ISINUS NZone RFlag
97 PGSd_CEA
98 PGSd_BCEA

 G-5 EED2-333-001

 where
SMajor Semi–major axis of ellipsoid
SMinor Semi–minor axis of the ellipsoid
Spheroid Used only for state plane projection. Use PGSd_CLARK66 (0) for 1927 datum or
 GRS80_WGS84(8) for 1983 datum
Sphere Radius of reference sphere.
STDPAR Latitude of the standard parallel
STDPR1 Latitude of the first standard parallel
STDPR2 Latitude of the second standard parallel
CentMer Longitude of the central meridian
OriginLat Latitude of the projection origin
FE False easting in the same units as the semi–major axis
FN False northing in the same units as the semi–major axis
LTrueScale Latitude of true scale
LongPol Longitude down below pole of map
Factor Scale factor at central meridian (Transverse Mercator) or center of projection
 (Hotine Oblique Mercator)
CentLon Longitude of center of projection
CenterLat Latitude of center of projection
Height Height of perspective point
Long1 Longitude of first point on center line (Hotine Oblique Mercator, format A)
Long2 Longitude of second point on center line (Hotine Oblique Mercator, format A)
Lat1 Latitude of first point on center line (Hotine Oblique Mercator, format A)
Lat2 Latitude of second point on center line (Hotine Oblique Mercator, format A)
AziAng Azimuth angle east of north of center line (Hotine Oblique Mercator, format B)
AzmthPt Longitude of point on central meridian where azimuth occurs (Hotine Oblique
 Mercator, format B)
IncAng Inclination of orbit at ascending node, counter–clockwise from equator (SOM,
 format A)
AscLong Longitude of ascending orbit at equator (SOM, format A)
PSRev Period of satellite revolution in minutes (SOM, format A)
LRat Landsat ratio to compensate for confusion at northern end of orbit (SOM, format
 A -- For LANDSAT, use 0.5201613—See NOTES)
PFlag End of path flag for Landsat: 0 = start of path, 1=end of path (SOM, format A)
Satnum Landsat Satellite Number (1, 2, 3, 4 or 5, SOM format B)
Path Landsat Path Number (Use WRS–1 (World Reference System) for Landsat 1,
 2 and 3 and WRS–2 for Landsat4, 5 and 6.) (SOM, format B.) WRS–1 and
 WRS–2 can be found in Landsat User's Guide.
Nzone Number of equally spaced latitudinal zones(rows); must be two or larger and
even.
Rflag Right justify columns flag is used to indicate what to do in zones with an odd
 of columns. If it has a value of 0 or 1, it indicates the extra column is on the
 right (zero) or left (one) of the projection Y-axis. If the flag is set to 2 (two),

 G-6 EED2-333-001

 the number of columns is calculated so there are always an even number of
 columns in each zone.

Shapem Oblated Equal Area oval shape parameter m.
Shapen Oblated Equal Area oval shape parameter n
angle Oblated Equal Area oval rotation angle
zero 0
one 1

G.2.1 NOTES

Array elements 14 and 15 are set to zero
All array elements with blank fields are set to zero
All angles (latitudes, longitudes, azimuths, etc.) are in radians
Longitude is negative west of Greenwich
Latitude is negative south of equator

The following notes apply to the Space Oblique Mercator A projection.

A portion of Landsat rows 1 and 2 may also be seen as parts of rows 246 or 247. To place these
locations at rows 246 or 247, set the end of path flag (parameter 11) to 1--end of path. This flag
defaults to zero.

When Landsat - 1,2,3 orbits are being used, use the following values for specified
parameters:

 Parameter 4 99o 5" 31.2' * PI/180 radians
Parameter 5 128.87 degrees - (360/251 * path number) * PI/180 radians
Parameter 9 103.2669323
Parameter 10 0.5201613

When Landsat–4,5 orbits are being used, use the following values for the specified
parameters:

 Parameter 4 99o 12" 0' * PI/180 radians
Parameter 5 129.30 degrees - (360/233 * path number) * PI/180 radians
Parameter 9 98.884119
Parameter 10 0.5201613

*State plane projection is not included in this release. It will be included in the next release.

** The following notes apply for BCEA and CEA projections, and EASE grid:

HDFEOS 2.7 and 2.8, and SDPTK5.2.7 and 5.2.8:

Behrmann Cylindrical Equal-Area (BCEA) projection was used for 25 km global EASE
grid. For this projection the Earth radius is set to 6371228.0m and latitude of true scale is
30 degrees. For 25 km global EASE grid the following apply:

 G-7 EED2-333-001

Grid Dimensions:

Width 1383
Height 586

Map Origin:
Column (r0) 691.0
Row (S0) 292.5
Latitude 0.0
Longitude 0.0

Grid Extent:
 Minimum Latitude 86.72S
 Maximum Latitude 86.72N
 Minimum Longitude 180.00W

Maximum Longitude 180.00E
Actual grid cell size 25.067525km

Grid coordinates (r,s) start in the upper left corner at cell (0.0), with r increasing to the
right and s increasing downward.

HDFEOS 2.9, SDPTK5.2.9 and later :
Although the projection code and name (tag) kept the same, BCEA projection was
generalized to accept Latitude of True Scales other than 30 degrees, Central Meridian
other than zero, and ellipsoid earth model besides the spherical one with user supplied
radius. This generalization along with the removal of hard coded grid parameters will
allow users not only subsetting, but also creating other grids besides the 25 km global
EASE grid and having freedom to use different appropriate projection parameters. With
the current version one can create the above mentioned 25 km global EASE grid of
previous versions using:

Grid Dimensions:

Width 1383
Height 586

Grid Extent:
 UpLeft Latitude 86.72
 LowRight Latitude -86.72
 UpLeft Longitude -180.00

LowRight Longitude 180.00
Projection Parameters:

1) 6371.2280/25.067525 = 254.16263
2) 6371.2280/25.067525 = 254.16263
5) 0.0
6) 30000000.0
7) 691.0
8) –292.5

Also one may create 12.5 km global EASE grid using:

Grid Dimensions:

Width 2766
Height 1171

Grid Extent:
 UpLeft Latitude 85.95
 LowRight Latitude –85.95
 UpLeft Longitude –179.93

LowRight Longitude 180.07

 G-8 EED2-333-001

Projection Parameters:
1) 6371.2280/(25.067525/2) = 508.325253
2) 6371.2280/(25.067525/2) = 508.325253
5) 0.0
6) 30000000.0
7) 1382.0
8) –585.0

Any other grids (normalized pixel or not) with generalized BCEA projection can be
created using appropriate grid corners, dimension sizes, and projection parameters. Please
note that like other projections Semi-major and Semi-minor axes will default to Clarke
1866 values (in meters) if they are set to zero.

HDFEOS 2.10, SDPTK5.2.10 and later: A new projection CEA (97) was added to GCTP.
This projection is the same as the generalized BCEA, except that the EASE grid produced will
have its corners in meters rather than packed degrees, which is the case with EASE grid produced
by BCEA.

HDFEOS 2.19, SDPTK5.2.19 and later: The Lambert Azimuthal Equal area projection was
generalized to support WGS84 ellipsoidal Earth model in addition to the spherical model that
was supported before. This generalization was needed to support EASE GRID 2.0 used for
SMAP products.

HDFEOS 2.20, SDPTK5.2.20 and later: The Sinusoidal projection was generalized to support
WGS84 ellipsoidal Earth model in addition to the spherical model that was supported before.

G.3 UTM Zone Codes
The Universal Transverse Mercator (UTM) Coordinate system uses zone codes instead of
specific projection parameters. The table that follows lists UTM zone codes as used by GCTPc
Projection Transformation Package. If southern zone is intended then use negative values.

Table G-3. Universal Transverse Mercator (UTM) Zone Codes
Zone C.M. Range Zone C.M. Range

01 177W 180W–174W 31 003E 000E–006E
02 171W 174W–168W 32 009E 006E–012E
03 165W 168W–162W 33 015E 012E–018E
04 159W 162W–156W 34 021E 018E–024E
05 153W 156W–150W 35 027E 024E–030E
06 147W 150W–144W 36 033E 030E–036E
07 141W 144W–138W 37 039E 036E–042E
08 135W 138W–132W 38 045E 042E–048E
09 129W 132W–126W 39 051E 048E–054E
10 123W 126W–120W 40 057E 054E–060E
11 117W 120W–114W 41 063E 060E–066E

 G-9 EED2-333-001

Table G-3. Universal Transverse Mercator (UTM) Zone Codes
Zone C.M. Range Zone C.M. Range

12 111W 114W–108W 42 069E 066E–072E
13 105W 108W–102W 43 075E 072E–078E
14 099W 102W–096W 44 081E 078E–084E
15 093w 096W–090W 45 087E 084E–090E
16 087W 090W–084W 46 093E 090E–096E
17 081W 084W–078W 47 099E 096E–102E
18 075W 078W–072W 48 105E 102E–108E
19 069W 072W–066W 49 111E 108E–114E
20 063W 066W–060W 50 117E 114E–120E
21 057W 060W–054W 51 123E 120E–126E
22 051W 054W–048W 52 129E 126E–132E
23 045W 048W–042W 53 135E 132E–138E
24 039W 042W–036W 54 141E 138E–144E
25 033W 036W–030W 55 147E 144E–150E
26 027W 030W–024W 56 153E 150E–156E
27 021W 024W–018W 57 159E 156E–162E
28 015W 018W–012W 58 165E 162E–168E
29 009W 012W–006W 59 171E 168E–174E
30 003W 006W–000E 60 177E 174E–180W

Obtained from Software Documentation for GCTP general Cartographic Transformation
Package: National Mapping Program Technical Instructions, U.S. Geological Survey, National
Mapping Division, Oct. 1990,

 Note: The following source contains UTM zones plotted on a world map:

Snyder, John P. Map Projections--A Working Manual; U.S. Geological Survey Professional
Paper 1395

(Supersedes USGS Bulletin 1532), United States Government Printing Office, Washington
D.C. 1987. p. 42.

State Plane Coordinate System uses zone codes instead of specific projection parameters. The
table that follows lists State Plane Zone Codes as used by the GCTPc Projection Transformation
Package.

 G-10 EED2-333-001

Table G-4. State Plane Zone Codes (1 of 5)
Jurisdiction

Zone name or number
NAD27

Zone Code
NAD83

Zone Code
Alabama
 East
 West

0101
0102

0101
0102

Alaska
 01 through 10
 thru

5001
5010

5001
5010

Arizona
 East
 Central
 West

0201
0202
0203

0201
0202
0203

Arkansas
 North
 South

0301
0302

0301
0302

California
 01 through 07
 thru

0401
0407

0401
0406

Colorado
 North
 Central
 South

0501
0502
0503

0501
0502
0503

Connecticut 0600 0600
Delaware 0700 0700
District of Columbia 1900 1900
Florida
 East
 West
 North

0901
0902
0903

0901
0902
0903

 G-11 EED2-333-001

Table G-4. State Plane Zone Codes (2 of 5)
Jurisdiction

Zone name or number
NAD27

Zone Code
NAD83

Zone Code
Georgia
 East
 West

1001
1002

1001
1002

Hawaii
 01 through 05
 thru

5101
5105

5101
5105

Idaho
 East
 Central
 West

1101
1102
1103

1101
1102
1103

Illinois
 East
 West

1201
1202

1201
1202

Indiana
 East
 West

1301
1302

1301
1302

Iowa
 North
 South

1401
1402

1401
1402

Kansas
 North
 South

1501
1502

1501
1502

Kentucky
 North
 South

1601
1602

1601
1602

Louisiana
 North
 South
 Offshore

1701
1702
1703

1701
1702
1703

Maine
 East
 West

1801
1802

1801
1802

Maryland 1900 1900
Massachusetts
 Mainland
 Island

2001
2002

2001
2002

Michigan
 East (TM)
 Central (TM)
 West (TM)
 North (Lam)
 Central (Lam)
 South (Lam)

2101
2102
2103
2111
2112
2113

2111
2112
2113

 G-12 EED2-333-001

Table G-4. State Plane Zone Codes (3 of 5)
Jurisdiction

Zone name or number
NAD27

Zone Code
NAD83

Zone Code
Minnesota
 North
 Central
 South

2201
2202
2203

2201
2202
2203

Mississippi
 East
 West

2301
2302

2301
2302

Missouri
 East
 Central
 West

2401
2402
2403

2401
2402
2403

Montana
 North
 Central
 South

2501
2502
2503

2500

Nebraska
 North
 South

2601
2602

2600

Nevada
 East
 Central
 West

2701
2702
2703

2701
2702
2703

New Hampshire 2800 2800
New Jersey 2900 2900
New Mexico
 East
 Central
 West

3001
3002
3003

3001
3002
3003

New York
 East
 Central
 West
 Long Island

3101
3102
3103
3104

3101
3102
3103
3104

North Carolina 3200 3200
North Dakota
 North
 South

3301
3302

3301
3302

Ohio
 North
 South

3401
3402

3401
3402

Oklahoma
 North
 South

3501
3502

3501
3502

 G-13 EED2-333-001

Table G-4. State Plane Zone Codes (4 of 5)
Jurisdiction

Zone name or number
NAD27

Zone Code
NAD83

Zone Code
Oregon
 North
 South

3601
3602

3601
3602

Pennsylvania
 North
 South

3701
3702

3701
3702

Rhode Island 3800 3800
South Carolina
 North
 South

3901
3902

3900

South Dakota
 North
 South

4001
4002

4001
4002

Tennessee 4100 4100
Texas
 North
 North Central
 Central
 South Central
 South

4201
4202
4203
4204
4205

4201
4202
4203
4204
4205

Utah
 North
 Central
 South

4301
4302
4303

4301
4302
4303

Vermont 4400 4400
Virginia
 North
 South

4501
4502

4501
4502

Washington
 North
 South

4601
4602

4601
4602

West Virginia
 North
 South

4701
4702

4701
4702

Wisconsin
 North
 Central
 South

4801
4802
4803

4801
4802
4803

Wyoming
 East
 East Central
 West Central
 West

4901
4902
4903
4904

4901
4902
4903
4904

 G-14 EED2-333-001

Table G-4. State Plane Zone Codes (5 of 5)
Jurisdiction

Zone name or number
NAD27

Zone Code
NAD83

Zone Code
Puerto Rico 5201 5200
Virgin Islands
 St. John, St.
Thomas
 St. Croix

5201
5202

5200

American Samoa 5300 ----
Guam 5400 ----

xxxfor converts input longitude and latitude to the corresponding x,y cartesian coordinates for
the xxx projection. The following subroutines follow this general format:

 utmfor (lon, lat, x, y) -- Universal Transverse Mercator (UTM)
stplnfor (lon, lat, x, y) -- State Plane
alberfor (lon, lat, x, y) -- Albers
lamccfor (lon, lat, x, y) -- Lambert Conformal Conic
merfor (lon, lat, x, y) -- Mercator
psfor (lon, lat, x, y) --Polar Stereographic
polyfor (lon, lat, x, y) --Polyconic
eqconfor (lon, lat, x, y) -- Equidistant Conic
tmfor (lon, lat, x, y) -- Transverse Mercator (TM)
sterfor (lon, lat, x, y) -- Stereographic
lamazfor (lon, lat, x, y) -- Lambert Azimuthal
azimfor (lon, lat, x, y) -- Azimuthal Equidistant
gnomfor (lon, lat, x, y) -- Gnomonic
orthfor (lon, lat, x, y) -- Orthographic
gvnspfor (lon, lat, x, y) -- General Near Side Perspective
sinfor (lon, lat, x, y) -- Sinusoidal
equifor (lon, lat, x, y) -- Equirectangular
millfor (lon, lat, x, y) -- Miller
vandgfor (lon, lat, x, y) -- Van Der Grinten
omerfor (lon, lat, x, y) -- Hotine Oblique Mercator (HOM)
robfor (lon, lat, x, y) -- Robinson
somfor (lon, lat, x, y) -- Space Oblique Mercator (SOM)
alconfor (lon, lat, x, y) -- Alaska Conformal
goodfor (lon, lat, x, y) -- Goode
molwfor (lon, lat, x, y) -- Mollweide
imolwfor (lon, lat, x, y) -- Interrupted Mollweide
hamfor (lon, lat, x, y) -- Hammer
wivfor (lon, lat, x, y) -- Wagner IV
wviifor (lon, lat, x, y) -- Wagner VII
obleqfor (lon, lat, x, y) -- Oblated Equal Area
isinusfor (lon, lat, x, y) – Integerized Sinusoidal Grid

 G-15 EED2-333-001

bceafor (lon, lat, x, y) –Behrmann Cylindrical Equal-Area

xxxinv converts input x,y cartesian coordinates to the corresponding longitude and latitude for
the xxx projection. The following subroutines follow this general format:

 utminv(x, y, lon, lat) -- Universal Transverse Mercator (UTM)
stplninv(x, y, lon, lat) -- State Plane
alberinv(x, y, lon, lat) -- Albers
lamccinv(x, y, lon, lat) -- Lambert Conformal Conic
merinv(x, y, lon, lat) -- Mercator
psinv(x, y, lon, lat) -- Polar Stereographic
polyinv(x, y, lon, lat) -- Polyconic
eqconinv(x, y, lon, lat) -- Equidistant Conic
tminv(x, y, lon, lat) -- Transverse Mercator (TM)
sterinv(x, y, lon, lat) -- Stereographic
lamazinv(x, y, lon, lat) -- Lambert Azimuthal
aziminv(x, y, lon, lat) -- Azimuthal Equidistant
gnominv(x, y, lon, lat) -- Gnomonic
orthinv(x, y, lon, lat) -- Orthographic
gvnspinv(x, y, lon, lat) -- General Near Side Perspective
sininv(x, y, lon, lat) -- Sinusoidal
equiinv(x, y, lon, lat) -- Equirectangular
millinv(x, y, lon, lat) -- Miller
vandginv(x, y, lon, lat) -- Van Der Grinten
omerinv(x, y, lon, lat) -- Hotine Oblique Mercator (HOM)
robinv(x, y, lon, lat) -- Robinson
sominv(x, y, lon, lat) -- Space Oblique Mercator (SOM)
alconinv(x, y, lon, lat) -- Alaska Conformal
goodinv(x, y, lon, lat) -- Goode
molwinv(x, y, lon, lat) -- Mollweide
imolwinv(x, y, lon, lat) -- Interrupted Mollweide
haminv(x, y, lon, lat) -- Hammer
wivinv(x, y, lon, lat) -- Wagner IV
wviiinv(x, y, lon, lat) -- Wagner VII
obleqinv(x, y, lon, lat) -- Oblated Equal Area
isinusinv (x, y, lon, lat) – Integerized Sinusoidal Grid

 bceainv (x,y,lon, lat) – Behrmann Cylindrical Equal-Area

 G-16 EED2-333-001

This page intentionally left blank.

 H-1 EED2-333-001

Appendix H. PGS_CUC_Cons - Example Standard
Constants File

Current content of an Example standard constants file

Official file will be supplied by ESDIS Science Office

PI = 3.1415927

ATOMIC_SECOND = 9192631770

MOLECULAR_WEIGHT = 28.970

SOLAR_MOTION_VELOCITY = 19.7

PLANCKS_CONSTANT = 5.6697

 H-2 EED2-333-001

This page intentionally left blank.

 I-1 EED2-333-001

Appendix I. PGS_CUC_Conv—Input File Provided
With the UdUnits Software

This tool uses the UdUnits package to provide unit conversions.

The following information taken from the input file provided with the UdUnits software
describes the conversions currently available with the toolkit.

$Id: udunits.dat,v 1.7 1994/02/03 17:20:02 steve Exp $

The first column is the unit name. The second column indicates whether or
not the unit name has a plural form (i.e., with an 's' appended).
A 'P' indicates that the unit has a plural form, whereas, a 'S' indicates
that the unit has a singular form only. The remainder of the line is the
definition for the unit.

'#' is the to–end–of–line comment–character.

NB: When adding to this table, be *very* careful to distinguish between
the letter 'O' and the numeral zero '0'. For example, the following two
entries don't do what one might otherwise expect:

mercury_0C mercury_32F
millimeter_Hg_0C mm mercury_OC

BASE UNITS. These must be first and are identified by a nil definition.

ampere P # electric current
bit P # unit of information
candela P # luminous intensity
kelvin P # thermodynamic temperature
kilogram P # mass
meter P # length
mole P # amount of substance
second P # time
radian P # plane angle

CONSTANTS

percent S 0.01

 I-2 EED2-333-001

PI S 3.14159265358979323846
bakersdozen S 13

% S percent
pi S PI

NB: All subsequent definitions must be given in terms of
earlier definitions. Forward referencing is not permitted.

The following are non–base units of the fundamental quantities

UNITS OF ELECTRIC CURRENT

A S ampere
amp P ampere
abampere P 10 ampere # exact
gilbert P 7.957747e-1 ampere
statampere P 3.335640e-10 ampere
biot P 10 ampere

UNITS OF LUMINOUS INTENSITY

cd S candela
candle P candela

UNITS OF THERMODYNAMIC TEMPERATURE

degree_Kelvin P kelvin
degree_Celsius S kelvin @ 273.15
degree_Rankine P kelvin/1.8
degree_Fahrenheit P degree_Rankine @ 459.67

#C S degree_Celsius # `C' means `coulomb'
Celsius S degree_Celsius
celsius S degree_Celsius
centigrade S degree_Celsius
degC S degree_Celsius
degreeC S degree_Celsius
degree_C S degree_Celsius
degree_c S degree_Celsius

 I-3 EED2-333-001

deg_C S degree_Celsius
deg_c S degree_Celsius
degK S kelvin
degreeK S kelvin
degree_K S kelvin
degree_k S kelvin
deg_K S kelvin
deg_k S kelvin
K S kelvin
Kelvin P kelvin

degF S degree_Fahrenheit
degreeF S degree_Fahrenheit
degree_F S degree_Fahrenheit
degree_f S degree_Fahrenheit
deg_F S degree_Fahrenheit
deg_f S degree_Fahrenheit
F S degree_Fahrenheit
Fahrenheit P degree_Fahrenheit
fahrenheit P degree_Fahrenheit
degR S degree_Rankine
degreeR S degree_Rankine
degree_R S degree_Rankine
degree_r S degree_Rankine
deg_R S degree_Rankine
deg_r S degree_Rankine
#R S degree_Rankine # `R' means `roentgen'
Rankine P degree_Rankine
rankine P degree_Rankine

UNITS OF MASS

assay_ton P 2.916667e2 kilogram
avoirdupois_ounce P 2.834952e–2 kilogram
avoirdupois_pound P 4.5359237e–1 kilogram # exact
carat P 2e–4 kilogram
grain P 6.479891e–5 kilogram # exact
gram P 1e–3 kilogram # exact
kg S kilogram
long_hundredweight P 5.080235e1 kilogram
metric_ton P 1e3 kilogram # exact
pennyweight P 1.555174e–3 kilogram
short_hundredweight P 4.535924e1 kilogram
slug P 14.59390 kilogram

 I-4 EED2-333-001

troy_ounce P 3.110348e–2 kilogram
troy_pound P 3.732417e–1 kilogram
atomic_mass_unit P 1.66044e–27 kilogram

tonne P metric_ton
apothecary_ounce P troy_ounce
apothecary_pound P avoirdupois_pound
pound P avoirdupois_pound
metricton P metric_ton
gr S grain
scruple P 20 grain
apdram P 60 grain
apounce P 480 grain
appound P 5760 grain
atomicmassunit P atomic_mass_unit
amu P atomic_mass_unit

t S tonne
lb P pound
bag P 94 pound
short_ton P 2000 pound
long_ton P 2240 pound

ton P short_ton
shortton P short_ton
longton P long_ton

UNITS OF LENGTH

angstrom P decinanometer
astronomical_unit P 1.495979e11 meter
fathom P 1.828804 meter
fermi P 1e–15 meter # exact
m S meter
metre P meter
light_year P 9.46055e15 meter
micron P 1e–6 meter # exact
mil P 2.54e–5 meter # exact
nautical_mile P 1.852000e3 meter # exact
parsec P 3.085678e16 meter
printers_pica P 4.217518e–3 meter
printers_point P 3.514598e–4 meter # exact
US_statute_mile P 1.609347e3 meter # = intn'l mile + .000003 meter
US_survey_foot P 3.048006e–1 meter
chain P 2.011684e1 meter

 I-5 EED2-333-001

inch S 2.54 cm # exact
astronomicalunit P astronomical_unit
au S astronomical_unit
nmile P nautical_mile
nmi S nautical_mile
inches S inch
foot S 12 inch # exact
in S inch
barleycorn P inch/3
ft S foot
feet S foot
yard P 3 foot
furlong P 660 foot
international_mile P 5280 foot # exact
arpentlin P 191.835 foot
yd S yard
rod P 5.5 yard
mile P international_mile
arpentcan P 27.52 mile

UNITS OF AMOUNT OF SUBSTANCE

mol S mole

UNITS OF TIME

day P 8.64e4 second # exact
hour P 3.6e3 second # exact
minute P 60 second # exact
s S second
sec P second
shake P 1e–8 second # exact
sidereal_day P 8.616409e4 second
sidereal_minute P 5.983617e1 second
sidereal_second P 0.9972696 second
sidereal_year P 3.155815e7 second
tropical_year P 3.155693e7 second
year P 3.153600e7 second # exact
eon P 1e9 year
d S day
min P minute
hr P hour
h S hour

 I-6 EED2-333-001

fortnight P 14 day
yr P year
a S year # "anno"

UNITS OF PLANE ANGLE

#rad P radian # `rad' means `grey'
circle P 2 pi radian
angular_degree P (pi/180) radian
turn P circle
degree P angular_degree
degree_north S angular_degree
degree_east S angular_degree
degree_true S angular_degree
arcdeg P angular_degree
angular_minute P angular_degree/60
angular_second P angular_minute/60
grade P 0.9 angular_degree # exact
degrees_north S degree_north
degreeN S degree_north
degree_N S degree_north
degreesN S degree_north
degrees_N S degree_north
degrees_east S degree_east
degreeE S degree_east
degree_E S degree_east
degreesE S degree_east
degrees_E S degree_east
degree_west S –1 degree_east
degrees_west S degree_west
degreeW S degree_west
degree_W S degree_west
degreesW S degree_west
degrees_W S degree_west
degrees_true S degree_true
degreeT S degree_true
degree_T S degree_true
degreesT S degree_true
degrees_T S degree_true
arcminute P angular_minute
arcsecond P angular_second
arcmin P arcminute
arcsec P arcsecond

 I-7 EED2-333-001

The following are derived units with special names. They are useful for
defining other derived units.

steradian P radian2
hertz S 1/second
newton P kilogram.meter/second2
coulomb P ampere.second
lumen P candela steradian
becquerel P 1/second # SI unit of activity of a
radionuclide
standard_free_fall S 9.806650 meter/second2 # exact

pascal P newton/meter2
joule P newton.meter
hz S hertz
sr S steradian
force S standard_free_fall
gravity S standard_free_fall
free_fall S standard_free_fall
lux S lumen/meter2
sphere P 4 pi steradian
luxes S lux
watt P joule/second
gray P joule/kilogram # absorbed dose. derived unit
sievert P joule/kilogram # dose equivalent. derived unit
mercury_32F S gravity 13595.065 kg/m3
mercury_60F S gravity 13556.806 kg/m3
water_39F S gravity 999.97226 kg/m3 # actually 39.2 F
water_60F S gravity 999.00072 kg/m3
g S gravity
volt P watt/ampere
mercury_0C S mercury_32F
mercury S mercury_32F
water S water_39F
farad P coulomb/volt
ohm P volt/ampere
siemens S ampere/volt
weber P volt.second
Hg S mercury
hg S mercury
H2O S water
h2o S water
tesla P weber/meter2
henry P weber/ampere

 I-8 EED2-333-001

The following are compound units: units whose definitions consist
of two or more base units. They may now be defined in terms of the
preceding units.

ACCELERATION

gal P 1e–2 meter/second2 # exact

Area

are P 1e2 m2 # exact
barn P 1e–28 m2 # exact
circular_mil P 5.067075e–10 m2
darcy P 9.869233e–13 m2 # permeability of porous solids
hectare P 1e4 m2 # exact
acre P 4840 yard2

ELECTRICITY AND MAGNETISM

abfarad P 1e9 farad # exact
abhenry P 1e–9 henry # exact
abmho P 1e9 siemens # exact
abohm P 1e–9 ohm # exact
abvolt P 1e–8 volt # exact
C S coulomb
e S 1.6021917e–19 coulomb # charge of electron
chemical_faraday P 9.64957e4 coulomb
physical_faraday P 9.65219e4 coulomb
C12_faraday P 9.64870e4 coulomb
gamma P 1e–9 tesla # exact
gauss S 1e–4 tesla # exact
H S henry
maxwell P 1e–8 weber # exact
oersted P 7.957747e1 ampere/meter
S S siemens
statcoulomb P 3.335640e–10 coulomb
statfarad P 1.112650e–12 farad
stathenry P 8.987554e11 henry
statmho P 1.112650e–12 siemens
statohm P 8.987554e11 ohm
statvolt P 2.997925e2 volt

 I-9 EED2-333-001

T S tesla
unit_pole P 1.256637e–7 weber
V S volt
Wb S weber
mho P siemens
Oe S oersted
faraday P C12_faraday # charge of 1 mole of
electrons

ENERGY (INCLUDES WORK)

electronvolt P 1.60219e–19 joule
erg P 1e–7 joule # exact
IT_Btu P 1.055056 joule # exact
EC_therm P 1.05506e8 joule
thermochemical_calorie P 4.184000 joule # exact
IT_calorie P 4.1868 joule # exact
J S joule
ton_TNT S 4.184e9 joule
US_therm P 1.054804e8 joule # exact
watthour P watt hour
therm P US_therm
Wh S watthour
Btu P IT_Btu
calorie P IT_calorie
electron_volt P electronvolt
thm S therm
cal S calorie
eV S electronvolt
bev S gigaelectron_volt

FORCE

dyne P 1e–5 newton # exact
pond P 1.806650e–3 newton # exact
force_kilogram S 9.806650 newton # exact
force_ounce S 2.780139e–1 newton
force_pound S 4.4482216152605 newton # exact
poundal P 1.382550e–1 newton
N S newton
gf S gram force
force_gram P 1e–3 force_kilogram
force_ton P 2000 force_pound # exact

 I-10 EED2-333-001

lbf S force_pound
ounce_force S force_ounce
kilogram_force S force_kilogram
pound_force S force_pound
ozf S force_ounce
kgf S force_kilogram
kip P 1000 lbf
ton_force S force_ton
gram_force S force_gram

HEAT

clo P 1.55e–1 kelvin.meter2/watt

LIGHT

lm S lumen
lx S lux
footcandle P 1.076391e–1 lux
footlambert P 3.426259 candela/meter2
lambert P (1e4/PI) candela/meter2 # exact
stilb P 1e4 candela/meter2 # exact
phot P 1e4 lumen/meter2 # exact
nit P 1 candela/meter2 # exact
langley P 4.184000e4 joule/meter2 # exact
blondel P candela/(pi meter2)

apostilb P blondel
nt S nit
ph S phot
sb S stilb

MASS PER UNIT LENGTH

denier P 1.111111e–7 kilogram/meter
tex P 1e–6 kilogram/meter # exact

MASS PER UNIT TIME (INCLUDES FLOW)

perm_0C S 5.72135e–11 kg/(Pa.s.m2)
perm_23C S 5.74525e–11 kg/(Pa.s.m2)

 I-11 EED2-333-001

POWER

voltampere P volt ampere
VA S volt ampere
boiler_horsepower P 9.80950e3 watt
shaft_horsepower P 7.456999e2 watt
metric_horsepower P 7.35499 watt
electric_horsepower P 7.460000e2 watt # exact
W S watt
water_horsepower P 7.46043e2 watt
UK_horsepower P 7.4570e2 watt
refrigeration_ton P 12000 Btu/hour

horsepower P shaft_horsepower
ton_of_refrigeration P refrigeration_ton

hp S horsepower

PRESSURE OR STRESS

bar P 1e5 pascal # exact
standard_atmosphere P 1.01325e5 pascal # exact
technical_atmosphere P 1 kg gravity/cm2 # exact
inch_H2O_39F S inch water_39F
inch_H2O_60F S inch water_60F
inch_Hg_32F S inch mercury_32F
inch_Hg_60F S inch mercury_60F
millimeter_Hg_0C S mm mercury_0C
footH2O S foot water
cmHg S cm Hg
cmH2O S cm water
Pa S pascal
inch_Hg S inch Hg
inch_hg S inch Hg
inHg S inch Hg
in_Hg S inch Hg
in_hg S inch Hg
millimeter_Hg S mm Hg
mmHg S mm Hg
mm_Hg S mm Hg
mm_hg S mm Hg
torr P mm Hg
foot_H2O S foot water
ftH2O S foot water

 I-12 EED2-333-001

psi S 1 pound gravity/in2
ksi S kip/in2
barie P 0.1 newton/meter2
at S technical_atmosphere
atmosphere P standard_atmosphere
atm P standard_atmosphere
barye P barie

RADIATION UNITS

Bq S becquerel
curie P 3.7e10 becquerel # exact
rem P 1e–2 sievert # dose equivalent. exact
rad P 1e–2 gray # absorbed dose. exact
roentgen P 2.58e–4 coulomb/kg # exact
Sv S sievert
Gy S gray
Ci S curie
R S roentgen
rd S rad

VELOCITY (INCLUDES SPEED)

c S 2.997925e+8 meter/sec
knot P nautical_mile/hour

knot_international S knot
international_knot S knot
kt P knot

VISCOSITY

poise S 1e–1 pascal second # absolute viscosity.
exact
stokes S 1e–4 meter2/second # exact
rhe S 10/(pascal second) # exact
St S stokes

VOLUME (INCLUDES CAPACITY)

acre_foot S 1.233489e3 m3
board_foot S 2.359737e–3 m3
bushel P 3.523907e–2 m3

 I-13 EED2-333-001

UK_liquid_gallon P 4.546092e–3 m3
Canadian_liquid_gallon P 4.546090e–3 m3
US_dry_gallon P 4.404884e–3 m3
US_liquid_gallon P 3.785412e–3 m3
cc S cm3
liter P 1e–3 m3 # exact. However, from 1901 to
1964, 1 liter = 1.000028 dm3
stere P 1 m3 # exact
register_ton P 3.831685 m3
US_dry_quart P US_dry_gallon/4
US_dry_pint P US_dry_gallon/8
US_liquid_quart P US_liquid_gallon/4
US_liquid_pint P US_liquid_gallon/8
US_liquid_cup P US_liquid_gallon/16
US_liquid_gill P US_liquid_gallon/32
US_fluid_ounce P US_liquid_gallon/128
US_liquid_ounce P US_fluid_ounce
UK_liquid_quart P UK_liquid_gallon/4
UK_liquid_pint P UK_liquid_gallon/8
UK_liquid_cup P UK_liquid_gallon/16
UK_liquid_gill P UK_liquid_gallon/32
UK_fluid_ounce P UK_liquid_gallon/160
UK_liquid_ounce P UK_fluid_ounce
liquid_gallon P US_liquid_gallon
fluid_ounce P US_fluid_ounce
#liquid_gallon P UK_liquid_gallon
#fluid_ounce P UK_fluid_ounce
dry_quart P US_dry_quart
dry_pint P US_dry_pint
liquid_quart P liquid_gallon/4
liquid_pint P liquid_gallon/8
gallon P liquid_gallon
barrel P 42 US_liquid_gallon # petroleum industry definition
quart P liquid_quart
pint P liquid_pint
cup P liquid_gallon/16
gill P liquid_gallon/32
tablespoon P US_fluid_ounce/2
teaspoon P tablespoon/3
peck P bushel/4
oz P fluid_ounce
floz S fluid_ounce
acre_feet S acre_foot
board_feet S board_foot

 I-14 EED2-333-001

Tbl P tablespoon
Tbsp S tablespoon
tbsp S tablespoon
Tblsp S tablespoon
tblsp S tablespoon
litre P liter
l S liter
tsp S teaspoon
pk S peck
bu S bushel
fldr S floz/8
dram P floz/16
bbl S barrel
pt S pint
dr S dram

COMPUTERS AND COMMUNICATION

baud S 1/second # exact
b S bit
bps S bit/second
cps S hertz
Bd S baud

MISC

kayser P 1e2/meter # exact
rps S hertz
rpm S hertz/60
geopotential S gravity
work_year P 2056 hours
work_month P work_year/12

gp S geopotential
dynamic S geopotential

 J-1 EED2-333-001

Appendix J. Population of Granule Level Metadata
Using the SDP metadata tools

J.1 Introduction
The purpose of this appendix is to provide detailed guidance on the use of the SDP Toolkit for
writing and reading granule-level metadata, i.e. the metadata that is associated with each instance
of an input or output product. Section J.2 provides an overview of metadata in ECS and places
the granule-level metadata handled by the toolkit in context with the larger metadata picture.
Section J.3 outlines the procedures that are to be followed in interacting with ECS in the process
of defining product metadata and provides a list of tools and references that will be useful in
developing metadata. Section J.4 describes how metadata is generated and written to output files
using the toolkit. Section J.4 also includes a discussion of how HDF and non-HDF product files
are treated differently. Section J.5 discusses metadata toolkit usage. Section J.6 describes in
detail the structure and syntax of the MCF. Section J.7 discusses metadata in HDF vs. non-HDF
input and Output Files.

J.2 Overview of Metadata
Within ECS, the term "metadata" relates to all information of a descriptive nature that is
associated with a product or dataset. This includes information that identifies a dataset, giving
characteristics such as its origin, content, quality, and condition. Metadata can also provide
information needed to decode, process and interpret the data, and can include items such as the
software that was used to create the data.

These various types of information have been analyzed and developed into the ECS Earth
Science Data Model, reference Document: 311-CD-008-001 (“Release B SDPS Database Design
and Database Scheme Specifications”); and updates for the ECS Release 6A: 420-TP-022-001
(“Release 6A Implementation Earth Science Data Model”). Also see 420-TP-016-003 (“Backus-
Naur Format (BNF) Representation of the B.0 Earth Science Data Model for the ECS Project”.)

J.2.1 The B.0 Earth Science Data Model

The ECS Data Model consists of a bounded set of attributes intended to cover the essential
characteristics of all earth science data sets. This is sometimes referred to as “core” metadata.
Not all core attributes are applicable to all data sets, but the core includes those attributes which
most users employ to formulate searches and which most users would want to know about a data
set when it was delivered.

All data or products in ECS belong to at least one collection. A collection is an aggregation of
related elements called granules. A granule is the smallest piece of data that is independently
managed by the system, i.e. represented by a record in the inventory. A granule may belong to
more than one collection..

 J-2 EED2-333-001

An ECS core metadata attribute can be collection-level, granule-level or both. Collection-level
attributes describe a collection as a whole. These attributes include the collection name, the data
center where the collection resides, the technical contact for the collection, etc. Granule-level
attributes describe characteristics whose values vary granule to granule, such as the measurement
time and location. If granule-level attributes are also present at the collection level, the
collection-level attribute reflects the union of the values assigned to each granule. For example,
a granule may have a start and stop time assigned to it. The collection-level start and stop times
would be the earliest and latest times, respectively, of the member granules.

Individual collections may have important metadata associated with them which is not
represented in the core set of metadata attributes. These are called product-specific metadata, and
several options are available for handling them in ECS. Some product-specific metadata will
reside in ECS database tables and will therefore be searchable by users, while other metadata will
not. Whether product-specific metadata is searchable or not, and where and how it is supplied to
the system is discussed in Section J.6.4.

J.2.2 Earth Science Data Types

Before a new collection can be added to ECS, an Earth Science Data Type (ESDT) descriptor file
must be composed and submitted to Science Data Server, a component of the Data Server
Subsystem. The ESDT descriptor file is parsed into components and used in various ECS
subsystems as shown in Figure J-1. The ESDT descriptor file specifies the set of metadata
attributes chosen to describe the collection. Most collection-level attributes are known
beforehand so their values are specified in the descriptor file. Collection-level metadata
attributes are delivered to the Interoperability Subsystem, which uses them to generate
advertisements and entries for the GCMD, as well as the Data Management Subsystem, to
support distributed searching.

For the granule level the descriptor file contains only a list of the attributes and a specification of
how values will be assigned to them. This information is used to generate a Metadata
Configuration File (MCF), which is delivered to the Data Processing Subsystem or the Ingest
Subsystem on demand. The descriptor also carries valid values and ranges for Product-Specific
attributes and a list of services for the collection. See Section J.3 for roles and responsibilities
for preparation of the collection and granule metadata.

 J-4 EED2-333-001

The selection of metadata attributes for inclusion in any given product is done at the time the
ESDT descriptor for that product is built. The toolkit can check that granule-level mandatory
attributes have been populated during granule production, as described in Section J.6.2.

J.3 Procedures and Support
An MCF file is necessary for each output produced by a PGE that is to be stored on the Science
Data Server. If multiple granules with the same ESDT are being produced, the same MCF is
reused for each granule.

In prior SDP Toolkit versions, an all-inclusive MCF template was included and the science
software developer had to edit the template to customize it to the particular need. Since the
structure of each MCF is tightly couple to the definition of corresponding ESDT, it was deemed
necessary to substantially change this process for science software development for ECS
Release B.0.

EOSDIS metadata support staff are available to assist with generation of both ESDT descriptor
files and MCFs to be used in science algorithm testing. If the name of an ECS contact for
metadata and ESDTs has not been provided to you, please send an email message requesting
such support to landover_PGSTLKIT@raytheon.com. Specific questions regarding metadata or
ESDTs may also be sent to this email address.

J.3.1 Generating the Metadata Configuration File in Release B.0
Beginning with B.0, ECS provided you with a Metadata Configuration File built from the tool
MetaData Works. The MetaData Works is no longer active, therefore, the steps in utilizing
MetaData Works to build a new MCF file has been deleted in this section.

Beginning with 7.20 ECS delivery the system will also accept XML metadata files from the SIPS.

J.4 The Granule Metadata Population Process
Figure J-5 is a schematic of the process by which data granules and their metadata are generated.
In Step 1 Science Data Server Science notifies Data Processing of the arrival of input data needed
to produce new data granules. When all the inputs are available, Science Data Processing then
requests Science Data Server to return a Metadata Configuration File (MCF) that is to be filled in
with values for the granule metadata attributes (Step (2)). In Step (3) Science Data Processing
generates new data granules (i.e., a science data product) by running a Product Generation
Executive (PGE) together with a Process Control File that defines the input and output file
locations and other control parameters to the PGE. In Step (4) the PGE, using the SDP Toolkit,
writes values for the granule metadata attributes into the MCF. These steps are described in detail
in Sections J.5 and J.6 of this Appendix.

 J-6 EED2-333-001

PGE_MET_Init returns a unique identifier for that MCF. Values generated within the PGE are
assigned to attributes in the MCF using PGS_MET_SetAttr, which is called once per attribute.
After all values have been assigned, PGS_MET_Write is used to write the metadata to the
product as well as a separate ASCII metadata file. Finally, PGS_MET_Remove frees up
memory occupied by the MCFs. Before a call to PGS_MET_Write it is required that the HDF
file, into which the metadata is going to be written, is opened. For HDF files of HDF4 type one
can use HDF4’s SDstart (sfstart for FORTRAN) to open HDF file and obtain a SD ID to pass
into PGS_MET_Write. However, for opening a HDF file of HDF5 type and obtaining SD ID
one needs to call PGS_MET_SDstart (pgs_met_sfstart for FORTRAN). The function
PGS_MET_SDstart (pgs_met_sfstart for FORTRAN) can also be used for opening HDF files
of HDF4 type. The HDF files opened by a call to PGS_MET_SDstart (pgs_met_sfstart for
FORTRAN) must be closed by a call to PGS_MET_SDend (pgs_met_sfend for FORTRAN)
after writing metadata.

Three additional metadata tools are used from within the PGE to read in metadata values.
PGS_MET_GetSetAttr returns the value of any metadata attribute in an MCF that has loaded
into memory. Two other tools may be called independently of any MCF:
PGS_MET_GetPCAttr returns the value of metadata attributes from input files (either
embedded metadata in HDF-EOS files, or independent ASCII metadata files), and
PGS_MET_GetConfigData returns the value of runtime metadata from the Process Control
File.

J.5.2 Example

This example includes retrieval of metadata from an HDF file and from the PCF, and setting and
writing attributes in a new product. These code fragments are in C. Consult Section 6 for the
equivalent calls in FORTRAN. Some concepts introduced in this example are explained in
further detail in Section J.6.

First a value for the runtime parameter with the name “Runtime_ID” is read from the user-
defined runtime parameters section of the Process Control File using PGS_MET_GetConfigData:

/* get values from PCF */
ret =
PGS_MET_GetConfigData(“Runtime_ID”,&rtid)

Next, PGS_MET_GetPCAttr is used to read a value for the attribute EquatorCrossingLongitude
from the inventory metadata block of an HDF input file whose fileID is 10265. Another call to
PGS_MET_GetPCAttr reads in a value MAX_DELTA from a separate ASCII file with fileID
5731. (See notes under PGS_MET_GetPCAttr in Section 6.2.1.4 concerning specification of
metadata input files in the PCF.)

/* get value from metadata block of input file */
ret =
PGS_MET_GetPCAttr(10265,1,INVENTORYMETADATA,"EquatorCrossingLongitude",&val);

/* get value from ASCII metadata file */
ret =

 J-7 EED2-333-001

PGS_MET_GetPCAttr(5731,1,INVENTORYMETADATA,"MAX_DELTA",&dval);

Then PGS_MET_Init is used to read into memory an MCF whose fileID is 10250 and check its
syntax. An array mdHandles is returned with pointers for each metadata block in the MCF (see
Sections 6.2.1.4 and J.6.1 for details).

/* Initialize an MCF into memory */
ret =
PGS_MET_Init(10250,mdHandles);

The PGE now calculates a new value for LocalVersionID writes it to the MCF held in memory.
PGS_MET_SetAttr locates the attribute name and assigns a value to it.

/* assign value to attribute in MCF */
ret =
PGS_MET_SetAttr(mdHandles[1],"LocalVersionID",&val);

A value already assigned to the MCF in memory is needed by the PGE so PGS_MET_GetSetAttr
is used to retrieve it.

/* Read back in value of attribute in memory */
ret =
PGS_MET_GetSetAttr(mdHandles[1],"SensorCharacteristicValue.1”,value)

The PGE has finished setting all the values which are mandatory in the MCF, but there is still
some relevant granule information the data provider wishes to add. The PGE accomplishes this
by writing this information to the product specific metadata group in the
INVENTORYMETADATA section of the MCF. A suffix “1” is added to the second argument
of the call to distinguish multiple uses of these parameters, as discussed in Section J.6.

/* assign value to Product-Specific Attribute */
ret =
PGS_MET_SetAttr(handles[1],"AdditionalAttributeName.1",”Max_Slope”);

ret =
PGS_MET_SetAttr(handles[1],"ParameterValue.1",”57.5”)

The PGE now writes some granule metadata to the archive block of the MCF. This metadata will
not be searchable in the inventory database tables, but it will be readable using toolkit calls.

/* assign value to attribute in MCF in Archive block*/
ret =
PGS_MET_SetAttr(handles[2],"Runtime_ID",&rtid);

Once the algorithm has finished retrieving and setting values in the memory, the final stage is to
write the inventory and archive metadata blocks to the product. PGS_MET_Write writes the
metadata blocks to an HDF (HDF4 or HDF5 type) file as HDF global attributes (an unfortunate
duplication of terms; an HDF attribute should not be confused with an individual metadata

 J-8 EED2-333-001

attribute). Note that a separate call to PGS_MET_Write is required for the inventory and archive
metadata blocks.

/* Write Metadata Blocks to HDF output file */
ret =
PGS_MET_Write(mdHandles[1],"coremetadata",sdid1);

ret =
PGS_MET_Write(mdHandles[2],"archivemetadata",sdid2);

/* Write all Metadata Blocks to ASCII output file */
ret =
PGS_MET_Write(mdHandles[0],NULL,101);

/* Remove MCF from memory*/
ret =
PGS_MET_Remove()

It is imperative that PGS_MET_Write be called in order to generate an ASCII metadata output
file, as this is the means by which inventory database tables are populated during Insert of the
product into the Data Server Subsystem. This ASCII metadata output file is generated
automatically when the INVENTORYMETADATA section is written to an HDF product. If a
non-HDF output product is being generated that will be archived by ECS, it is necessary to use
PGS_MET_Write to generate this ASCII metadata output file using a variation in the calling
sequence. The user must give the mdHandle[0], reserved to point to the whole MCF, the second
arguments as NULL, and the final argument as the file ID. In either case the metadata output file
is given the same name as the data product output file, but with the suffix “.met” attached. If the
file ID in PGS_MET_Write is set to NULL, a default ASCII dump file is created. More examples
of writing metadata to product files are given in the HDF-EOS Users’ Guide, Volume 1,
Section 8.

The format of the metadata written into the product or output as a separate ASCII file is Object
Description Language, ODL, which is described in more detail in the next section.

J.6 Structure of the Metadata Configuration File (MCF)
As described in Section J.3, the MCF is the vehicle for populating granule-level metadata
attributes which are then attached to product granules and used to populate the inventory
database tables. Since the MCF is a byproduct of the ESDT descriptor file, it should not be
necessary for data producers to be cognizant of its structure and syntax. However, this section of
the Appendix is being provided to assist anyone having a need to create or modify an MCF.
Another reason for being familiar with the format of the MCF is that the populated MCF, which
is written to the product file and passed as an ASCII file to Science Data Server, is in Object
Description Language (ODL) and is nearly identical in format to the MCF that serves as input to
the PGE.

The structure of the MCF allows users to distinguish between two types of metadata: that which
will be used to populate the inventory in the data server and therefore will be available for
searching on granules, and that which is important to the description of the granule and therefore

 J-9 EED2-333-001

needs to be kept with the granule as it is archived, but need not be searchable. These separate
parts (or Mastergroups as they are called in the MCF) are called Inventory and Archive metadata.

J.6.1 MASTERGROUPS

The MCF consists of one or more "master groups.” The only required MASTERGROUP is
called INVENTORYMETADATA which contains the metadata attributes whose values will be
inserted into the inventory database tables, as well as being written to (or exported with) the
product. Any number of additional MASTERGROUPs can be created and values can be written
to them, but these metadata values will not appear in the inventory database and will only written
to the product. Each MASTERGROUP is written as an HDF global attribute using
PGS_MET_Write. Inventory metadata must be written to an HDF global attribute named
“coremetadata.” By convention, there is just one additional MASTERGROUP named
ARCHIVEMETADATA and it is written to an HDF global attribute named “archivemetadata.”

It should be noted that the PGS_MET_Write tools will automatically create multiple HDF global
attributes, e.g. coremetadata.1, coremetadata.2, coremetadata.3, ... to accommodate a
MASTERGROUP that exceeds the HDF size limits for global attributes. When this HDF file is
used as input to another PGE, the multiple global attributes are recognized by the toolkit as a
single block. However, other HDF tools may need to be instructed to access the attributes
individually.

The MCF must start with:

GROUP = INVENTORYMETADATA
 GROUPTYPE = MASTERGROUP

 and end that master group with:

END_GROUP = INVENTORYMETADATA

If additional, non-inventory metadata are to be included in the MCF, they must appear between:

GROUP = ARCHIVEDMETADATA
 GROUPTYPE = MASTERGROUP

 and:

END_GROUP = ARCHIVEDMETADATA

A parameter called GROUPTYPE is assigned the value MASTERGROUP to signal the toolkit
that all attributes enclosed within the named group are to be treated as a block. This
distinguishes the mastergroups from other groupings of attributes as described below.

 J-10 EED2-333-001

J.6.2 MCF Hierarchy

The hierarchical organization of attributes in the MCF follows as closely as possible the
conceptual model of ECS metadata as described in DID-311. The MCF is written in Object
Description Language, or ODL, which enables a hierarchical organization of information using
Groups, Objects, and Parameters. Groups are used to represent Classes in the ECS Data Model
and Objects are used to represent individual metadata attributes. Each Object is described by a
number of Parameters. The following example will be used in describing each of these terms:

GROUP = ECSDataGranule

 OBJECT = SizeMBECSDataGranule
 Data_Location = "DSS"
 NUM_VAL = 1
 TYPE = "DOUBLE"
 Mandatory = "FALSE"
 END_OBJECT = SizeMBECSDataGranule

 OBJECT = DayNightFlag
 Data_Location = "PGE"
 NUM_VAL = 1
 TYPE = "STRING"
 Mandatory = "TRUE"
 END_OBJECT = DayNightFlag

 OBJECT = ProductionDateTime
 Data_Location = "TK"
 NUM_VAL = 1
 TYPE = "DATETIME"
 Mandatory = "TRUE"
 END_OBJECT = ProductionDateTime

 OBJECT = LocalVersionID
 Data_Location = "PGE"
 NUM_VAL = 1
 TYPE = "STRING"
 Mandatory = "TRUE"
 END_OBJECT = LocalVersionID

END_GROUP = ECSDataGranule

In this example the Group ECSDataGranule consists of four objects, SizeMBECSDataGranule,
DayNightFlag, ProductionDateTime, and LocalVersionID. Each object is described using four
Parameters: Data_Location, NUM_VAL, TYPE, and Mandatory. These four parameters are
required for every object in the MCF (except objects which are containers as described below).

In the MCF an object can be described using the parameters: Data_Location, Mandatory,
NUM_VAL, TYPE, CLASS and Value. All parameter names are case insensitive and their
arguments (i.e. what appears to the right of the “=“ sign) must be in quotes, unless the argument
is numeric. A description of each parameter follows.

Data_Location - The metadata tools are used to set metadata values for a product granule
coming from three possible input sources—the Metadata Configuration File itself, the Process

 J-11 EED2-333-001

Control File and the PGE. The parameter Data_Location indicates the source of population.
Data_Location must be set for every object.

“MCF” - When the Data_Location is equal to “MCF” the object will have its value set in
the MCF using the “Value = “ parameter. This option is used for attributes whose values
will remain the same for all granules. An example is the mandatory attribute collection
ShortName, which is included in each granule for identification purposes.

“PGE” - When the Data_Location is equal to “PGE” the object will have its value set by
the science software using the PGS_MET_SetAttr metadata tool. This is the way most
objects are set.

“PCF” - The Process Control File contains all file input and output specifications as well
as runtime parameters. When the Data_Location is equal to “PCF” the object will have its
value set automatically during initialization of the MCF when using PGS_MET_Init. The
Toolkit will locate the Object name within the USER DEFINED RUNTIME
PARAMETERS section of the PCF and the corresponding value will be assigned to the
Object. The attribute name to be searched on must be written between the first and second
delimiters in the PCF, and its corresponding value between the second and third
delimiters . (For further details on the format of the PCF, see Appendix C of this
document.) For example, if the PCF contained:

 10255|PLATFORMSHORTNAME|"TRMM"

then

ret = PGS_MET_GetConfigData("PLATFORMSHORTNAME",&val)

would return “TRMM” in val. In the PCF quotes are only necessary when the datatype of
the value in the MCF is STRING. If an attribute is to be stored in the PCF as a runtime
parameter, the attribute name must be in UPPER case and must appear only once in the
PCF.

“NONE” - used only in conjunction with container objects as discussed below.

The MCF may also provide place holders for metadata attributes that will be set at a later stage in
a granule’s life. Other possible values for Data_Location include:

• “DAAC” for attributes that will be given values later at the DAACs, (e.g.
OperationalQualityFlag),

• “DP” for attributes that will be given values later by the Data Producer, (e.g.
ScienceQualityFlag),

• “DSS” for attributes that will be given values later by the Data Server Subsystem, (e.g.
SizeMBECSGranule), and

• “TK” for attributes automatically given values by the Toolkit, (e.g. ProductionDateTime.

 J-12 EED2-333-001

Mandatory - This parameter, which can have the values “TRUE” or “FALSE,” provides a
means for checking the metadata population process. PGS_MET_Write returns an error if no
value has been set for an attribute which has Mandatory = “TRUE”. If no value has been set for a
attribute which has Mandatory = "FALSE" a warning will be returned. In the former case
PGS_MET_Write sets the value to “NOT_SET”. Any attempt to insert a data granule into Data
Server will fail if any of the attributes have Mandatory=“TRUE” but an attribute value of
“NOT_SET.” An attribute with Mandatory = "FALSE" that is not set will be omitted from the
output metadata file.

Attributes designated in the ECS Data Model as being mandatory should have the mandatory flag
set to “TRUE”. Science Data Server may reject any granule that is lacking mandatory metadata.

Type - The type parameter allows the metadata tools to set the correct datatype for attributes
written by the PGE. The permitted values for this parameter are: “DATE”, “TIME”,
"DATETIME", "INTEGER", "DOUBLE", "STRING" and "UNSIGNEDINT. DATETIME is of
the form 1997-04-03T12:36:00”.

Note that since ODL does not support unsigned integers, the value written by the
PGS_MET_Write tool may appear negative, but the Toolkit handles any conversion between
signed and unsigned values based on the TYPE. Users must remember that setting of datatype
they require will be using ODL specific types. This does not interfere with the users own setting
datatype of values returned from the Toolkit call (e.g. a float may be converted to a double).

NUM_VAL - An attribute can be single-valued or a one-dimensional array of values.
NUM_VAL gives the maximum number of elements in an attribute value array. Any number of
values up to this limit may be set. If NUM_VAL is greater than one and the value is set in the
PCF or the MCF, the array is enclosed in parentheses: e.g. (“value1”,”value2”,...) or (12, 34, 45,
88). To set a array of values using the metadata tools, PGS_MET_SetAttr is called once with an
array as the attribute value. See notes for PGE_MET_SetAttr in Section 6.2.1.4 which describe
conventions for partial filling of arrays.

Value - This parameter is only present in the MCF template when the Data_Location = “MCF”.
In the output metadata file, after the metadata population is complete, the parameter Value
appears for all attributes. As noted previously, if a value has not been filled by either the PGE,
PCF or MCF, then either a default value will be set, or the attribute will not be written, and an
error or warning will be returned from PGS_MET_Write..

CLASS - In the ECS Data Model some classes may be repeated multiple times. For example, in
a granule the attribute SensorCharacteristic may be used once to describe a sensor’s operating
temperature and again to give a reference voltage. The CLASS parameter is used to signal the
toolkit than the attribute named by an object in the MCF will be written to multiple times and
that each write should create a separate instance of that object in the metadata output file. This is
discussed in the next section.

 J-13 EED2-333-001

J.6.3 Setting Multiple Attribute Values

Some attribute names can be used multiple times. The permitted multiplicity is specified in the
ECS Data Model (see 420-TP-016-003). To allow an attribute or group of attributes to be
multiply defined they must be bounded by an object called a “container.” This object container is
then bounded by an affiliated group name. The CLASS for the container object must be set to
"M", where M stands for multiple. For example:

GROUP = SensorCharacteristic
 OBJECT = SensorCharacteristicContainer
 Data_Location = "NONE"
 Class = "M"
 Mandatory = "TRUE"

 OBJECT = SensorShortName
 Data_Location = "PGE"
 Mandatory = "TRUE"
 Class = "M"
 TYPE = "STRING"
 NUM_VAL = 1
 END_OBJECT = SensorShortName

 OBJECT = SensorCharacteristicName
 Data_Location = "PGE"
 Mandatory = "TRUE"
 Class = "M"
 TYPE = "STRING"
 NUM_VAL = 1
 END_OBJECT = SensorCharacteristicName

 OBJECT = SensorCharacteristicValue
 Data_Location = "PGE"
 Mandatory = "TRUE"
 Class = "M"
 TYPE = "STRING"
 NUM_VAL = 1
 END_OBJECT = SensorCharacteristicValue

 END_OBJECT = SensorCharacteristicContainer
END_GROUP = SensorCharacteristic

To use an attribute multiple times the PGS_MET_SetAttr tool must be called with a CLASS
suffix to the attribute name. For example, using CLASS = 1:

PGS_MET_SetAttr(mdHandles[1],"SensorShortName.1”,”SHIRS”)

PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicName.1”,”CentralWavelength”)

PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicValue.1”,”450.1”)

The actual suffix used is not important but integer increments are advised. CLASS is only
present for objects and groups which have multiple instances. Collection-level metadata

 J-14 EED2-333-001

attributes are used to define a data type for this and other “self-defining” attributes (see
Section 6.4).

A new instance of the container object is created by the tools on output each time attribute is
used. For example, if a second sensor characteristic were set using:

PGS_MET_SetAttr(mdHandles[1],"SensorShortName.2”,”AVHRR”)

PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicName.2”,”Model_No”)

PGS_MET_SetAttr(mdHandles[1],"SensorCharacteristicValue.1”,”AH773Z”)

Note that SensorCharacterisiticValue is numeric in the first case and alphanumeric in the second
case. Although the same attribute in the MCF is being used multiple times, its type is set only
once. Therefore, in the MCF its type must be “string” and the values being assigned must be set
in quotes inside PGS_MET_SetAttr. The true datatype for sensor characteristic (or any of the
self-defining attributes) is set in the collection-level metadata. The value of the attribute
SensorCharacterisitcDataType would anyone someone to convert the string returned for
SensorCharacterisitcValue to it’s correct data type.

The metadata output file would look like this:

GROUP = SensorCharacteristic
 OBJECT = SensorCharacteristicContainer
 CLASS = "1"

 OBJECT = SensorShortName
 CLASS = "1"
 NUM_VAL = 1
 VALUE = “AVHRR”
 END_OBJECT = SensorShortName

 OBJECT = SensorCharacteristicName
 CLASS = "1"
 NUM_VAL = 1
 VALUE = “Central Wavelength”
 END_OBJECT = SensorCharacteristicName

 OBJECT = SensorCharacteristicValue
 CLASS = "1"
 NUM_VAL = 1
 VALUE = “450.1”
 END_OBJECT = SensorCharacteristicValue

 END_OBJECT = SensorCharacteristicContainer

 OBJECT = SensorCharacteristicContainer
 CLASS = "2"

 OBJECT = SensorShortName
 CLASS = "2"
 NUM_VAL = 1
 VALUE = “AVHRR”
 END_OBJECT = SensorShortName

 J-15 EED2-333-001

 OBJECT = SensorCharacteristicName
 CLASS = "2"
 NUM_VAL = 1
 VALUE = “Model_No”
 END_OBJECT = SensorCharacteristicName

 OBJECT = SensorCharacteristicValue
 CLASS = "2"
 NUM_VAL = 1
 VALUE = “AH773Z”
 END_OBJECT = SensorCharacteristicValue

 END_OBJECT = SensorCharacteristicContainer
END_GROUP = SensorCharacteristic

This example shows the ODL structure of the metadata written to the product, and what
parameters are kept to describe the objects. Not all parameters held within the MCF are written to
the metadata output file. The parameters which are written for each object are: NUM_VAL,
CLASS and the VALUE associated with the object.

Data_Location must be consistent for all objects within a container. In other words, you cannot
have the Data_Location for ExclusionGRingFlag be “MCF” and then have GRingPointLatitude
with Data_Location = “PGE” within the same GPolygonContainer.

J.6.4 Product-Specific Attributes

The ECS Data Model contains a number of the attributes that are termed self describing. These
are used to extend the ECS Data Model by allowing the definition of new attributes. Since these
are usually defined solely for a particular product, they are sometimes referred to as Product-
Specific Attributes or PSAs. The classes holding attributes in this category are:
AdditionalAttributes and SensorCharacteristics. The classes VerticalSpatialDomain and
RegularPeriodic can also be considered self-describing.

Self-describing attributes are defined by classes which include a name, datatype, description and
value for the new attribute. The name, datatype and description are defined at the collection level,
while the value is given at the granule level (i.e. written to the granule’s metadata using the
toolkit) along with the attribute name so that the association with the collection-level attributes
can be made. Self-describing groups can be set multiple times by a PGE and the product-specific
attribute value can be a single-dimensional array by setting NUM_VAL greater than 1. The
AdditionalAttributes class has the following construction in an MCF (see example of previous
section as well):

 GROUP = AdditionalAttributes

 OBJECT = AdditionalAttributesContainer

 J-16 EED2-333-001

 Data_Location = "NONE"

 Class = "M"

 Mandatory = "TRUE"

 /* AdditionalAttributes */

 OBJECT = AdditionalAttributeName

 Data_Location = "PGE"

 Mandatory = "TRUE"

 TYPE = "STRING"

 Class = "M"

 NUM_VAL = 5

 END_OBJECT = AdditionalAttributeName

 /* InformationContent */

 GROUP = InformationContent

 Class = "M"

 OBJECT = ParameterValue

 Data_Location = "PGE"

 Mandatory = "TRUE"

 TYPE = "STRING"

 NUM_VAL = 5

 END_OBJECT = ParameterValue

 END_GROUP = InformationContent

 END_OBJECT = AdditionalAttributesContainer

 END_GROUP = AdditionalAttributes

 J-17 EED2-333-001

In the example above, NUM_VAL is the largest number of possible values (i.e. the largest
possible array size) of any attributes that will be set using “AdditionalAttributes.” For example,
if two product-specific attributes will be set, one single-valued and the second an array of
dimension 5, then NUM_VAL must be set to 5.

Note that although PSAs are written as name/value pairs, they are read in the same fashion as
core attributes. That is, PGS_MET_SetAttr is called twice to write out a PSA, once to populate
AdditionalAttriubteName, then once to set ParameterValue. However, PGS_MET_GetSetAttr or
PGS_MET_GetPCAttr need only be called once, with the value given to
AdditionalAttributeName in order to obtain the value given to ParameterValue.

J.7 Metadata in HDF vs. non-HDF input and Output Files
Once populated, the MCF carries the granule-level metadata information. This information is
delivered to Science Data Server to populate the inventory database tables. In order for the data
product to be most useful, this information needs to be either embedded within the product or
closely tied to it. If the output product is in HDF, the toolkit automatically writes the granule-
level metadata to the product as one or more HDF Global Attributes. HDF attributes have a 64K
size limit, so the toolkit automatically generates additional attributes to hold all metadata being
written.

If the output product is not in HDF a separate ASCII metadata file must be generated. This is
accomplished using PGS_MET_Write is the manner described in main body of the Toolkit
documentation.

J.8 MCF Syntax
The MCF is closely based on Object Description Language (ODL) libraries. Most information
pertinent to PGE developers about ODL and its functionality is contained within this document.
Additional information is available at the WWW address
http://pds.jpl.nasa.gov/stdref/chap12.htm. ODL is based on a parameter = value syntax.

• ODL handles parameters and values in Upper case. The metadata toolkit converts
 all character strings in the MCF to upper case upon initialization into memory.

• ODL only recognizes a character string value when it is in quotation marks.

• ODL accepts only UTC Time/Date which must be in CCSDS ASCII format (A or B)

• ODL will only accept INTEGER, UNSIGNEDINT, DOUBLE , DATETIME or
STRING as a value for type

 J-18 EED2-333-001

This page intentionally left blank.

 K-1 EED2-333-001

Appendix K. POSIX Systems Calls Usage Policy

This appendix outlines the usage policy for the set of POSIX system API calls as outlined in:

IEEE Std 1003.1: POSIX Part 1: System Application Program Interface (API) [C
Language]

IEEE Std 1003.9: POSIX FORTRAN77 Language Interfaces, Part 1: Binding for
System Application Program Interface [API]

In general, the policy attempts to guard access to routines that may impact the SDPS where
system resource management is an issue. This will be accomplished by restricting access to the
standard POSIX system calls, as described below. The complete set of routines is listed in the
"Identifier Index" of IEEE Std 1003.1, and in the body of IEEE Std 1003.9.

Table C–1 provides general policy "guidelines" for various classes of system routines. These
guidelines are then used in determining the appropriate disposition for each of the POSIX system
call functions on an individual basis. The general policy guidelines include:

• Toolkit—The described functionality is either accessible to the user via a "shadowing"
routine in the PGS Toolkit, or it is used internally by the Toolkit itself. The Toolkit
routine may be a simple subroutine call (or macro) wrapper around the "shadowed"
function, or it may provide additional functionality that may be useful to the SDPS in
accomplishing its resource management objectives. Direct calls to the respective POSIX
API calls are prohibited within science algorithm code.

• Prohibited—Access to the described functionality is prohibited. Direct calls to the
respective POSIX API calls are prohibited within science algorithm code.

• Allowed—Access to the described functionality is allowed through the standard POSIX
API calls. The Toolkit itself makes calls to these routines in addition to those listed in the
Toolkit category.

The algorithm integration and test facility will include "code checkers" to screen science
algorithms for adherence. These code checkers will be provided as part of the PGS Toolkit to
support the development of policy compliant algorithms. This should greatly facilitate the
algorithm integration and test procedure.

 K-2 EED2-333-001

Table K-1. POSIX Call Guidelines By Class
Class Description Policy Guideline

Process control Process creation and termination; interprocess
signaling and synchronization

Toolkit

Memory Memory allocation, deallocation, and mapping Toolkit
File I/O File I/O routines; directory manipulation routines Toolkit
Stream I/O Stream I/O routines Toolkit
Error / environment Error recording and reporting; environment access Toolkit
Ownership Process ownership and groups; file ownership,

permissions, and creation/access times
Prohibited

Miscellaneous Math, "is...", "str...", and time functions Allowed
Terminal I/O Terminal I/O and characteristics Prohibited
Status System and resource status (read only) Allowed

Tables K–2 through K–10 constitute a listing of the entire set of POSIX C API calls, organized
by class and policy as described above. Table K–11 provides a listing of the FORTRAN77
specific language library calls that do not have C API counterparts. Entries in bold indicate that a
Toolkit "shadow" function has been created to perform this functionality.

Table K-2. POSIX Calls: Process Control
Toolkit Routines Prohibited Routines Allowed Routines

exec...()

_exit()
fork()

sig...()
sleep()
wait()
waitpid()

abort()
alarm(), PXFALARM()
exec(), PXFEXEC...()
_exit(), PXFEXIT()
PXFFASTEXIT()
PXFFORK()
kill(), PXFKILL()
pause(), PXFPAUSE()
PXFSIG...()
PXFSLEEP()
PXFWAIT()
 PXFWAITPID()
ftp
find
nice
rlogin

exit()

 K-3 EED2-333-001

Table K-3. POSIX Calls: Memory
Toolkit Routines Prohibited Routines Allowed Routines

calloc()
free()
malloc()
realloc()

 calloc()
free()
malloc()
realloc()

Table K-4. POSIX Calls: File I/O
Toolkit Routines Prohibited Routines Allowed Routines

access()
close()
creat()
dup()
dup2()
lseek()
open()
pipe()
read()
remove()
rename()
tmpfile()
tmpnam()
write()

access(), PXFACCESS()
fclose(), PXFCLOSE()
creat(), PXFCREAT()
dup(), PXFDUP()
dup2(), PXFDUP2()
PXFLSEEK()
PXFOPEN()
PXFPIPE()
PXFREAD()
cd
cp
rcp
read
chdir(), PXFCHDIR()
PXFRENAME()
closedir(), PXFCLOSEDIR()
fpathconf(), PXFFPATHCONF()
getcwd(), PXFGETCWD()
PXFWRITE()
link(), PXFLINK()
mkdir(), PXFMKDIR()
mkfifo(), PXFMKFIFO()
opendir(), PXFOPENDIR()
pathconf(), PXFPATHCONF()
readdir(), PXFREADDIR()
rewinddir(), PXFREWINDDIR()
rmdir(), PXFRMDIR()
unlink(), PXFUNLINK()
utime(), PFXUTIME()
PXFUMASK(),
PXFUNAME()

 K-4 EED2-333-001

Table K-5. POSIX Calls: Stream I/O
Toolkit Routines Prohibited Routines Allowed Routines

fclose()
fcntl(),
fdopen()
fileno()
fopen()
freopen()

setbuf()
stdin
stdout
stderr
PXFFCNTL()
PXFFDOPEN()
PXFFILENO()
clearerr()
PXFPOSIXIO()
at,atq,atrm

feof()
ferror()
fflush(), PXFFLUSH()
fgetc(), PXFFGETC()
fgets()
fprintf()
fputc(), PXFFPUTC()
fputs()
fread()
fscanf()
fseek(), PXFFSEEK()
ftell(), PXFFTELL()
fwrite()
getc(), PXFGETC()
putc(), PXFPUTC()
sprintf()
sscanf()
ungetc()

Table K-6. POSIX Calls: Error/environment

Toolkit Routines Prohibited Routines Allowed Routines
 assert()

atexit()
assert(),
getenv(), PXFGETENV()
perror()
IPXFARGC()
PXCLEARENV()
PXFGETARG()
PXFSETENV()

 K-5 EED2-333-001

Table K-7. POSIX Calls: Ownership
Toolkit Routines Prohibited Routines Allowed Routines

getpid()
getppid()

PXFGETPID()
PXFGETPPID()
chgrp
mkdir
ln
chmod(), PXFCHMOD()
chown(), PXFCHOWN()
getegid(), PXFGETEGID()
geteuid(), PXFGETEUID()
getgid(), PXFGETGID()
getgrgid(), PXFGETGRGID()
getgrnam(), PXFGETGRNAM()
getgroups(), PXFGETGROUPS()
getlogin(), PXFGETLOGIN()
getpgrp(), PXFGETPGRP()
getpwnam(), PXFGETPWNAM()
getpwuid(), PXFGETPWUID()
getuid(), PXFGETUID()
setgid(), PXFSETGID()
setpgid(), PXFSETPGID()
setsid(), PXFSETSID()
setuid(), PXFSETUID()
umask(), PXFUMASK()
utime(), PXFUTIME()

Table K-8. POSIX Calls: Miscellaneous
Toolkit Routines Prohibited Routines Allowed Routines

l localeconv()
setlocale()

localeconv()
setlocale()

 K-6 EED2-333-001

Table K-9. POSIX Calls: Terminal I/O
Toolkit Routines Prohibited Routines Allowed Routines

 cfgetispeed(), PXF...()
cfgetospeed(), PXF...()
cfsetispeed(), PXF...()
cfsetospeed(), PXF...()
ctermid(), PXFCTERMID()
getchar()
gets()
isatty(), PXFISATTY()
lp, lpr, lpstat
mail
printf()
putchar()
puts()
scanf()
tc...(), PXFTC...()
ttyname(), PXFTTYNAME()

Table K-10. POSIX Calls: Status
Toolkit Routines Prohibited Routines Allowed Routines

fstat(), PXFFSTAT()
stat(), PXFSTAT()
uname(), PXFUNAME()
PXFIS...()

PXFSTAT() sysconf(), PXFSYSCONF()
times(), PXFTIMES()

Table K-11. POSIX Calls: FORTRAN77 Language Library
Toolkit Routines Prohibited Routines Allowed Routines

open()
close()
read(5,…)
read(*,…)
write(6,…)
write(*,…)

READ*...
READ(*,...)
WRITE(*,...)
WRITE(6,...)

PXFCALLSUBHANDLE()
IPXFCONST()
PXFCONST()
PXFGETSUBHANDLE()
PXFISCONST()
PXFSTRUCTCOPY()
PXFSTRUCTCREATE()
PXFSTRUCTFREE()
PXFSUBHANDLE()PXF<TYPE>
GET()
PXF<TYPE>SET()
PXFA<TYPE>GET()
PXFA<TYPE>SET()
PXFE<TYPE>GET()
PXFE<TYPE>SET()

 L-1 EED2-333-001

Appendix L. Ephemeris and Attitude File Formats

EOSDIS Spacecraft Ephemeris and Attitude Data Specification: Contents and Structure

A Requirements Document for Incoming Data for the SDP Toolkit

Version 3, Including TRMM, Terra, Aqua, and Aura Specific Items

Peter D. Noerdlinger and Guru Tej S. Khalsa

SM & A Corporation

and

Robert Kummerer

Raytheon Systems Corporation

May 2004

This document specifies the form for incoming spacecraft ephemeris and attitude data for the
EOSDIS Science Data Processing Toolkit. Sample file structures below show the required data
format, and the required and optional data. This October 2003 version also explains some of the
functionality of DPREP, the generic name of spacecraft-specific software that transforms
incoming spacecraft data to Toolkit form. Although the file format is generic, there are platform-
specific items that are normally included. There is also a permanent change to the reference
frame for the attitude rates, for all spacecraft after TRMM. Version 1 of this document named the
Euler angles in the order peculiar to TRMM; Version 2 denotes them generically as three angles,
to be in the order that is specified in the header. Thus, for TRMM our names were yaw, pitch,
and roll for the 3-2-1 Euler angle order. For Terra and later spacecraft the order will be simply
Euler angle 1, Euler angle 2, Euler angle 3. (For Terra these are yaw, roll, and pitch, i.e. 3,1,2).
This setup is more flexible and can accommodate orders that repeat, such as 3,1,3, Euler's
original choice1. Tables 2I-S describe an important addition to the file metadata: for both
ephemeris and attitude, if range or continuity checking have been done, the metadata must
include the limits or thresholds used to set the error flags. Accompanying documentation (the
DPREP specifications) outlines the algorithm used for this kind of quality checking.

This document is written in the context that original ephemeris and attitude data will be
processed into files suitable for the SDP Toolkit2. In that processing, checks may be performed,

1 For further explanation, see, e.g. Spacecraft Attitude Determination and Control, Ed. J. R. Wertz (D. Reidel,
Dordrecht, 1985), especially Appendix E.

2 Documents Terra Spacecraft Ephemeris and Attitude Data Processing (document 500-EMD-001), Aqua Spacecraft
Ephemeris and Attitude Data Processing (document 500-EMD-002), and Aura Spacecraft Ephemeris and Attitude
Data Processing (document 500-EMD-003) describe ephemeris and attitude preprocessing for the Terra, Aqua, and
Aura platforms.

 L-2 EED2-333-001

small gaps may be filled, the units and even the reference frame may be changed, etc. The
Toolkit itself has interpolation capability; the term "data repair" is used for any filling of data
gaps in processing before the Toolkit, and the result is a "repaired" point. The omission of any
item in this document does not vitiate requirements specified elsewhere (e.g. metadata
requirements).

The size space to be allocated for UR in the file headers is variable, in order to accommodate
changing PDPS requirements.

Some data items must be present and must be in a specified format and units. Others (such as
identification fields) are required, but the format is not set in this document. Some items or
groups of items (in particular, the orbital elements) are optional. Certain data must eventually be
cast into ODL form and supplied to the archive system as inventory metadata. For EOS program
spacecraft this process will be done within the EOSDIS system; for other spacecraft a decision
will have to be taken as to how this part is done, but we flag the required fields with underlines in
any case.

The ODL formats are specified in the following document:

http://pds.jpl.nasa.gov/stdref/Chapter12.pdf

The SDP Toolkit has many functions that can be helpful in translating foreign data formats into
Toolkit standard form. Toolkit staff will be glad to work with outside data providers to facilitate
translations using these tools, which include time translations and reference frame changes.

1. Definitions and Preliminaries

1.1 Files and File Structures

Because ephemeris and attitude data may arrive separately, and at different intervals, the
ephemeris and attitude data must be kept in separate files. In EOSDIS the data are generally kept
in HDF files, with metadata assigned a separate section at the end. The Toolkit reads flat binary
data files, which may also be used as temporary or permanent vehicles for storage of ephemeris
and attitude data. In this document, no distinction will be made between the two kinds of file, but
metadata will be distinguished from data. Conceptually, metadata are used to identify the
contents of a file, such as the spacecraft identification, the time span, etc. The metadata are
segregated to facilitate data base access. File headers are by definition classified as metadata, for
they are used to identify files for retrieval. This definition is notwithstanding any specification as
to where metadata physically lie. I.e., if, for example, HDF standards put metadata at the end of
the file physically, then the physical end is the "Header." The distinction between metadata and
data is only relevant to the SDPS archiving system; either kind can be written and read as normal
C data.

1.2 Time Standards

All ASCII times shall be UTC and be conformant with CCSDS Format A standards as explained
in the CCSDS Blue Book (CCSDS Blue Book, Issue 2, Time Code Formats; CCSDS 301.0–B–2)
issued by the Consultative Committee for Space Data Systems (NASA Code OS, NASA,
Washington DC 20546, April 1990) and the EOSDIS SDP Toolkit User’s Guide (SDP Toolkit

 L-3 EED2-333-001

Users Guide for the ECS Project, which is on line on the World Wide Web at
http://edhs1.gsfc.nasa.gov/database/ECSCatalog.html). The date must be included. All binary
times shall be in Toolkit Internal Time. Toolkit Internal Time, secTAI93, is defined as
continuous seconds from UTC midnight, Jan 1, 1993. Normally kept as a double precision (64
bit) number, it suffices to maintain microsecond resolution from the late 1970’s to beyond the
year 2020. Functions in the Toolkit readily translate between Toolkit internal time, spacecraft
clock time, UTC, GPS, and other popular time streams. Users are advised to use Toolkit or other
reliable software, which includes leap seconds, to obtain this time. Some UNIX and C time
conversion utilities omit leap seconds when calculating time intervals, a serious error.

1.3 Units and Reference Coordinate Systems for the Ephemeris and the Orbital Elements

Position and velocity data must be in SI units (m and m/s), angles in radians, and angular rates in
radians per second. The ephemeris shall be in J2000. The orbital elements, if provided, can be in
J2000, TOD, or TOR (see below); a required field identifies which system was used.

1.4 Orbital Elements

The metadata for each file of orbital data may contain orbital elements; if these are unavailable,
the relevant fields can be left unpopulated. The osculating Keplerian elements are chosen,
generally consistent with the approach in the following document (see note after the table for the
exception):

Goddard Trajectory Determination System (GTDS) Mathematical Theory, Revision 1 Edited by
A.C. Long et al, Goddard Space Flight Center Code 550, Document FDD/552-89/001 or
CSC/TR-89/6001, 1989.

Note that the epoch of the elements can be different from that of the reference frame wherein they
are defined. The epoch of the reference frame must be must be shown in Table 33. Note that the
orbital elements will often be defined in the native coordinate system, while the ephemeris is
required to be in J2000.

Table 1. Keplerian Orbital Elements (1 of 2)

Symbol Meaning

keplerElements[0] Semi-major axis of spacecraft orbit (m)

keplerElements[1] Orbital eccentricity

keplerElements[2] Inclination (radians)

3 Note that in Goddard Space Flight Center Code 500 Standard Ephemeris Data Product, for some time, the right
ascension of the ascending node and the argument of perigee are in the reverse order from ours. All other GSFC
FDD data products follow the order shown in Table 1. Our early data preparation segment will put the data in the
order shown in Table 1. See the Goddard Space Flight Center Flight Dynamics Division Interface Control Document
for Generic Data Product Formats, Document 553-FDD-91/028 (GSFC 1991).

 L-4 EED2-333-001

Table 1. Keplerian Orbital Elements (2 of 2)

Symbol Meaning

keplerElements[3] Right ascension of the ascending node (radians)1

keplerElements[4] Argument of the perigee (radians)1

keplerElements[5] Mean anomaly at epoch (radians)

keplerEpochTAI Epoch of the elements (SI sec from 1993-01-01T00Z)

1.5 Identification of Other Frames

While orbital elements are not essential to SDPS processing, they are provided for herein both
for checking purposes and so as to preserve incoming data that are often present. Although the
orbital ephemeris is to be in J2000, the orbital elements could be defined in True of Date (TOD)
ECI or True of Reference (TOR) ECI, in J2000 ECI or in B1950 ECI. We will require a tag in the
metadata, such as "J2000" or "TOR" showing the reference system of the elements.

1.5.1 Fixed Epoch Inertial Systems - J2000 ECI and B1950:

The B1950 and J2000 reference systems are defined in the Astronomical Almanac and the
GTDS document mentioned in Section 1.4. Their axes are along fixed directions in inertial
space. The AM and PM Series of spacecraft will have their original ephemerides defined in
J2000; ephemerides from other platforms may have to be transformed (e.g. by DPREP).
Toolkit functions are available to assist with this work.

1.5.2 Inertial Systems at Other Epochs - TOD and TOR

True of Date (TOD) means the inertial system obtained by precessing and nutating J2000 to
the current time of the orbital data, and True of Reference (TOR) means the inertial system
obtained by precessing and nutating J2000 to some other epoch, generally the time of the start
of the first orbit in the data file. Even in a day, the change in the coordinate axes due to the
change in precession and nutation is generally < 0.3 arc seconds per axis, equivalent to < 15
meters in position for the a low Earth orbit spacecraft (total for 3 axes). Nevertheless, for
completeness, in the case of TOR, the epoch should be provided.

1.6 Orbit Numbers

The orbit numbers will represent full orbits from the beginning of the mission. Each orbit after
the first begins with an upward (ascending) equator crossing. The crossing will be determined in
the same coordinate system as the native data (Section 1.5 above). The orbit up to the first
ascending node is orbit number 1 for TRMM, orbit 0 for Terra, TBD for later spacecraft. The
Terra orbit number is established by FDD and the DPREP value will be forced into agreement by
operator action if necessary.

 L-5 EED2-333-001

1.7 Longitude of Equator Crossing

The terrestrial longitude of the crossing of the Earth’s equator on an orbit is to be identified in the
metadata, to facilitate later retrieval of swath data. The downward equator crossing longitude and
time of crossing, in True of Date coordinates, are to be determined and placed in the metadata.
Note that there is no conflict in tagging the orbits with data from the downward crossing,
although the orbit began at the upward; the upward crossing will be near the middle of each orbit.
This actually may avoid confusion between the longitude of the equator crossing in one orbit and
the next. The crossing must be defined in true-of-date or true-of-epoch, where the epoch is within
a day of the actual date. Use of the downward crossing will optimize the association of orbits
with daylight swaths for the Terra spacecraft. If the science data granules arriving at EOSDIS
from the spacecraft will not contain or be processed into any swath data (i.e. all the data will be
scene data that fit in bounding rectangles of limited extent, or the data will all be global data
sets) then the longitudes and times of equator crossing need not be populated unless required
elsewhere in EOSDIS requirements.

1.8 Actual versus Commanded Variables for Attitude Data; Attitude Rate Differences

Data providers should be aware that incoming spacecraft data are sometimes in the form of
differences from commanded quantities, especially for attitude. In that case, the commanded and
the difference quantity must be summed before transmittal to the Toolkit. In the case of Terra, the
interface documentation for the ancillary data (to which ECS is not a party) states that the attitude
and attitude rates (prior to DPREP processing) are in orbital coordinates, but verbal and e-mail
statements from the Terra office have stated that the attitude and rates are relative to commanded.
Furthermore, the commanded data are not provided in the ancillary data. Because of these
problems, users are advised to employ FDD attitude, which is obtained for EOSDIS from the
housekeeping, and not the ancillary data, by the GSFC Flight Dynamics Division. This attitude is
absolute in orbital coordinates and the rates are the projection of the absolute (J2000) inertial
angular velocity on the spacecraft coordinate axes. The meaning of the attitude in the ancillary
data, although it is processed by DPREP as well, is not guaranteed. It is supposed, however, that
the values and rates will most likely be defined in orbital coordinates, except during maneuvers.
Thus the mean pitch rate in the ancillary data will probably be zero, while in the FDD data it is
(outside of maneuvers) very close to the negative of the instantaneous orbital angular rate, any
small difference being due to variations of the attitude from nominal.

1.9 Reference System for the Attitude

The reference system for the attitude will in all cases be geocentric orbital coordinates. The y
axis is the instantaneous negative orbit normal, the z axis is toward Earth center and the x axis is
along the cross product of the y unit vector with the z unit vector.

1.10 Specification of the Attitude

The attitude will be specified in terms of Euler angles, and the angular rates about the three
principal spacecraft axes. Any additional attitude parameters (such as changes in "flying mode",
or flags showing that maneuvers are in progress) must be absorbed into either the Euler angles or
the quality flags. For example, if in "flying forward" at zero roll and pitch, the yaw is zero, then
"flying backwards" can be defined as yawAngle = π.

 L-6 EED2-333-001

1.11 Meaning of the Euler Angles and Rates

The Euler angles will always be ordered within the records according to the actual Euler Angle
Order. Each angle will be in radians, and will be defined positive when the rotation is in the
sense of a right handed screw along its positive axis - i.e., the right handed rule is applied when
looking outwards from the nominal spacecraft center. The ranges of the Euler angles are not
restricted; the usual ranges are given in Spacecraft Attitude Determination and Control, Ed. J. R.
Wertz (D. Reidel, Dordrecht, 1985), pp. 763 - 764. For TRMM, the rates will be instantaneous
rates of rotation about the three body axes x, y, and z, defined positive in the same right-hand
sense. Thus, for example, if the spacecraft is flying Eastward and "backwards", with its body x
axis along the negative velocity, a positive roll rate will mean that the North surface or
appendages are descending, the South ascending. Note that body axis rates are not, in general, the
same as rates of change of the Euler angles. When the angles are all small, and no axis is
repeated, the rates of rotation about the body axes are approximately equal to the Euler angle
rates, but the order is always (roll, pitch, yaw) and is not adjusted to match the Euler angle order.
Thus, it will not be unusual that the order of the Euler angle values will not match that of the
rates. For TRMM, the pitch rate is to be "stripped" in that it is relative to orbital and not to
inertial reference axes. For Terra and later EOSDIS spacecraft, the rates will the projection of the
absolute (J2000) inertial angular velocity on the spacecraft coordinate axes. See
http://newsroom.gsfc.nasa.gov/sdptoolkit/faq.html#q16.

For a description of the transformation of the rates between orbital and inertial frame, see
http://newsroom.gsfc.nasa.gov/sdptoolkit/FinalRateAtt.html.

1.12 Order of the Euler Angles

The file metadata must provide the Euler Angle Order; i.e. a mapping of x = roll, y = pitch, z =
yaw into the set 1,2,3. The order is to represent rotations that the spacecraft would undergo in
achieving its actual attitude starting from alignment with orbital coordinates. For example, if the
spacecraft must be put through a pitch, then a yaw, then a roll to achieve its true attitude starting
from perfect alignment with the orbital system, the Euler Angle Order is 2,3,1.

1.13 Quality Flags

Quality flags definitions for ephemeris and attitude are outlined here. In actual cases, the flags
bits are set according to spacecraft-specific criteria that should be explained and supported with
references to original documents. Table 2A shows the usage of the platform generic quality flags.
Tables 2B-H show the usage of platform-specific quality flags for TRMM, Terra, Aqua, and
Aura, respectively. In a specific case, not all fields may be populated. For the latter tables, the
usage could be quite different, for different spacecraft, but bit 16 is reserved for a platform-
specific flag, if the data provider intends to send data packets considered to be quite unreliable.
(The alternative is to send no data in such cases).

The SDP Toolkit tools for ephemeris and attitude access are user-callable, but are also used by
higher-level tools. The user interface differs somewhat in the two cases. When the access tool is
called directly, it passes the flags on to the user. In the other case, for example if the user is
accessing geolocation services, the interface has to be different, because the user cannot access
the flags per se through other tools which call the ephemeris access tools. In early Toolkit

 L-7 EED2-333-001

releases, an error was returned only when large data gaps existed; the flags were ignored. The
current and future Toolkits implement fuller recognition of quality flags by higher-level tools that
call the ephemeris tool. Thus, both missing data and bad quality data can result in warning or
error messages.

The Toolkit now implements, as default behavior, data rejection when bit 16 is set. The SDP
Toolkit function PGS_EPH_ManageMasks() enables the user to set a quality flag mask, if
desired, in the Process Control File, enforcing rejection based on other bits of her or his own
choice. For this reason, data providers are encouraged to establish practical definitions of flag
bits suitable for users to check questionable points. In particular, bits 2, 5, 6 and 9, if set, can be
used by users to reject points. These represent the large gap and red variation limits. It is
generally supposed that some range or continuity checks have been imposed on the data, and will
be reflected in some of the flags ("yellow" and "red" limits exceeded). Because the checks could
be range or continuity checks, accompanying documentation should explain the procedure, i.e.
the meaning of these limits. Such documentation is available for TRMM, Terra, Aqua, and Aura.

So that the parameters used in checking will be available in the data sets themselves, we are
requesting that the parameter values be listed along the line shown forTRMM, Terra, Aqua, and
Aura, for example, in Tables 2I-Q. We are planning that the red-limit bit be set so as to
statistically reject not more than 0.01% of the data when the variation is normal statistics, and the
yellow-limit bit be set so as to reject not more than 0.1%. The actual decision will be made in
each case by ESDIS. Note that for Terra L0 ephemeris, ESDIS has directed that DPREP shall
replace points outside the red or yellow limits by a quartic least squares fit, when this results in
the replacement of data segments whose length is shorter than or equal to 1 minute of time.
When this is done, the data repair bit is set and any bits that were set to indicate the existence of a
problem (limit exceeded, etc.) will be unset, for the following reason: Most of the time users will
access the ephemeris data via other tools. In that case, the only means available to select bit
patterns for rejection is the use of the tool PGS_EPH_ManageMasks(). That tool allows a simple
mask comparison test, not complicated logic such as would be required to accept repaired data
with another "trouble" bit set, but reject bad data that could not be repaired because of the gap
length. When defective data segments longer than the maximum 60-second gap length exist,
entire replacement data sets will be obtained from FDD. For Terra, these data sets will have
packet time interval 1.0s, rather than the 1.024s in L0 data. This will be documented in the
ephemeris header as shown in Table 3.

DPREP also provides a summary of the quality checks, in the form of quality assurance statistics,
as shown in Table 2R-S.

 L-8 EED2-333-001

Table 2A. Platform-Generic Quality Flags (1 of 2)
Bit Bit Assignment Description

0 Overall Quality Summary Set if any quality check is failed; unset for ideal data. Data
point can still be useful even if this bit is set; scrutiny of the
other bits would be required however. Bits 1 and 16 are
unset in this instance of ideal data.

1 Data State Summary Set if any generic data quality bit is set (bits 2 - 11)

2 Red Limit Low Exceeded4 Low red limit has been exceeded.

3 Yellow Limit Low Exceeded Low yellow limit has been exceeded.

4 Yellow Limit High Exceeded High yellow limit has been exceeded.

5 Red Limit High Exceeded High red limit has been exceeded.

6 Long Data Gap Follows5 A significant data gap originally followed this data point.

7 Short Data Gap Follows A minor data gap originally followed this data point.

8 Short Data Gap Precedes A minor data gap originally preceded this data point.

9 Long Data Gap Precedes A significant data gap originally preceded this data point.

10 Point is a repaired data point6 Used for points inserted by software prior to Toolkit
(interpolated).

11 Quality flag problem Quality data not available (bits 0-5 not meaningful)7.

4 The red and yellow limits are typically limits for the variation from nominal or commanded or deviations of a
single point from a local fit to the data. We recommend setting the yellow limit so that for the kinds of error expected
about one point per thousand, but no more, will be flagged yellow. We recommend setting the red limit such that not
more than one point in ten thousand would normally be flagged. The thresholds for the red and yellow limits are
platform specific. Accompanying documentation would explain the details. The limits can be different for orbit and
for attitude data. Red limits, if defined, should be chosen carefully as future Toolkit modifications might cause
rejection of points with bits 2 or 5 set. When a red limit is exceeded, the yellow is obviously exceeded also, so when
bit 2 is set, bit 3 should be set, and when bit 5 is set, bit 4 should be set. When a flag represents several items (such
as both position and velocity, or all 3 Euler angles) it is set for the worst of them.

5 The number of points constituting a tolerable gap is platform specific. Accompanying documentation should show
what size gaps are flagged. The gaps may or may not have been filled by interpolation. Filled points are indicated in
bit 10. The definitions of “long” and “short” gaps can be different for orbit and for attitude data.

6 A “repaired” point has been interpolated after original data processing - typically to fill a data transmission gap.

 L-9 EED2-333-001

Table 2A. Platform-Generic Quality Flags (2 of 2)
Bit Bit Assignment Description

12 No data available SDP Toolkit unable to find data at the requested timestamp.

13 Unassigned Reserved for SDP Toolkit use.

14 Interpolated data point SDP Toolkit interpolation performed in deriving data point.

15 Unassigned Reserved for SDP Toolkit use.

Note: Bits 1-15 are Platform Generic Flags are for general data quality flagging, and are intended
to apply to all platforms. Bits 12-15 are reserved for SDP Toolkit use. Bit 0 is least significant.

Table 2B. TRMM Platform-Specific Quality Flags (1 of 2)
Bit Bit Assignment Description

16 Platform-Specific Flag Set if any platform-specific quality bit is set8.

17 QAC Flag Data transmission flagged in QAC list.

18 Yaw Acquisition Set if ACS yaw acquisition in progress.

19 Yaw Maneuver Set if ACS yaw maneuver in progress.

20 Yaw Update Inaccurate Set if ACS has yet to check current yaw. Error in yaw
attitude up to 0.5 degrees anticipated.

21 Contingency Mode Flag Set if ACS is operating in a degraded state due to an Earth
sensor failure.

22 Inertial Hold Flag Spacecraft is flying in inertial space locked mode.

23 Earth Acquisition Set if ACS Earth acquisition in progress.

24 Yaw Update Indeterminate Set while ACS yaw determination completes following a
delta-V maneuver. No error in yaw attitude expected, but
can be suspect.

25 Delta-V Maneuver Set if delta-V maneuver in progress.

7 For example, if the quality check involves testing smoothness, isolated points (with gaps on each side) cannot be
checked.

8 In the case of TRMM, only bits 17 and 18 would be fatal for use of the data. For other platforms, the preparer
needs to decide on and document the bit patterns.

 L-10 EED2-333-001

Table 2B. TRMM Platform-Specific Quality Flags (2 of 2)
Bit Bit Assignment Description

26 Flying +X Forward Set if flying with +X axis in the forward direction.

27 Flying –X Forward Set if flying with -X axis in the forward direction.

28 Flying –Y Forward Set if flying with -Y axis in the forward direction.

29-31 Unassigned Available for other platform-specific data, quality or other.

Note: Bits 17 through 31 are Platform-Specific Flags reserved for data flagging except that bit 16
is common to all platforms. Bit 31 is most significant. The definitions outlined here are for
TRMM.

Table 2C. Terra Platform-Specific Quality Flags
Bit Bit Assignment Description

16 Platform-Specific Flag Set if any platform-specific quality bit is set9.

17 Safe Mode Flag Spacecraft has initiated Spacecraft Safe Mode; data are
unusable.

18-31 Unassigned Available for other platform-specific data, quality or
other.

Note: Bits 17 through 31 are Platform-Specific Flags reserved for data flagging except that bit 16
is common to all platforms. Bit 31 is most significant. The definitions outlined here are for Terra.

Table 2D. Aqua Platform-Specific Quality Flags (1 of 2)
Bit Bit Assignment Description

16 Platform-Specific Flag Set if any platform-specific quality bit is set10.

17 Bad Status Word Attitude remains unprocessed due to invalid attitude
system mode in Status Word 2 data stream.

18 Missing Status Word Attitude remains unprocessed due to missing attitude
system mode in Status Word 2 data stream.

9 In the case of Terra, bit 17 is fatal for use of the data. Bit 16 is also set when bit 17 is set.

10 In the case of Aqua, bits 17, 18, and 19 are fatal for use of the data. Bit 16 is also set when any of bits 17-19 are
set.

 L-11 EED2-333-001

Table 2D. Aqua Platform-Specific Quality Flags (2 of 2)
Bit Bit Assignment Description

19 Bad Ephemeris Data Attitude remains unprocessed due to poor-quality or
missing ephemeris data.

20-31 Unassigned Available for other platform-specific data, quality or
other.

Note: Bits 17 through 31 are Platform-Specific Flags reserved for data flagging except that bit 16
is common to all platforms. Bit 31 is most significant. The definitions outlined here are for Aqua.

Table 2E. Aura Platform-Specific Quality Flags
Bit Bit Assignment Description

16 Platform-Specific Flag Set if any platform-specific quality bit is set11.

17 Bad Status Word Attitude remains unprocessed due to invalid attitude system
mode in Status Word 2 data stream.

18 Missing Status Word Attitude remains unprocessed due to missing attitude
system mode in Status Word 2 data stream.

19 Bad Ephemeris Data Attitude remains unprocessed due to poor-quality or
missing ephemeris data.

20-22 Operating Mode GN&C operating mode from Status Word 2. Table 2F
describes operating mode values.12

23-25 Operating Mode Transition Flag. Operating mode transition flag. Tables 2G-H describe the
operating mode transition flag.

26-31 Unassigned Available for other platform-specific data, quality or other.

Note: Bits 17 through 31 are Platform-Specific Flags reserved for data flagging except that bit 16
is common to all platforms. Bit 31 is most significant. The definitions outlined here are for Aura.

11 In the case of Aura, bits 17, 18, and 19 are fatal for use of the data. Bit 16 is also set when any of bits 17-25 are
set.

12 Refer to Aura Spacecraft Ephemeris and Attitude Data Processing (document 500-EMD-003) for more
information on the operating mode and mode transition flag.

 L-12 EED2-333-001

Table 2F. GN&C Operating Mode Description
Binary Decimal GN&C Operating Mode Description Science Data Possible?

000 0 Mode Zero No

001 1 Attitude Hold Yes

010 2 Sun Hold No

011 3 Fine Point Yes

100 4 Earth Point Yes13

101 5 Sun Point No

Table 2G. Operating Mode Transitions and Mode Transition Values
 To 0 1 2 3 4 5

From 0 0 7 7 7 7 7

 1 7 0 7 1 2 7

 2 7 7 0 7 7 7

 3 7 3 7 0 4 7

 4 7 5 7 6 0 7

 5 7 7 7 7 7 0

13 MLS may be able to produce science data during earth point mode so it is treated as a science-producing mode in
this operation.

 L-13 EED2-333-001

Table 2H. Interpretation of Mode Transition Values (1 of 2)
Binary Decimal Interpretation

000 0 No transition has occurred between the Status Word 2 records that bracket
this attitude.

001 1 A transition from attitude hold to fine point. The spacecraft is cycling from
propulsion mode to normal science mode. Instruments may be able to take
data during both these modes.

010 2 A transition from attitude hold to earth point. The spacecraft is cycling from
propulsion mode to either a stand-by mode or a safe mode. It is possible that
MLS can take data during earth point mode.

011 3 A transition from fine point to attitude hold. The spacecraft is cycling from
fine point to propulsion for orbit adjustment. Instruments can take data
during both these modes.

100 4 A transition from fine point to earth point. MLS may be able to take data
during earth point mode.

101 5 A transition from earth point to attitude hold. This transition is not likely.

110 6 A transition from earth point to fine point.

111 7 Any transition between, into, or out of non-science data-taking modes. Some
of these transitions are not possible, e.g. it is not possible to go from mode
zero to fine point mode. In general, a value of 7 in this field will signal that
the data may be unusable if DPREP is able to process it at all.

Table 2I. Quality Checking Parameters – TRMM Platform-Specific (1 of 2)
EDOS-Supplied Attitude and FDD-Supplied Ephemeris

Symbol Meaning

qaParameters[0] Number of records required for populating quality check queue

qaParameters[1] Short gap interval in seconds

qaParameters[2] Long gap interval in seconds

qaParameters[3] Absolute position error red low limit

qaParameters[4] Absolute position error yellow low limit

 L-14 EED2-333-001

Table 2I. Quality Checking Parameters – TRMM Platform-Specific (2 of 2)
Symbol Meaning

qaParameters[5] Absolute position error yellow high limit

qaParameters[6] Absolute position error red high limit

qaParameters[7] Position error change yellow limit

qaParameters[8] Position error change red limit

qaParameters[9] Position error standard deviation yellow limit

qaParameters[10] Position error standard deviation red limit

qaParameters[11-15] Unused

Table 2J. Ephemeris Quality Checking Parameters – Terra Platform-Specific
(1 of 2)

EDOS-Supplied Ephemeris

Symbol Meaning

qaParameters[0] Maximum ephemeris quality check window size in number of data
points

qaParameters[1] Minimum ephemeris quality check window size in number of data
points

qaParameters[2] Long gap size in seconds

qaParameters[3] Position vector yellow limit in standard deviations or meters

qaParameters[4] Position vector red limit in standard deviations or meters

qaParameters[5] Velocity vector yellow limit in standard deviations or meters per
second

qaParameters[6] Velocity vector red limit in standard deviations or meters per second

qaParameters[7] Absolute or standard deviations limit check method flag

qaParameters[8] Unused

qaParameters[9] Absolute position vector maximum in meters

 L-15 EED2-333-001

Table 2J. Ephemeris Quality Checking Parameters – Terra Platform-Specific
(2 of 2)

Symbol Meaning

qaParameters[10] Absolute position vector minimum in meters

qaParameters[11] Absolute velocity vector maximum in meters per second

qaParameters[12] Absolute velocity vector minimum in meters per second

qaParameters[13-15] Unused

Table 2K. Ephemeris Quality Checking Parameters – Terra Platform-SpecificFDD-
Supplied Ephemeris (replacement data)

Symbol Meaning

qaParameters[0] Long gap size in seconds

qaParameters[1] Absolute position vector maximum in meters

qaParameters[2] Absolute position vector minimum in meters

qaParameters[3] Absolute velocity vector maximum in meters per second

qaParameters[4] Absolute velocity vector minimum in meters per second

qaParameters[5-15] Unused

Table 2L. Ephemeris Quality Checking Parameters – Aqua Platform-Specific
FDD-Supplied Ephemeris

Symbol Meaning

qaParameters[0] Long gap size in seconds

qaParameters[1] Absolute position vector maximum in meters

qaParameters[2] Absolute position vector minimum in meters

qaParameters[3] Absolute velocity vector maximum in meters per second

qaParameters[4] Absolute velocity vector minimum in meters per second

qaParameters[5-15] Unused

 L-16 EED2-333-001

Table 2M. Ephemeris Quality Checking Parameters – Aura Platform-Specific
FDD-Supplied Ephemeris

Symbol Meaning

qaParameters[0] Long gap size in seconds

qaParameters[1] Absolute position vector maximum in meters

qaParameters[2] Absolute position vector minimum in meters

qaParameters[3] Absolute velocity vector maximum in meters per second

qaParameters[4] Absolute velocity vector minimum in meters per second

qaParameters[5-15] Unused

Table 2N. Attitude Quality Checking Parameters – Terra Platform-Specific
EDOS-Supplied Attitude14

Symbol Meaning

qaParameters[0] Long gap size in seconds

qaParameters[1-15] Unused

Table 2O. Attitude Quality Checking Parameters – Terra Platform-Specific
FDD-Supplied Attitude15 (1 of 2)

Symbol Meaning

qaParameters[0] Long gap size in seconds

qaParameters[1] Absolute roll angle maximum in radians

qaParameters[2] Absolute pitch angle maximum in radians

14 The L0 (EDOS) attitude data are not checked for range limits, or continuity (spikes) because of conflicting
information as to the reference system for the attitude and rates. The available written agreements, to which ECS is
not a party, state that the attitude is relative to orbital coordinates, but personnel involved in the production of these
data have stated that the attitude is relative to the commanded attitude, which is not present in the EDOS/L0 data
stream.

15 The FDD attitude data are not checked for range limits, or continuity (spikes) because such data are deemed to be
without error as delivered from FDD. Range checking is performed and any violation results in the prompting for a
replacement dataset from FDD.

 L-17 EED2-333-001

Table 2O. Attitude Quality Checking Parameters – Terra Platform-Specific
FDD-Supplied Attitude16 (2 of 2)

Symbol Meaning

qaParameters[3] Absolute yaw angle maximum in radians

qaParameters[4] Absolute roll angle minimum in radians

qaParameters[5] Absolute pitch angle minimum in radians

qaParameters[6] Absolute yaw angle minimum in radians

qaParameters[7] Absolute angle rate maximum in radians per second

qaParameters[8] Absolute angle rate minimum in radians per second

qaParameters[9] Absolute roll angle yellow limit in radians

qaParameters[10] Absolute pitch angle yellow limit in radians

qaParameters[11] Absolute yaw angle yellow limit in radians

qaParameters[12] Absolute roll angle red limit in radians

qaParameters[13] Absolute pitch angle red limit in radians

qaParameters[14] Absolute yaw angle red limit in radians

qaParameters[15] Absolute x angle rate yellow limit in radians per second

psQaParameters[0] Absolute y angle rate yellow limit in radians per second

psQaParameters[1] Absolute z angle rate yellow limit in radians per second

psQaParameters[2] Absolute x angle rate red limit in radians per second

psQaParameters[3] Absolute y angle rate red limit in radians per second

psQaParameters[4] Absolute z angle rate red limit in radians per second

psQaParameters[5-15] Unused

16 The FDD attitude data are not checked for range limits, or continuity (spikes) because such data are deemed to be
without error as delivered from FDD. Range checking is performed and any violation results in the prompting for a
replacement dataset from FDD.

 L-18 EED2-333-001

Table 2P. Attitude Quality Checking Parameters – Aqua Platform-Specific
EMOS-Supplied Attitude17

Symbol Meaning

qaParameters[0] Attitude data long gap size in seconds

qaParameters[1] Absolute roll angle maximum in radians

qaParameters[2] Absolute pitch angle maximum in radians

qaParameters[3] Absolute yaw angle maximum in radians

qaParameters[4] Absolute roll angle minimum in radians

qaParameters[5] Absolute pitch angle minimum in radians

qaParameters[6] Absolute yaw angle minimum in radians

qaParameters[7] Absolute angle rate maximum in radians per second

qaParameters[8] Absolute angle rate minimum in radians per second

qaParameters[9] Status Word 2 long gap size in seconds

qaParameters[10-15] Unused

Table 2Q. Attitude Quality Checking Parameters – Aura Platform-Specific
EMOS-Supplied Attitude13 (1 of 2)

Symbol Meaning

qaParameters[0] Attitude data long gap size in seconds

qaParameters[1] Absolute roll angle maximum in radians

qaParameters[2] Absolute pitch angle maximum in radians

qaParameters[3] Absolute yaw angle maximum in radians

qaParameters[4] Absolute roll angle minimum in radians

qaParameters[5] Absolute pitch angle minimum in radians

qaParameters[6] Absolute yaw angle minimum in radians

17 The EMOS attitude data are not checked for range limits, or continuity (spikes) because such data are deemed to
be without error as delivered from EMOS. Range checking is performed and any violation results in the prompting
for a replacement dataset from EMOS.

 L-19 EED2-333-001

Table 2Q. Attitude Quality Checking Parameters – Aura Platform-Specific
EMOS-Supplied Attitude (2 of 2)

Symbol Meaning

qaParameters[7] Absolute angle rate maximum in radians per second

qaParameters[8] Absolute angle rate minimum in radians per second

qaParameters[9] Status Word 2 long gap size in seconds

qaParameters[10-15] Unused

Table 2R. Platform Generic Quality Assurance Statistics
Symbol Meaning

qaStatistics[0] QA Percent Interpolated Data

qaStatistics[1] QA Percent Missing Data

qaStatistics[2] QA Percent Out-of-Bounds Data

qaStatistics[3] Unused

Table 2S. Aqua and Aura Platform-Specific Quality Assurance Statistics
Symbol Meaning

psQaStatistics[0] QA Percent Missing Status Words

psQaStatistics[1] QA Percent Bad Status Words

psQaStatistics[2] QA Percent Bad Ephemeris Data

psQaStatistics[3] Unused

1.14 Versions

All the data within one incoming file must be the same version. If an original provider supplies,
for example, files beginning with definitive data and ending with predicted, the parts must be
segregated; the Toolkit does not deal with different versions, though the process control system
will allow file substitutions.

 L-20 EED2-333-001

1.15 Cautions

In the handling of incoming data, especially from historic data sets, and data sets foreign to the
EOSDIS fleet of spacecraft, it is important to remember that in practice the units for position and
velocity and the order of the Euler angles within the packets might be different from our
specification. The angles are also likely to be in different units. Furthermore, many spacecraft
using horizon sensors are referenced and even controlled to geodetic nadir. Euler angles
referenced in this way must be transformed to geocentric orbital coordinates before they are
acceptable, as will be done for TRMM. It is also possible that for some historic or foreign data
sets the Euler angles and their order as originally produced may represent an alias and not an alibi
transformation (See Malcolm D. Shuster, A Survey of Attitude Representations in J. Astronaut.
Sci. 41, 439 - 517 (1993). As explained on pp. 494-495, the attitude matrix for alibi
transformations is the transpose of that for alias.)

2. Summary of Data and Metadata Structures

The tables in this section summarize the various structures, first for ephemeris, then for attitude.
The order is (1) file header structure, (2) UR List, (3) record structure, and (4) metadata structure
(ephemeris only). The structures are shown in tables, but contain the necessary punctuation,
preamble and termination to constitute C++ structures. Some systems pad structures with extra
bits. We have defined structural elements in such a way that, on several machines familiar to us,
the size of the structure as stored is equal to the sum of the sizes of its listed component
elements. We write and read the structures as structures. Our tables do not include machine-
dependent padding bits that may be present on other machines, causing the structure to have
length greater than the sum of its listed components.

Table 3. Ephemeris Header Standard Structure (Metadata) (1 of 2)
(One per file)

(Underlined items must propagate to inventory metadata)

typedef struct
 {

// Type Name Meaning

Char spacecraftID[24]; // Spacecraft Name

Char asciiTimeRange[48]; // Start stop times to nearest hour or better, in ASCII18

Char source[32]; // Source of the data19

18 Example: “1999-04-11T06Z to 1999-04-12T06Z”. This partial redundancy with the double precision start and
stop times is for readability.

 L-21 EED2-333-001

Table 3. Ephemeris Header Standard Structure (Metadata) (2 of 2)
// Type Name Meaning

Char version[8]; // Version number (default = 1)

PGSt double startTime; // Ephemeris dataset start time, secTAI93

PGSt double endTime; // Ephemeris dataset end time, secTAI93

PGSt_real interval; // Expected interval between records, SI seconds20

PGSt_uinteger nURs; // Number of input dataset universal references

PGSt_uinteger nRecords; // Number of ephemeris records

PGSt_uinteger nOrbits; // Number of orbits spanned, including fragments

PGSt uinteger orbitNumberStart; //Number of first orbit or part orbit in file

PGSt uinteger orbitNumberEnd; //Number of last orbit or part orbit in file

Char keplerRefFrame[8]; // Reference Frame: e.g. "TOD", "TOR" or "J2000" of the
Keplerian elements21

PGSt_double keplerElements[6]; // Osculating Keplerian elements at epoch17

PGSt_double keplerEpochTAI; // TAI 93 Epoch of the Reference Frame17,22

PGSt_real qaParameters[16]; // Ephemeris data quality processing parameters

PGSt real qaStatistics[4]; // Quality assurance statistics

Char spare[216]; // Pad to 512 bytes

} PGSt_ephemHeader;

19 This field might read: “GSFC FDD”, or “TONS”. Terms like “filtered”, “smoothed”, or “unfiltered” are
allowable.

20 This is the normal interval as in the original data stream, not accounting for data gaps, clock error, etc.

21 These three fields are not required to be populated - but if one is, all three should be.

22 If the reference frame is B1950 or J2000, this field can be unpopulated. If it is "TOD" or "TOR" the value should
be supplied, since the last Keplerian element itself is the time at which they osculate to the orbit, while the reference
frame may be defined at a somewhat different time. Note that this reference frame applies only to the elements of
orbit only; the actual ephemeris is converted to J2000 by DPREP. The elements give only a thumbnail view of the
orbit, so the actual ephemeris data should be used when accuracy is required.

 L-22 EED2-333-001

Table 4. Ephemeris Record Standard Structure
(One per record)

typedef struct
 {

// Type Name Meaning

PGSt_double secTAI93; // Date and time as seconds from 1-1-93, secTAI93

PGSt_double position[3]; // X component of position vector, meters

PGSt_double velocity[3]; // X component of velocity vector, meters/sec

PGSt_uinteger qualityFlag; // Ephemeris data quality flag.

Char spare[4]; // Pad structure to 64 bytes

} PGSt_ephemRecord;

Table 5. Ephemeris Orbit Metadata Standard Structure
(One per orbit)

(Underlined items must propagate to inventory metadata; orbitAscendTime to archive metadata)

typedef struct
 {

// Type Name Meaning

PGSt uinteger orbitNumber; // Orbit number, from beginning of mission

Char spare[4]; // Pad previous element to 8 bytes

PGSt_double orbitAscendTime; // Time of upward TOD equator crossing,
secTAI93

PGSt double orbitDescendTime; // Time of downward TOD equator crossing,
secTAI93

PGSt double orbitDescendLongitude; // Orbit down-crossing terrestrial longitude,
radians

} PGSt_ephemMetadata;

 L-23 EED2-333-001

Table 6. Attitude Header Standard Structure (Metadata)
(One per file)

(Underlined items must propagate to inventory metadata)

typedef struct
 {

// Type Name Meaning

char spacecraftID[24]; // Spacecraft Name

char asciiTimeRange[48]; // Start and stop times to nearest hour or
better, in ASCII11

char source[32]; // Source of the attitude data12,23

char version[8]; // Version number (default = 1)

PGSt_double startTime; // Attitude dataset start time, secTAI93

PGSt_double endTime; // Attitude dataset end time, secTAI93

PGSt_real interval; // Expected Interval between records, SI
second13

PGSt_uinteger nURs; // Number of input dataset universal
references.

PGSt_uinteger nRecords; // Number of attitude records

PGSt_uinteger eulerAngleOrder[3]; // Order of rotations as a permutation of 1=x,
2=y, 3=z

PGSt_real qaParameters[16]; // Attitude data quality processing parameters

PGSt_real qaStatistics[4]; // Quality assurance statistics

char spare[280]; // Pad structure to 512 bytes

} PGSt_attitHeader;

23 This field is not reserved for the Toolkit and can be used for platform-specific data. For TRMM, it will contain an
unsigned integer representing the TRMM ACS state. Any platform specific use should be documented.

 L-24 EED2-333-001

Table 7. Attitude Record Standard Structure
(One per record)

typedef struct
 {

// Type Name Meaning

PGSt_double secTAI93; // Date and time as seconds from 1-1-93,
secTAI93

PGSt_double eulerAngle[3]; // Euler angle, radians

PGSt_double angularVelocity[3]; // Angular rate about body, radians/s

PGSt_uinteger qualityFlag; // Attitude data quality flag

Char spare[4]; // Pad structure to 64 bytes

} PGSt_attitRecord;

3. Summary of File Structures

The next two tables show how the headers, data records, and metadata fit into whole files.

Table 8. Overall Ephemeris File StructureRecord Type
Record Type Record Declaration Number of Records

Ephemeris Header PGSt_ephemHeader 1

Universal References char parentUR[256] nURs (found in header record)

Ephemeris Records PGSt_ephemRecord nRecords (found in header record)

Orbit Metadata PGSt_ephemMetadata nOrbits (found in header record)

Table 9. Overall Attitude File Structure
Record Type Record Declaration Number of Records

Attitude Header PGSt_attitHeader 1

Universal References char parentUR[256] nURs (found in header record)

Attitude Records PGSt_attitRecord nRecords (found in header record)

 L-25 EED2-333-001

Appendix A: Use of Attitude Spares for the TRMM Spacecraft

Table 10. Attitude Header Implementation for TRMM (Metadata)
(One per file)

(Platform-specific use of spares is shown in italics near the end of the structure)

typedef struct

{

// Type Name Meaning

Char spacecraftID[24]; // TRMM

Char asciiTimeRange[48]; // Start and stop times to nearest hour, in ASCII

Char source[32]; // Source of the attitude data

Char version[8]; // Version number (default = 1)

PGSt_double startTime; // Attitude dataset start time, secTAI93

PGSt_double endTime; // Attitude dataset end time, secTAI93

PGSt_real interval; // Standard Interval between records, SI
seconds

PGSt_uinteger nURs; // Number of input dataset universal references

PGSt_uinteger nRecords; // Number of attitude records

PGSt_uinteger eulerAngleOrder[3]; // Order of rotations as a permutation of 1=x,
2=y, 3=z

PGSt_real qaParameters[16]; // Attitude data quality processing parameters

PGSt_real qaStatistics[4]; // Quality assurance statistics

PGSt_uinteger acsControlMode; // Indicates use of gyros, Sun, maneuver, etc.

PGSt_uinteger flyingModePriorInertial; // Last flying mode before inertial lock (mode 0)

PGSt_double quatOrb0ToECI[4]; // Quaternion from orbital to inertial at mode 0
lock

char spares[240]; // Pad structure to 512 bytes

} DpTPrAttitudeHeader;

 L-26 EED2-333-001

It is to be emphasized that the SDP Toolkit does not access the spares used here; they are used by
the preprocessing system for chaining coordinate system transformations peculiar to the TRMM
spacecraft. It is, of course, desirable to document the use of spares as shown above in italics, and
in accompanying documentation.

Appendix B: Use of Attitude Spares for the Terra, Aqua, and Aura Spacecrafts

Table 11. Attitude Header Implementation for Terra, Aqua, and Aura (Metadata)
(One per file)

(Platform-specific use of spares is shown in italics near the end of the structure)

typedef struct

{

// Type Name Meaning

Char spacecraftID[24]; // EOSPM1 or EOSAURA

Char asciiTimeRange[48]; // Start and stop times to nearest hour, in ASCII

Char source[32]; // Source of the attitude data

Char version[8]; // Version number (default = 1)

PGSt_double startTime; // Attitude dataset start time, secTAI93

PGSt_double endTime; // Attitude dataset end time, secTAI93

PGSt_real interval; // Standard Interval between records, SI
seconds

PGSt_uinteger nURs; // Number of input dataset universal references

PGSt_uinteger nRecords; // Number of attitude records

PGSt_uinteger eulerAngleOrder[3]; // Order of rotations as a permutation of 1=x,
2=y, 3=z

PGSt_real qaParameters[16]; // Attitude data quality processing parameters

PGSt_real qaStatistics[4]; // Quality assurance statistics

PGSt_real psQaStatistics[4]; // Additional quality assurance statistics

PGSt_real psQaParameters[16]; // Additional attitude data quality processing
parameters

Char spares[200]; // Pad structure to 512 bytes

} DpTPrAttitudeHeader;

 L-27 EED2-333-001

It is to be emphasized that the SDP Toolkit does not access the spares used here; they are used by
the preprocessing system for chaining coordinate system transformations peculiar to the TRMM
spacecraft. It is, of course, desirable to document the use of spares as shown above in italics, and
in accompanying documentation.

Appendix C: Use of Ephemeris Spares for the Terra, Aqua, and Aura Spacecraft

Table 12. Ephemeris Header Implementation for Terra, Aqua, and Aura (Metadata)
(1 of 2)

(One per file)

(Platform-specific use of spares is shown in italics near the end of the structure)

typedef struct

{

// Type Name Meaning

Char spacecraftID[24]; // Spacecraft Name

Char asciiTimeRange[48]; // Start stop times to nearest hour or better,
in ASCII

Char source[32]; // Source of the data

Char version[8]; // Version number (default = 1)

PGSt_double startTime; // Ephemeris dataset start time, secTAI93

PGSt_double endTime; // Ephemeris dataset end time, secTAI93

PGSt_real interval; // Expected interval between records, SI
seconds

PGSt_uinteger nURs; // Number of input dataset universal
references

PGSt_uinteger nRecords; // Number of ephemeris records

PGSt_uinteger nOrbits; // Number of orbits spanned, including
fragments

PGSt_uinteger orbitNumberStart; //Number of first orbit or part orbit in file

PGSt_uinteger orbitNumberEnd; //Number of last orbit or part orbit in file

Char keplerRefFrame[8]; // Reference Frame: e.g. "TOD", "TOR" or
"J2000" of the Keplerian Elements

 L-28 EED2-333-001

Table 12. Ephemeris Header Implementation for Terra, Aqua, and Aura (Metadata)
(2 of 2)

// Type Name Meaning

PGSt_double keplerElements[6]; // Osculating Keplerian elements at epoch

PGSt_double keplerEpochTAI; // TAI 93 Epoch of the Reference Frame

PGSt_real qaParameters[16]; // Ephemeris data quality processing
parameters

PGSt_real qaStatistics[4]; // Quality assurance statistics

PGSt_double orbitalPeriod; // Terra orbital period

PGSt_double descNodePropagation; // Change in descending node crossing
longitude between successive crossings

PGSt_uinteger fddReplacement; // Status of FDD replacement24

Char spares[196]; // Pad to 512 bytes

} DpTPrEphemerisHeader;

It is to be emphasized that the SDP Toolkit does not access the spares used here; they are used by
the preprocessing system for chaining orbit metadata and FDD dataset replacement status
peculiar to the Terra, Aqua, and Aura spacecraft.

24 0 = no FDD replacement required, 1 = FDD replacement requested, 2 = FDD replacement achieved.

 M-1 EED2-333-001

Appendix M. Problem Identification List

The list of known problems as of December 2017 for the SCF Toolkit 5.2.20 delivery of the SDP
Toolkit can be found in section 5 of the SDP Toolkit 5.2.20 Version Description Document
(VDD) for the ECS Project.

 M-2 EED2-333-001

This page intentionally left blank.

 N-1 EED2-333-001

Appendix N. Structure of the File "utcpole.dat”

The file specification given here is not expected to change for the life of the EOSDIS project. It
is provided so that users may read columns other than those read by the Toolkit. The Toolkit
reads only the first header line of this file and columns 1,2,4,6,7,and 8. The columns are as
follows:

1. modified UTC Julian date

2. x component of polar motion, arc seconds

3. one standard deviation error estimate for column 2 values (see qualification below)

4. y component of polar motion

5. one standard deviation error estimate for column 4 values (see qualification below)

6. UT1 - UTC in seconds of time

7. one standard deviation error estimate for column 6 values (see qualification below)

8. data quality indicator

The columns are tab delimited. There are exactly 65 characters per line, including the newline
character, except in the header. The two header lines total 168 characters, including the newlines.
The data are all from the U.S. Naval Observatory (USNO), except for the error values from 1972
(beginning of file) to 1979; these are guesses by Dr. Peter Noerdlinger in the absence of other
information, but were sent to the Observatory for comment and no objection was received. The
errors after 1979 Jan 1 are one standard deviation errors and could easily be read by users who
need these numbers. There was no project requirement for accuracy, but the Toolkit staff felt that
the numbers should be saved in case of later interest. Date flagged "f" in the last column are
"final" but may change by very small amounts (cm to mm range), when new data are ingested at
USNO or the Observatory updates their earth rotation model. The data marked "p" are predicted
data. They tend to change more as updates are performed by the USNO.

Selected sections of a typical data file are shown below. The regions given in detail are beginning
of file, a section around a leap second, the transition to predicted data, and the end of the file.

 N-2 EED2-333-001

File Updated: 1998-03-05T17:26:41Z, using USNO ser7 finals.data file of Mar 5

MJD x(arc sec) x error y(arc sec) y error UT1-UTC(s) UT error qual

41317 +0.061000 0.002000 +0.051000 0.002000 -0.043200 0.000200 f

41318 +0.058000 0.002000 +0.049000 0.002000 -0.046100 0.000200 f

41319 +0.055000 0.002000 +0.048000 0.002000 -0.049000 0.000200 f

41320 +0.052000 0.002000 +0.047000 0.002000 -0.052000 0.000200 f

41321 +0.048000 0.002000 +0.045000 0.002000 -0.054900 0.000200 f

41322 +0.045000 0.002000 +0.044000 0.002000 -0.057900 0.000200 f

----------------section removed here covering many decades, to save space-----------------

-----------------next few lines show transition at a leap second-------------------------

50077 -0.164345 0.000052 +0.174418 0.000129 -0.429816 0.000010 f

50078 -0.166356 0.000052 +0.177657 0.000130 -0.432590 0.000002 f

50079 -0.168543 0.000059 +0.180703 0.000099 -0.435312 0.000011 f

50080 -0.170630 0.000055 +0.183521 0.000088 -0.437914 0.000011 f

50081 -0.172500 0.000054 +0.186204 0.000088 -0.440347 0.000011 f

50082 -0.174396 0.000107 +0.188956 0.000130 -0.442584 0.000038 f

50083 -0.176051 0.000119 +0.191918 0.000124 +0.555381 0.000022 f

50084 -0.177290 0.000118 +0.194805 0.000120 +0.553526 0.000020 f

50085 -0.178255 0.000098 +0.197606 0.000157 +0.551818 0.000015 f

---------------section removed here covering over two years, to save space ----------------

-----------------next few lines show transition to predicted data------------------------

50868 -0.051310 0.000209 +0.187877 0.000224 +0.115291 0.000015 f

50869 -0.054006 0.000216 +0.188612 0.000245 +0.113184 0.000016 f

50870 -0.056066 0.000180 +0.189348 0.000237 +0.110919 0.000016 f

50871 -0.057614 0.000176 +0.190131 0.000231 +0.108499 0.000017 f

50872 -0.058668 0.000158 +0.191538 0.000239 +0.105943 0.000017 f

50873 -0.059457 0.000106 +0.193336 0.000270 +0.103315 0.000027 f

50874 -0.060498 0.000096 +0.195182 0.000176 +0.100719 0.000031 f

50875 -0.061903 0.000069 +0.196987 0.000150 +0.098242 0.000031 f

 N-3 EED2-333-001

50876 -0.063387 0.000076 +0.198881 0.000169 +0.095935 0.000038 f

50877 -0.064763 0.004200 +0.200551 0.004200 +0.093803 0.000300 p

50878 -0.066208 0.005100 +0.202151 0.005100 +0.091816 0.000505 p

50879 -0.067709 0.005713 +0.203691 0.005713 +0.089933 0.000684 p

50880 -0.069255 0.006192 +0.205182 0.006192 +0.088073 0.000849 p

50881 -0.070836 0.006591 +0.206632 0.006591 +0.086174 0.001004 p

50882 -0.072444 0.006936 +0.208049 0.006936 +0.084217 0.001152 p

50883 -0.074071 0.007242 +0.209440 0.007242 +0.082200 0.001293 p

50884 -0.075711 0.007518 +0.210811 0.007518 +0.080116 0.001429 p

50885 -0.077358 0.007770 +0.212168 0.007770 +0.077970 0.001561 p

50886 -0.079007 0.008003 +0.213516 0.008003 +0.075777 0.001690 p

50888 -0.082293 0.008422 +0.216201 0.008422 +0.071295 0.001938 p

50889 -0.083923 0.008613 +0.217545 0.008613 +0.069030 0.002058 p

50890 -0.085540 0.008794 +0.218895 0.008794 +0.066774 0.002175 p

50891 -0.087141 0.008965 +0.220254 0.008965 +0.064551 0.002291 p

--------------------- numerous lines removed here, to save space ---------------------

50959 -0.126231 0.014474 +0.345196 0.014474 -0.074207 0.008276 p

50960 -0.125711 0.014523 +0.347152 0.014523 -0.075710 0.008351 p

50961 -0.125162 0.014571 +0.349097 0.014571 -0.077087 0.008425 p

 N-4 EED2-333-001

This page intentionally left blank.

 AB-1 EED2-333-001

Abbreviations and Acronyms

A.A. Astronomical Almanac

AA ancillary data access
ACS Attitude Control System

AI&T algorithm integration & test

AIRS Atmospheric Infrared Sounder
AM see EOSAM

API application program interface

APID application process identifier

Aqua EOS PM Project Spacecraft 1, afternoon spacecraft series – AIRS, AMSR-E,
AMSU, CERES, HSB, MODIS instruments; formerly PM-1

Aura EOS Project afternoon spacecraft series; HIRDLS, MLS, OMI, and TES
instruments; formerly CHEM

ASCII American Standard Code for Information Interchange

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer (formerly
ITIR)

B1950 Mean Celestial Reference Frame at JD 2433282.0 TDT (2433282.0 is noon, not
midnight, and is equivalent to 1949-12-31T22:09:46.816 UTC)

BNF Backus–Naur Form

CBP celestial body position

CCR configuration change request

CCSDS Consultative Committee on Space Data Systems

CDRL Contract Data Requirements List

CDS CCSDS day segmented time code

CERES Clouds and Earth Radiant Energy System

CM configuration management

COTS commercial off–the–shelf software

CRC cyclic redundancy code

CSC coordinate system conversion

CSMS Communications and Systems Management Segment (ECS)

 AB-2 EED2-333-001

CUC constant and unit conversions

CUC CCSDS unsegmented time code

DAAC distributed active archive center

DBMS database management system

DCE distributed computing environment

DCW Digital Chart of the World

DDF data distribution facility (Pacor)

DEM digital elevation model

DPFT Data Processing Focus Team

DPREP Data Preprocessing

DTM digital terrain mode

ECI Earth centered inertial

ECR Earth centered rotating

ECS EOSDIS Core System

EDC Earth Resources Observation Systems (EROS) Data Center

EDHS ECS Data Handling System

EDOS EOSDIS Data and Operations System

EMOS EOS Mission Operations System

EOS Earth Observing System

EOSAM EOS AM Project (morning equator crossing spacecraft series)

EOSDIS Earth Observing System Data and Information System

EOSPM EOS PM Project (afternoon equator crossing spacecraft series)

EPH ephemeris data access

ESDIS Earth Science Data and Information System (GSFC Code 505)

ET ephemeris tool
FDD Flight Dynamics Division

FDF flight dynamics facility

FNOC Federal Naval Operations Center

FOV field of view

ftp file transfer protocol

 AB-3 EED2-333-001

GAST Greenwich apparent sidereal time

GCT geo–coordinate transformation

GCTP general cartographic transformation package

GIS geographic information systems

GMST Greenwich mean sidereal time

GPS Global Positioning System

GSFC Goddard Space Flight Center

GTDS Goddard Trajectory Determination System

HDF hierarchical data format

HITC Hughes Information Technology Corporation

HOM Hotine Oblique Mercator

http hypertext transport protocol

I&T integration & test

I/O input/output

IAU International Astronomical Union

ICD interface control document

IDL interactive data language

IEEE Institute of Electrical and Electronic Engineers

IERS International Earth Rotation Service

IMS information management system

IP Internet protocol

IWG Investigator Working Group
J2000 Mean Celestial Reference Frame at JD 2451545.0 TDT (2451545.0 is noon, not

midnight, and is equivalent to 2000-01-01T11:58:55.816 UTC)

JNC jet navigational charts

JPL Jet Propulsion Laboratory
L0 Level 0 (zero)

LaRC Langley Research Center

LIS Lightening Imaging Sensor

M&O maintenance and operations

MCF metadata configuration file

 AB-4 EED2-333-001

MDU missing data unit

MDUE Missing Data Unit Entry

MDUL missing data unit list

MEM memory management

MET metadata

MODIS Moderate–Resolution Imaging Spectroradiometer

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space Administration

NCSA National Center for Supercomputer Applications

netCDF network common data format

NGDC National Geophysical Data Center

NMC National Meteorological Center (NOAA)

ODL object description language

PACOR packet processor

PC process control

PCF process control file

PDPS planning & data production system

PDR Preliminary Design Review

PDS production data set

PGE product generation executive (formerly product generation executable)

PGS Product Generation System

PGSTK Product Generation System Toolkit
PM see EOSPM

POSIX Portable Operating System Interface for Computer Environments

QA quality assurance

QAC quality and accounting capsule

RDBMS relational database management system

RPC remote procedure call

RRDB recommended requirements database

SCF Science Computing Facility

 AB-5 EED2-333-001

SDP science data production

SDPF science data processing facility

SDPS Science Data Processing Segment (ECS)

SES scheduling and execution subsystem

SFDU standard formatted data unit

SGI Silicon Graphics Incorporated

SI systeme international
SM & A Steven Myers and Associates

SMF status message file

SMAP Soil Moisture Active Passive

SMP Symmetric Multi–Processing

SOM Space Oblique Mercator

SPCS State Plane Coordinates Spheroid

SPSO Science Processing Support Office

SSM/I Special Sensor for Microwave/Imaging
TAI Temps Atomique International (International Atomic Time)

TBD to be determined

TD time date conversion

TDB Barycentric Dynamical Time
TDRSS Tracking and Data Relay Satellite System
TDT Terrestrial Dynamical Time

Terra EOS AM Project Spacecraft 1, morning spacecraft series – ASTER, CERES,
MISR, MODIS and MOPITT instruments; formerly AM-1

THG The HDF Group

TLCF team leader computing facility
TOD True of Date
TONS TDRSS On Board Navigational System
TOR True of Reference

TRMM Tropical Rainfall Measuring Mission (joint US – Japan)

TSS (TDRSS) Service Session

UARS Upper Atmosphere Research Satellite

 AB-6 EED2-333-001

UCAR University Corporation for Atmospheric Research

UR Universal Reference

URL universal reference locator

USDC United States Department of Commerce

USNO United States Naval Observatory

UT universal time

UTC Coordinated Universal Time

UTCF universal time correlation factor

UTM universal transverse mercator

VCDU virtual channel data unit

VPF vector product format

WWW World Wide Web

