Using Cloud Bursting to Count Trees and Shrubs in Sub-Saharan Africa

Michael Requa
Cycle Computing
Email: michael.requa@ cyclecomputing.com
Garrison Vaughan
IT Coalition/NASA Goddard Space Flight Center
Email: garrison.rvaughan@nasa.gov
John David
SSAI/NASA Goddard Space Flight Center
Email: john.l.david@nasa.gov
Ben Cotton
Cycle Computing
Email: ben.cotton@ cyclecomputing.com

Abstract—This paper describes the NASA Center for Cli-
mate Simulation’s (NCCS) use of cloud bursting to count trees
and shrubs in Sub-Saharan Africa. We outline the analytic
methodology involved in counting and estimating tree size
from satellite imagery. Applying these methods over the entire
region of interest represents almost 75 TB of data and 150,000
CPU-hours of computation, a sizable effort. We detail how the
NCCS successfully completed this project by utilizing Cycle
Computing’s software to facilitate the bursting of jobs from
the NCCS’s on-premise HPC cloud environment to Amazon
Web Services. Two Cycle Computing frameworks were used
en route to a solution that enabled large-scale computation
and data transfer while providing an end-user experience with
seamless access to cloud compute for research.

Keywords-bursting; HPC; climate;

I. INTRODUCTION

As the size of observational datasets grow, and the strain
on HPC systems increase, scientists are challenged with
finding new approaches to solve their big data problems.
Internal resources are expensive to build and have many
costs outside of the equipment: data center space, power,
cooling, and maintenance. Furthermore, internal resources
are always the wrong size — too large when not fully-utilized
and too small when a larger burst of work is queued.

Using a public cloud service provider (CSP) allows for
resources to be dynamically scaled to the appropriate size
for the moment, and at a predictable cost, but with the
introduction of a different set of challenges. Scaling a
compute environment to a much larger size is a specialized
skill, and the dynamic nature of the environment is a feature
that many HPC administrators are unused to. One of the
challenges for traditional HPC administrators when moving
to a CSP is that it requires devising new ways to scale
their compute environment, as the scaling workflow they
are used to with their on-premise systems does not directly
apply to CSP systems. Scaling clusters at the NCCS is reliant
on the fact that administrators have control of the physical

compute nodes and switches. These scaling mechanisms do
not directly translate to the cloud, so administrators have
to find new ways to scale in that environment. Moving the
data to the compute also presents significant challenges at
the many-terabytes scale.

At the 2014 AWS Public Sector Summit Intel announced
they were offering to fund the use of Amazon Web Services
(AWS) resources for researchers with innovative applications
as part of their Head in the Clouds challenge. Tsengdar
Lee, Paul Morin, and Compton Tucker submitted a proposal
to use these cloud resources to count all of the trees and
shrubs in Sub-Saharan Africa (see Figure 1) in order to
estimate biomass and carbon uptake in the region. This was
proposed because it is useful for establishing a baseline
of vegetation in the area for future studies, as well as
determining how much carbon dioxide could be released
into the atmosphere if the vegetation in this region was
to die off. The general approach taken to count trees and
shrubs in this region can also be applied to different areas of
the world, giving us these estimates in many more regions
of interest. Another benefit of this proposal was that the
intermediate datasets generated by this effort would also
be widely useful outside of the project. Intel accepted the
proposal, creating a collaboration between the NCCS, Cycle
Computing, Amazon Web Services, and the research team
lead by Paul Morin and Compton Tucker.

II. REASONING FOR CLOUD BURSTING

The NCCS has an on-premise HPC cloud environment
called the Advanced Data Analytics Platform (ADAPT)
where this research was to initially be conducted. ADAPT
was a desirable system to conduct this research due to
its large image data holdings. At the time of this project
ADAPT was comprised of around three hundred hypervi-
sors, all of which were decommissioned compute nodes
from the NCCS’ primary, traditional HPC system named

Multispectral
(WV02,GE01,Q802)

Panchromatic
(WV01,WV02,
GE01,QB02)

i

“Data only fom -

Figure 1. The area of Sub-Saharan Africa analyzed in this study.

©2007 DigitalGiobe, Inc.
Licensed under NextView

TKTK

Figure 3.

Discover. As Discover would get compute upgrades, a subset
of decommissioned nodes would be brought into ADAPT.
Though these compute nodes were still viable, they were no
longer cutting edge, and fell somewhat short of modern day
expectations of compute nodes in core count and RAM per
core. Therefore a single hypervisor would only be capable
of hosting two to three VMs each for most projects. The
ADAPT system could not be dedicated entirely to this
project, as it had to meet the requirements of other research
teams. With the lack of available compute power in ADAPT,
and the large amount of data needing to be analyzed, cloud
bursting was an enticing solution.

This project had two distinct workflows. The first work-
flow would prepare the raw image files for processing.
There were eleven zones (UTM zones) of interest across
the Sub-Saharan region, comprised of images from four
different commercial satellites (WorldView-2, WorldView-3,

original

(d2m/alpha2)+AVG

(dim/alphal)+AVG

200 400 600 800 1000

Figure 4. An example orthorectification correction applied during the
pre-processing of images.

QuickBird-2, and GeoEye-1). For organizational purposes,
each UTM zone is broken up into roughly 112 (16 x 7)
100km X 100km tiles and further subdivided into 16 (4
X 4) 25km x 25km sub-tiles. The initial workflow, called
orthorectified mosaicking, removed the effects of image
perspective and terrain on the raw images, and then stitched
them together using the best pieces from all images avail-
able. This ensured that trees that crossed tile boundaries were
only counted once, and made overall consistent mosaics
out of the multiple input sources. This initial workflow
alone was fairly resource intensive and utilized almost all
of the available compute resources within ADAPT. The
second workflow would then do some preprocessing of these
completed mosaic datasets, and then carry out the counting
of trees and shrubs. Since this processing workflow operated
independently on each of the sub-tiles the entire workload
was embarrassingly parallel, and lended itself to out-of-core
optimization and experimentation in burst computing.
Without bursting, the team would have been faced with
the challenge of needing to use the same batch of ADAPT
resources for both the mosaicking workflow and the actual
counting of trees and shrubs. The mosaicking of a single
UTM zone, given the resources available in ADAPT, took
up to a week. Once one UTM zone was completed, the
team would then have needed to use the same resources to
carry out the counting of trees and shrubs, instead of moving
on to mosaicking the next UTM zone. Since the capability
of bursting into AWS via Cycle Computing’s utilities was
available, the team could mosaic a UTM zone in the on-

3 tree + shadow

Figure 5. An example classification of identified trees. Red dots identify
the center mass of the canopy, yellow dots identify the center mass of the
shadow, and gree dots are the endpoints of a transect aligned through the
centroid of the tree.

premise ADAPT system, burst out the workflow of counting
trees and shrubs in the new mosaics out to AWS, and move
on to mosaicking the next UTM zone in the ADAPT system.
It was desirable to keep the mosaic processing local in
ADAPT as it kept AWS compute costs down, and cut down
the amount of data needed to be transferred and kept resident
in AWS (incurring cost) roughly tenfold.

Bursting into AWS was fairly cost effective for this
workflow. The large mosaic datasets would need to be
transferred into AWS for the processing, but transferring data
into AWS does not incur any costs. The output of interest
from the trees and shrubs counting workflow was a fairly
small CSV file with the location and size estimates of the
trees and shrubs discovered in each sub-tile. This meant that
a fairly small amount of data needed to be transferred out of
AWS, which does incur cost. The final architecture that was
devised using Cycle Computing’s tools would remove the
input (large) data from AWS once each sub-tile was finished
processing (one job per sub-tile), which also cut down on the
cost of data being resident in AWS. This meant that most of
our AWS charges were for the compute capabilities we were
leveraging, and a smaller amount of cost was incurred by
data transfer out and data at rest in AWS. By utilizing AWS
resources in this way the original estimate of 10 months
of dedicated ADAPT resources was reduced to roughly 1
month of total wall clock time.

III. INITIAL ARCHITECTURE OF WORKFLOW

Cycle Computing’s CycleCloud software was used to
manage the AWS environment throughout the project. Cy-
cleCloud provides an interface for automatically provi-
sioning and configuring cloud instances for computational
workflows. It dynamically scales the compute resources to
meet current demand and provides tools for transferring data
between internal and cloud storage.

|
Initial Workflow @

NCCS ADAPT AWS

/ Cycle Computing System

3 Batch Queue Master

(Spawns VMs and Submits
Jobs Them)

Instance

Figure 6. Initial architecture of the cloud environment. This design used
a custom transfer listener to launch jobs as file uploads to Amazon S3
completed.

The initial AWS environment was designed with a fo-
cus on moving data from the internal storage system into
Amazon Simple Storage Service (S3). To analyze 11 UTM
zones, 48 terabytes of image data were transferred into S3
using a 10 gigabit Direct Connect[1] connection. However,
the realized speed was closer to 1.1 Gb/s. The reason for
this reduced performance is not fully understood.

CycleCloud’s Cluster-Init automation tool performed the
submission of jobs into the HTCondor[2] scheduler by:

1) Gathering the inventory of objects in S3

2) Processing the file names into a submission template

3) Submitting the resulting template into the scheduler
queue

The processing jobs operated fully-independently. Each
job downloaded the appropriate image file from S3, executed
the image analysis, and uploaded results to S3. Result files
were downloaded with Cycle Computing’s Pogo file transfer
tool.

Jobs ran on the c¢3 family of instances, which use Intel
Xeon E5-2680 v2 (Ivy Bridge) Processors. C3 instances
come in sizes ranging from two to 32 virtual CPUs, with
1.875 GB of RAM per core and 20 GB of local ephemeral
storage per core (except for the smallest (c3.large) which
has 16 GB of local storage per core).

In order to reduce the cost of computation, we used the
Spot Market[3], where instances are available at purchase
below the market rate but can be lost if the market price ex-
ceeds the user-specified bid price. The HTCondor scheduler
automatically re-runs jobs that do not complete, however
they restart from the beginning if the job does not have
built-in checkpointing.

Overall, this environment worked well for initial process-
ing of the images. The overall costs were approximately
$3,200 for the compute instances and $750 for the S3
storage. Approximately 14,000 jobs total ran on a peak of
500 cores. However, with a median job run time of eight
hours, “badput” was an issue. Additionally, the multi-day
residence of files in S3 increased the total storage costs.

—
Final Workflow @
NCCS ADAPT AWS

NCCS Science Cloud

Cycle Computing System
Batch Queue Master
(Spawns VMs and Submits
Jobs Them)

(Serves EBS Volume out via
NFS)

Grid Engine
Master

Figure 7. Final architecture of the cloud environment. This design used
CycleCloud with SubmitOnce to burst from the internal ADAPT cluster to
a cluster running in Amazon EC2.

IV. FINAL ARCHITECTURE OF WORKFLOW

The lessons of the initial architecture were applied to
the next iteration of the environment, depicted in Figure
7. The new architecture used Open Grid Scheduler[4] with
CycleCloud’s SubmitOnce technology to make bursting
from ADAPT to AWS transparent to the end users. This
necessitated a change from using S3 for file storage to using
a shared NFS file system.

The pilot project analyzed a single UTM zone. 1700
jobs with a median run time of three hours processed five
terabytes of input. Using a peak cluster size of 250 cores, the
analysis completed in 48 hours. Again using the spot market,
the cost was $225 for the instances, with an additional $125
for the Elastic Block Storage (EBS)[5] volume used for
shared file access, and $150 in file transfer costs between the
Auvailability Zones used by execute nodes. For future runs,
execute nodes were contained to a single Availability Zone
in order to eliminate the costs associated with inter-zone data
transfer.

V. FUTURE USE OF ENVIRONMENT

The final architecture used in this project provided the
NCCS with a framework that can be utilized by other users
of the ADAPT system. As an outcome of this work, all
of the components needed to burst jobs out into the cloud
are in place within ADAPT, including a small Open Grid
Scheduler cluster. The steps to get another ADAPT user to
leverage this cloud bursting capability go as follows:

1) The user would get their job to run within the local
ADAPT Grid Engine cluster following a few filesys-
tem layout guidelines that will make their job more
easily burstable into the cloud.

2) User determines job runtime and data requirements
within ADAPT in order to determine what kind of
resources they need in AWS and estimate AWS costs.

3) The ADAPT team creates a CycleCloud cluster tem-
plate for the user’s job. The cluster template will be
different for each user’s workflow, as it defines their
AWS instance types, account information, configu-

(max cluster size) amongst many other things.

4) When the user is ready, they launch the head node of
their AWS cluster through ADAPT’s CycleServer in-
stance, and then submit their jobs via the SubmitOnce
tools within ADAPT (this is as simple as replacing the
gsub command with SubmitOnce’s csub command).

5) SubmitOnce brokers where the jobs run, either in
ADAPT or in AWS. If the job lands in AWS, Sub-
mitOnce transfers all input and output data between
AWS and the ADAPT filesystems, making the location
of the job transparent to the user. CycleCloud’s tools
will also dynamically provision and destroy execute
nodes in the AWS cluster for jobs being submitted,
limited by the maximum cluster size defined in the
user’s cluster template.

The NCCS sees this capability as a way to provide users
the option to drastically speed up their workflows at a
relatively small extra cost. The NCCS can provide users
the resources they need to get their jobs to run as desired
within ADAPT, and subsequently give them the ability vastly
grow their compute resources once comfortable with their
job, bounded only by what they are willing to spend in
AWS. This cloud bursting capability also encourages users to
optimize their code as much as possible, as shaving runtime
off of applications can make a large difference with what is
possible to get done in AWS given a set budget.

VI. CONCLUSION

We have described how the NCCS was able to make use
of public cloud resources in order to reduce the time-to-
results for a project that requires large amounts of storage
and computation. The flexibility cloud services provides
allowed for significant changes in the architecture based
on lessons learned from the initial configuration. Using the
newly-created environment will allow NASA researchers
to perform on-demand analysis of data using whatever
environment is most appropriate for the work at hand.

ACKNOWLEDGMENT

The authors would like to thank Intel’s Head in the Clouds
program for funding the cloud work.

REFERENCES
[1] “AWS Direct Connect,” https://aws.amazon.com/directconnect/.
[2] “HTCondor,” http://research.cs.wisc.edu/htcondor/.

[3] “Amazon EC2 Spot
https://aws.amazon.com/ec2/spot/.

instances,”

[4] “Open Grid Scheduler,” http://gridscheduler.sourceforge.net/.

ration management information, and resource limits [5] “Amazon Elastic Block Store,” https://aws.amazon.com/ebs/.

